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Abstract

An enormous amount of conversation occurs
online every day, such as on chat platforms
where multiple conversations may take place
concurrently. Interleaved conversations lead to
difficulties in not only following discussions
but also retrieving relevant information from
simultaneous messages. Conversation disen-
tanglement aims to separate intermingled mes-
sages into detached conversations.

In this paper, we propose to leverage represen-
tation learning for conversation disentangle-
ment. A Siamese hierarchical convolutional
neural network (SHCNN), which integrates
local and more global representations of a
message, is first presented to estimate the
conversation-level similarity between closely
posted messages. With the estimated simi-
larity scores, our algorithm for conversation
identification by similarity ranking (CISIR)
then derives conversations based on high-
confidence message pairs and pairwise redun-
dancy. Experiments were conducted with four
publicly available datasets of conversations
from Reddit and IRC channels. The experi-
mental results show that our approach signif-
icantly outperforms comparative baselines in
both pairwise similarity estimation and con-
versation disentanglement.

1 Introduction

With the growth of ubiquitous internet and mobile
devices, people now commonly communicate in
the virtual world. Among the various methods of
communication, text-based conversational media,
such as internet relay chat (IRC) (Werry, 1996)
and Facebook Messenger1, has been and remains
one of the most popular choices. In addition, many
enterprises have started to use conversational chat
platforms such as Slack2 to enhance team col-
laboration. However, multiple conversations may

1Facebook Messenger: https://www.messenger.
com/

2Slack: https://slack.com/

Thread Message
...

...
T31 Malcolm: If running as root, I need to set up a global config

rather than ⇠/.fetchmailrc ?
T38 Elma: i’m sure i missed something but fonts rendering in my

gimp works isn’t at its best
T39 Sena: is there anyway to see what the CPU temperature is?
T38 Elma: is it because of gimp or i missed some tuning or such?
T31 Rache: Specify a non-default name run control file.
T41 Denny: so how does one enforce a permission set and own-

ership set on a folder and all its children?
T31 Malcolm: in the man page it doesn’t mention any global

fetchmailrc file... that is what was confusing me...
T42 Shenna: hi, are sata drives accessed as sda or hda?
T41 Elma: -R for recursive...
T42 Elma: sda

...
...

Figure 1: A segment of real-world conversations in-
volving six users and five (annotated) threads from the
IRC dataset.

occur simultaneously when conversations involve
three or more participants. Aoki et al. (2006)
found an average of 1.79 conversations among
eight participants at a time. Moreover, some plat-
forms like chatrooms in Twitch may have more
concurrent conversations (Hamilton et al., 2014).
Interleaved conversations can lead to difficulties
in both grasping discussions and identifying mes-
sages related to a search result. For example, Fig-
ure 1 shows a segment of conversations from the
real-world IRC dataset as an example. Five inter-
leaved threads are involved in only ten messages.
Messages in the same thread may not have identi-
cal keywords. Moreover, a user (i.e., Elma) can
participate in multiple threads. Hence, a robust
mechanism to disentangle interleaved conversa-
tions can improve a user’s satisfaction with a chat
system.

One solution for conversation disentanglement
is to model the task as a topic detection and track-
ing (TDT) (Allan, 2002) task by deciding whether
each incoming message starts a new topic or be-
longs to an existing conversation. Messages in
the same conversation may have higher similarity
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scores (Shen et al., 2006; Mayfield et al., 2012) or
similar context messages (Wang and Oard, 2009).
However, similarity thresholds for determining
new topics vary depending on context. Embed-
ding of earlier messages, resulting in duplication
of parts of messages, can alter the similarity score.
More specifically, the similarity scores obtained in
previous work cannot well represent conversation-
level relationships between messages.

Several studies have examined the use of sta-
tistical (Du et al., 2017) and linguistic features
(Elsner and Charniak, 2008, 2010, 2011; May-
field et al., 2012) for predicting user annotations
of paired message similarity. These studies em-
ployed bag-of-words representations which do not
capture term similarity and cannot distinguish
word importance and relationships between words
in a message. Thus, better representations of mes-
sages and their relationships are needed.

Recent studies have demonstrated the effec-
tiveness of deep learning methods in represen-
tation learning (Bengio et al., 2013), aiming to
infer low-dimensional distributed representations
for sparse data such as text (Hinton and Salakhut-
dinov, 2006). These representations can be de-
rived not only for words (Mikolov et al., 2013) but
also sentences and documents (Le and Mikolov,
2014). In particular, convolutional neural net-
works (CNNs) have been shown to efficiently and
effectively preserve important semantic and syn-
tactic information from embedded text sequences
(Blunsom et al., 2014). It has been demonstrated
that CNNs produce state-of-the-art results in many
NLP tasks such as text classification (Kim, 2014;
Lai et al., 2015; Zhang et al., 2015) and sentiment
analysis (Tang et al., 2014; Poria et al., 2015).
Existing approaches, however, do not take advan-
tage of deep learning techniques to model relation-
ships between messages for disentangling conver-
sations. (Mehri and Carenini, 2017) defined many
statistical features for use with a random forest for
in-thread classification and used a recurrent neural
network (RNN) only to model adjacent messages
with an external dataset as a feature.

In this paper, we aim to leverage deep learn-
ing for conversation disentanglement. Our pro-
posed approach consists of two stages: (1) mes-
sage pair similarity estimation and (2) conversa-
tion identification. In the first stage, we pro-
pose the Siamese hierarchical convolutional neural
network (SHCNN) to estimate conversation-level
similarity between pairs of closely posted mes-
sages. SHCNN is framed as a Siamese architec-
ture (Mueller and Thyagarajan, 2016) concatenat-

ing the outputs of two hierarchical convolutional
neural networks and additional features. Com-
pared to other conventional CNN-based Siamese
networks (Severyn and Moschitti, 2015; Yin et al.,
2016), SHCNN models not only local information
in adjacent words but also more global semantic
information in a message. In the second stage,
the algorithm of conversation identification by
similarity ranking (CISIR) ranks messages within
a time window paired with each message and con-
structs a message graph involving high-rank con-
nections with strong confidence. Although only
high-confidence relations are represented in the
constructed graph, the redundancy of pairwise re-
lationships can capture the connectivity of mes-
sages within a conversation.

In summary, the main contributions of this pa-
per are threefold: (1) Deep similarity estimation
for conversation disentanglement: To the best of
our knowledge, this is the first study applying deep
learning to estimate similarities between messages
for disentangling conversations. SHCNN simul-
taneously captures and compares local and global
characteristics of two messages to estimate their
similarity. Message representations are also opti-
mized towards the task of conversation disentan-
glement. (2) Efficient and effective method: The
selection of message pairs posted closely in time
and the proposed CISIR algorithm significantly re-
duces the computational time from O

�
|M |2

�
to

O (k|M |), where |M | is the number of messages,
and k is the maximum number of messages posted
within a fixed-length time window. When many
messages are posted over a long period, the com-
putational time of our approach could be near-
linear. (3) Empirical improvements over previ-
ous work: Extensive experiments have been con-
ducted on four publicly available datasets, includ-
ing three synthetic conversation datasets and one
real conversation dataset from Reddit3 and IRC
conversations. Our approach outperforms all com-
parative baselines for both similarity estimation
and conversation disentanglement.

2 Related Work

Methods for conversation disentanglement can
be simply categorized into unsupervised and su-
pervised approaches. Unsupervised approaches
(Wang and Oard, 2009) estimate the relationship
between messages through unsupervised similar-
ity functions such cosine similarity, and assign
messages to conversations based on a predefined

3Reddit: https://www.reddit.com/
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threshold. In contrast, supervised methods exploit
a set of user annotations (Elsner and Charniak,
2008; Mayfield et al., 2012; Shen et al., 2006; Du
et al., 2017; Mehri and Carenini, 2017) to adapt
to different datasets. Our approach can be classi-
fied as a supervised approach because a small set
of user annotations is used to train the SHCNN.

In addition to conversations, some studies pre-
dict the partial structure of threaded data, espe-
cially for online forums (Aumayr et al., 2011;
Wang et al., 2011b,a). These studies merely clas-
sify parent-child relationships in disentangled, in-
dependent threads. Moreover, they focus only on
comments to the same post. Indeed, conversation
disentanglement is a more difficult task.

Estimating the similarity of text pairs is an es-
sential part in our approach. Many studies also
focus on similar tasks aside from conversation
disentanglement, such as entailment prediction
(Mueller and Thyagarajan, 2016; Wang and Jiang,
2017) and question-answering (Severyn and Mos-
chitti, 2015; Amiri et al., 2016; Yin et al., 2016).
However, most of their models are complicated
and require a larger amount of labeled training
data; limited conversational data can lead to un-
satisfactory performance as shown in Section 4.

3 Conversation Disentanglement

In this section, we formally define the objective
of this work and notations used. A two-stage ap-
proach is then proposed to address the problem.

3.1 Problem Statement

Given a set of speakers S, a message m is de-
fined as a tuple m = (w, s, t), where w =
hw1, w2, · · · , wni is a word sequence posted by the
speaker s 2 S at time t in seconds. Each message
m is associated with a conversation z (m). Mes-
sages in different conversations can be posted con-
currently, i.e., conversations can be interleaved.

Following the settings of previous work (El-
sner and Charniak, 2008, 2010, 2011; Mayfield
et al., 2012), a set of pairwise annotations A =
{(mi, mj , y)}, where y 2 {0, 1}, is given for
training the model. More specifically, a Boolean
value y indicates whether two messages mi and
mj are in the same conversation, i.e., z(mi) and
z(mj) are identical.

Given a set of messages M and the pairwise
annotations A as training data, the goal is to
learn a model that can identify whether mes-
sages are posted in the same conversation z(m).
Note that the number of conversations |Z =

{z(m) | 8m 2 M} | is always unknown to the
system.

3.2 Framework Overview
Figure 2 illustrates our two-stage framework. The
first stage aims to estimate pairwise similarity
among messages. Message pair selection is ap-
plied to focus on the similarity between messages
that are posted closely in time and thus more likely
to be in the same conversation. The Siamese hi-
erarchical CNN (SHCNN) is proposed for learn-
ing message representations and estimating pair-
wise similarity scores. The overlapping hierarchi-
cal structure of SHCNN models a message at mul-
tiple semantic levels and obtains representations
that are more comprehensive.

In the second stage, our conversation identifica-
tion by similarity ranking (CISIR) algorithm ex-
ploits the redundancy and connectivity of pair-
wise relationships to identify conversations as
connected components in a message graph.

3.3 Message Pair Selection
Most of the previous work on conversation disen-
tanglement focused on pairwise relationships be-
tween messages (Mayfield et al., 2012). Espe-
cially for single-pass clustering approaches, all
pairs of messages need to be enumerated during
similarity computation (Wang and Oard, 2009).
However, if messages have been collected for a
long time, the number of message pairs could be
too mammoth to be processed in an acceptable
amount of time. More precisely, it leads to at least
O(n2) computational time, where n is the num-
ber of messages. As shown in Figure 3, the per-
centage of messages in the same conversation as
a given message becomes significantly lower with
a longer elapsed time between consecutive mes-
sages. In light of this observation, an assumption
is made as follows:
Assumption 1 The elapsed time between two
consecutive messages posted in the same conver-
sation is not greater than T hours, where T is a
small number.
More specifically, in our dataset every message mi

is posted within T hours earlier or later than any
other message mj in the same conversation, i.e.,
|ti�tj |
3600 < T for all pairs (mi, mj), where t is in

seconds. For example, in the IRC dataset the av-
erage elapsed time between consecutive messages
in a conversation is only 7 minutes. If a conver-
sation is ongoing, there may not be an extended
silence before a new message; conversely, an ex-
tended silence could be treated as the start of a new
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Disentangled
Conversations

C1
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(1b) SHCNN for
Similarity Estimation

(1a) Message Pair
Selection

(2) CISIR for
Identification
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P (z (mi) = z (mj)) =?

SHCNN

Figure 2: Illustration of our proposed two stage method. In the first stage, (1a) message pairs are selected for (1b)
estimating pairwise similarity with a Siamese hierarchical CNN (SHCNN). In the second stage, (2) the algorithm
of conversation identification by similarity ranking (CISIR) constructs a graph with strong relationships among
messages and finds conversations as connected components.
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Figure 3: The percentage of messages in the same con-
versation as a given message with elapsed time between
messages no greater than i hours for four experimental
datasets.

conversation. With this assumption, the number
of pairs can be reduced to O(kn), where k is the
maximum number of messages posted in a T -hour
time window. By default T is set to 1 hour in our
experiments.

In addition, it is worth mentioning that it may be
possible to include conversational structure, such
as replied-to relations, into the model. For exam-
ple, after using CISIR to identify conversational
threads, structure inference may be performed us-
ing methods such as described in (Aumayr et al.,
2011) or (Wang et al., 2011b) and the structure
used to refine the threads. In this study, we focus
on only conversation disentanglement.

3.4 Similarity Estimation with the Siamese
Hierarchical CNN (SHCNN)

Given a set of message pairs, we propose the
Siamese hierarchical CNN (SHCNN) to estimate
the similarity between a pair of messages.

|w| words
message input m

convolutional
message

matrix Wc

d-dimensional word embedding

...
...

high-level
message

matrix WH

low-level
conv. feature

map cL
i

high-level
conv. feature

map cH
i

64-dim low-level
representation

m̂L

64-dim high-level
representation

m̂H

128-dim message representation m̂

d ⇥ |w| message matrix W
d ⇥ |w| message matrix W

Figure 4: Illustration of hierarchical CNN (HCNN) for
message representation. The labels with a larger font
size indicate the corresponding tensors, and the labels
with a smaller font size explain the operations between
tensors.

3.4.1 Hierarchical CNN for Message
Representation

The effectiveness of CNNs for representing text
has already been addressed in previous studies.
However, single-layer CNNs (Kim, 2014; Sev-
eryn and Moschitti, 2015) may not represent high-
level semantics while low-level information could
be diluted with multiple-layer CNNs (Yin et al.,
2016). The hierarchical CNN (HCNN) is de-
signed to simultaneously capture low- and high-
level message meanings as shown in Figure 4.

A message mi is first represented by a d ⇥ |w|
message matrix W 2 Rd⇥|w|, where d is the di-
mension of a word embedding, and |w| is the num-
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ber of words in a message. For low-level informa-
tion, we exploit single-layer CNNs (Kim, 2014;
Severyn and Moschitti, 2015) with a set of d⇥ kL

kernels, where L denotes “Low”, to extract n-
gram semantics of kL contiguous words. In this
paper, 64 d ⇥ kL kernels, where kL = 5, are ap-
plied to obtain 64 low-level features m̂L. Note that
the kernel row dimension is identical to the word
embedding dimension to jointly consider the full
embedding vector. As a consequence, convolution
with each kernel produces a vector cL

i , which is
then aggregated by max-over-time pooling (Col-
lobert et al., 2011; Kim, 2014).

To acquire high-level semantics across a mes-
sage, HCNN uses another multiple-layer CNN for
feature extraction. A 1 ⇥ kC kernel is applied to
W , thereby generating a convolutional message
matrix W C . Features covering broader contents
are computed by applying a 1 ⇥ 2 kernel to a
max-pooling layer with a stride of 2, producing
a high-level message matrix W H . The row sizes
of the two kernels are set to 1 to capture relations
within each embedding dimension, and convolu-
tion is performed on W H with 64 d⇥ kH kernels
to capture relations across embedding dimensions.
The generated convolutional feature maps cH

i are
subject to max-over-time pooling, resulting in 64
features m̂H . Finally, a message representation
m̂ is constructed by concatenating m̂L and m̂H ,
i.e., creating a 128-dimensional feature vector, for
characterizing both low- and high-level semantics
of a message m. In this paper, both kC and kH

are set to 5 while computing high-level represen-
tations.

3.4.2 Siamese Hierarchical CNN (SHCNN)

A Siamese structure with two identical sub-
networks is useful to exploit the affinity between
representations of two instances in the same hid-
den space (Severyn and Moschitti, 2015; Yin et al.,
2016; Wang and Jiang, 2017). For similarity esti-
mation, we propose the Siamese hierarchical CNN
(SHCNN) using a Siamese structure that blends
the outputs from two HCNNs as well as some con-
text features.

Figure 5 shows the structure of the SHCNN for
estimating the similarity between two messages
mi and mj where the message representations m̂i

and m̂j are generated by two sub-networks HC-
NNs (See Figure 4). There are many ways to deal
with two sub-networks, such as using a similar-
ity matrix (Severyn and Moschitti, 2015) or an at-
tention matrix (Yin et al., 2016). However, both
methods lead to an enormous number of parame-

message 
input !"

HCNN

message 
input !#

message 
representation	!%"

message 
representation	!%#

HCNN
element-wise

absolute difference
&

fully-connected
layer

'( !", !#

context
features
*(!" ,!#)

Figure 5: The siamese hierarchical CNN (SHCNN) for
similarity estimation. Note that the model structure of
an HCNN is shown in Figure 4.

ters for long messages. We propose to indepen-
dently compute the element-wise absolute differ-
ences (Mueller and Thyagarajan, 2016) between a
pair of message representations m̂i and m̂j , each
from a sub-network. More formally, the absolute
difference d is a vector where the k-th element is
computed as |m̂i(k)�m̂j(k)|. This approach pro-
vides not only fewer parameters but also the flex-
ibility to observe interactions among different di-
mensions in representations. Our experiments also
show it outperforms the other two approaches in
similarity estimation (See Section 4).

In addition to message contents, contexts such
as temporal and user information were also usu-
ally considered in previous studies about conver-
sation disentanglement (Wang and Oard, 2009; El-
sner and Charniak, 2010, 2011). In this paper,
we focus on the performance of message content
representations and only incorporate four context
features: speaker identicality, absolute time differ-
ence and the number of duplicated words with and
without weighting by inverse document frequency
(Christopher et al., 2008). SHCNN concatenates
the context features x(mi, mj) with the absolute
difference d as the input of a fully-connected layer
of the same size.

The final output of SHCNN ŷ (mi, mj) is
normalized by a logistic sigmoid function (Han
and Moraga, 1995), representing the probability
P (z(mi) = z(mj)).

3.4.3 Activation Functions
All convolutional layers and the fully-connected
layer require activation functions, and the choice
affects the performance (Maas et al., 2013). Pop-
ular functions include rectified linear units (Re-
LUs) (LeCun et al., 2015), hyperbolic tangent

1816



units (tanh) and exponential linear units (ELUs)
(Clevert et al., 2016). In this study, we conducted
informal comparison experiments and ELU was fi-
nally chosen for all functions because it performed
the best.

3.4.4 Optimization and Implementation
Details

Given a set of annotated message pairs A =
{(mi, mj , y)}, where y is a Boolean value indicat-
ing whether two messages are in the same conver-
sation, SHCNN is optimized with binomial cross
entropy (Goodfellow et al., 2016). More formally,
the objective function is as follows:

X

(mi,mj ,y)2A

[y · log(ŷ + ✏) + (1 � y) · log(1 � ŷ + ✏)]+�||✓||2

where ŷ simplifies ŷ(mi, mj), and ✏ is a small
number, i.e., 10�9 in our experiments, preventing
underflow errors. The term � serves as the weight
for L2-regularization for the set of parameters ✓.

In our experiments, SHCNN is implemented by
TensorFlow (Abadi et al., 2016) and trained by the
Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of 10�3. The dropout tech-
nique (Srivastava et al., 2014) is utilized in the
fully-connected layer with a dropout probability
of 0.1. Word embeddings are initialized using the
publicly available fastText 300-dimensional pre-
trained embeddings from Facebook (Bojanowski
et al., 2016). The batch size is set to 512, and the
maximum number of training epochs is 1,000. The
final model is determined by evaluating the mean
average precision (MAP) on a validation dataset
every 100 iterations.

3.5 Conversation Identification by SImilarity
Ranking (CISIR)

In the second stage of conversation disentangle-
ment, i.e., part (2) in Figure 2, we aim to sepa-
rate conversations based on the identified message
pairs and their estimated similarity.

3.5.1 Graph-based Methods and
Conversation Connectivity

It is intuitive to apply graph-based methods if pair-
wise relationships of messages are exploited (El-
sner and Charniak, 2008). Furthermore, methods
based on single-pass clustering (Wang and Oard,
2009) can be also be treated as graph-based meth-
ods. However, graph-based methods have a risky
drawback: A single false positive connection be-
tween two messages can be propagated to several
messages from different conversations. As shown

Algorithm 1: The algorithm of conversa-
tion disentanglement by similarity ranking
(CISIR).

1 CISIR (M , D, r, h);
Input : Message set M , the set of selected

message pairs D, the threshold of
similarity ranks r and the threshold
of similarity scores h.

Output: A set of conversations C
2 Let G = (M , ;) be an undirected message

graph
3 for m 2 M do
4 Dm =

{(mi, mj , ŷ) | mi = m _ mj = m}
5 Rank entries in Dm by ŷ in a descending

order
6 for k = 1 to min(r, |Dm|) do
7 Let (mi, mj , ŷ) be the k-th entry in

ranked Dm

8 if ŷ < h then
9 break

10 Add an edge (mi, mj) into G

11 C = ConnectedComponents(G)
12 return C

in Figure 3, a certain percentage of message pairs
are in different conversations, which can lead to
numerous false positive connections.

False alarms may be reduced by raising the
threshold that determines whether two messages
are connected (Wang and Oard, 2009). However,
a high threshold can make disentangled conversa-
tions fragmented and the best threshold for each
pair could vary.

3.5.2 The CISIR Algorithm
Instead of setting a high threshold, we propose the
algorithm of Conversation Identification by SImi-
larity Ranking (CISIR). CISIR focuses on the top
messages ranked by similarity scores. Based on
Assumption 1, for each message, there exists at
least one or more other messages in the same con-
versation posted closely in time. With this redun-
dancy, a few pairs with stronger confidence, i.e.,
the top-ranked pairs, can be enough to extend a
correct connectivity to earlier or later messages,
while the low-ranked pairs can be ignored to re-
duce the risk of error propagation.

Given a set of selected message pairs with esti-
mated similarity scores D = {(mi, mj , ŷ)}, Al-
gorithm 1 shows the procedure of CISIR with two
parameters r and h, where r is a high threshold

1817



of similarity ranks and h is a lower threshold of
similarity scores. Note that CISIR filters out pairs
with low scores because a message can have more
than r same-conversation pairs posted in its T -
hour time window. For each message, CISIR ranks
all of its associated pairs by the estimated similar-
ity and only retrieves the top-r pairs whose sim-
ilarity scores are greater than h. These retrieved
high-confidence pairs are treated as the edges in a
message graph G. Finally, CISIR divides G into
connected components, and the messages in each
connected component are treated as a conversa-
tion. In this paper, we use grid search to set r and
h as 5 and 0.5, respectively.

3.5.3 Improvement of Time Complexity
The efficiency of Algorithm 1 can be further im-
proved. The top-r qualified pairs for each mes-
sage can be pre-processed by a scan of D with |M |
min-heaps which always contain at most r+1 ele-
ments. When r is a small constant number, it only
takes O(|D|) = O(k · |M |) for pre-processing,
where k is the maximum number of messages
posted in a T -hour time window. With pre-
processed top pairs, CISIR can do graph construc-
tion and find connected components in O(k|M |),
which compares favorably to conventional meth-
ods in O(|M |2).

4 Experiments

In this section, we conduct extensive experiments
on four publicly available datasets to evaluate
SHCNN and CISIR in two stages.

4.1 Datasets and Experimental Settings
4.1.1 Datasets
Three datasets from Reddit and one dataset of IRC
are used as the experimental datasets.

• Reddit Datasets4 The Reddit dataset is com-
prised of all posts and corresponding comments
in all sub-reddits (i.e., forums in Reddit.com)
from June 2016 to May 2017. Comments un-
der a post can be treated as messages in one
conversational thread. Here we manually merge
all comments in a sub-reddit to construct a syn-
thetic dataset of interleaved conversations. Note
that although it is called a “synthetic dataset,” all
messages are written by real users. Three sub-
reddits with different popularity levels as shown
in Table 1 are selected to build three datasets:
gadgets, iPhone and politics.
4The organized Reddit dataset is publicly available in

https://files.pushshift.io/reddit/.

Dataset Reddit IRCgadgets iPhone politics
Conversations 287 617 3,671 39

Messages 8,518 12,433 105,663 497
Speakers 5,185 5,231 25,289 71

Train/Valid Pairs 3,445 5,556 244,492 5,995
Test Pairs 27,565 44,450 1,955,943 47,966

Table 1: Statistics of four datasets after pre-processing.

• IRC Dataset. An annotated IRC dataset used
in (Elsner and Charniak, 2008) is also included
in our experiments. The IRC dataset consists
of about 6 hours of messages in interleaved
conversations. Even though the IRC dataset is
significantly smaller and shorter than the Red-
dit datasets, it consists of natural, interleaved
conversations with ground truth annotations, in-
cluding thread id.

4.1.2 Experimental Settings
Humans may not participate in a large number of
simultaneous conversations. e.g., an average of
1.79 for eight people (Aoki et al., 2006), but there
could be hundreds of concurrent posts in a subred-
dit. Hence, we adjusted the datasets to be more
similar to real conversations. Specifically we re-
moved some conversations so that every dataset
has at most ten conversations at any point in time.
Short messages with less than five words are also
removed because even for humans they are fre-
quently ambiguous. Too short conversations with
less than ten messages are also discarded as out-
liers (Ren et al., 2011). Training and validation
data are randomly chosen from only 10% of the se-
lected message pairs, respectively, because in real
situations obtaining labels could be very costly.
The remaining 80% of pairs are regarded as test-
ing data. As a result, Table 1 shows the statistics
of the four datasets after pre-processing.

4.2 Pairwise Similarity Estimation
Message pair similarity estimation is treated as a
ranking task and evaluated with three ranking eval-
uation metrics: precision at 1 (P@1), mean av-
erage precision (MAP) and mean reciprocal rank
(MRR) (Christopher et al., 2008). We compare
the performance with six baseline methods, in-
cluding the difference of posted time (TimeD-
iff ), sameness of speakers (Speaker), cosine sim-
ilarity of text (Text-Sim), the approach proposed
by Elsner and Charniak (2008) (Elsner), DeepQA
(Severyn and Moschitti, 2015) and ABCNN (Yin
et al., 2016). Note that DeepQA and ABCNN
are neural network-based models for question-
answering. The approach of Mehri and Carenini

1818



Dataset Reddit Datasets IRC Datasetgadgets iPhone politics
Metric P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP

TimeDiff 0.6916 0.8237 0.8170 0.6085 0.7651 0.7495 0.4412 0.6362 0.5644 0.3262 0.5180 0.4384
Speaker 0.5643 0.7046 0.7425 0.5364 0.6595 0.6590 0.4021 0.4620 0.3914 0.4356 0.6263 0.6891
Text-Sim 0.7913 0.8746 0.8440 0.7347 0.8318 0.7872 0.5245 0.6672 0.5326 0.3712 0.5269 0.3108

Elsner 0.7758 0.8651 0.8321 0.6809 0.7935 0.7471 0.4643 0.6132 0.4884 0.1094 0.1886 0.2063
DeepQA 0.8011 0.8755 0.8511 0.7156 0.8112 0.7766 0.5593 0.6759 0.5685 0.7811 0.8182 0.8050
ABCNN 0.8374 0.8511 0.8502 0.8112 0.8520 0.8118 0.7419 0.6221 0.6644 0.7008 0.4142 0.5858
SHCNN 0.8834 0.9281 0.9005 0.8375 0.8944 0.8497 0.7696 0.8392 0.6967 0.9785 0.9838 0.9819

SHCNN (L) 0.8470 0.9080 0.8702 0.8066 0.8792 0.8275 0.7225 0.8070 0.6438 0.9807 0.9834 0.9750
SHCNN (H) 0.8490 0.9105 0.8704 0.8158 0.8851 0.8313 0.7228 0.8110 0.6283 0.9635 0.9728 0.8632

Table 2: Performance of pairwise similarity estimation in four datasets. Our approach is denoted as SHCNN.The
performance with only low-level or high-level representations are denoted as SHCNN (L) and SHCNN (H). All
improvements of SHCNN against the best baseline are significant at the 1% level of significance in a paired t-test.

z(mi) Message

T16 “Arlie: Wow, maybe we just missed it when
we were driving around”

T18 “Arlie: i’ve been very close to that situation
myself”

Figure 6: An example message pair in two different
conversations from IRC shows how SHCNN discrimi-
nates between messages on different topics. The left-
most column is the conversation IDs of the correspond-
ing messages. SHCNN predicts 0.67% of being in the
same conversation for this pair while DeepQA with
single-layer CNNs predicts 69.81%.

(2017) was not compared in our experiments be-
cause the RNN requires additional message se-
quences; moreover, its performance was only
mildly better than Elsner, which performed poorly
on IRC in Table 2.

Table 2 shows the performance of similarity es-
timation. Among all methods, neural network ap-
proaches (Severyn and Moschitti, 2015; Yin et al.,
2016) perform better than other methods in most
cases, indicating that message content representa-
tion has considerable impact on estimating pair-
wise similarity. SHCNN outperforms most of the
baselines even if only low-level (L) or high-level
(H) representations are exploited. When SHCNN
captures both low- and high-level semantics, it
significantly outperforms all baselines across the
four datasets. For example, ABCNN can outper-
form SHCNN using only either low- or high-level
representations in the politics dataset; however,
SHCNN turns the tables after using both represen-
tations. An interesting observation is that ABCNN
is the best baseline in every dataset except for IRC;
this may be because the IRC data is too small to
train complicated attention structures. On the con-
trary, our SHCNN can precisely capture semantics
even with few parameters and limited data.

To shed deeper insights of how SHCNN sur-
passes other methods, we exhibit the prediction

z(mi) Message

T16
“Very well, I seem to be trying to show Arlie
how its done and am coding a webserver.”

T16

“Arlie: Good enough doesnt cut it! Is
the ’faster’ method a big change in design?
Could I implement later without wanting to
kill myself?”

Figure 7: An example message pair in a conversation
from IRC shows how SHCNN captures similarity in lo-
cal information. The leftmost column is the conversa-
tion IDs of the corresponding messages. SHCNN pre-
dicts 70.41% for this pair while ABCNN with multiple-
layer CNNs predicts 36.50%.

results of the IRC data and demonstrate the capa-
bility of SHCNN to simultaneously preserve local
and more global information. Figure 6 presents
an example to show how SHCNN is better than
other methods in capturing more high-level topi-
cal information. Even though the main sentences
of two messages are clearly on different topics,
the baseline method DeepQA (Severyn and Mos-
chitti, 2015) still predicts a high similarity. This
could be attributed to the context of author men-
tion (Wang and Oard, 2009) and a bias on the lo-
cal information, i.e., the exact same term “Arlie”,
in the Siamese network used in DeepQA. On the
contrary, SHCNN can capture more global infor-
mation that differentiates the topics and correctly
predicts a very low score. Figure 7 illustrates an-
other example of how SHCNN outperforms other
methods in preserving the similarity of local infor-
mation. Both of the messages in the example have
some segments related to software engineering. A
baseline method ABCNN (Yin et al., 2016) with
multiple-layer CNNs, however, still predicts a low
score. This might be because both sentences are
long so that the local information is diluted after
processing by multiple CNN layers. Differently,
SHCNN is able to seize local information, cor-
rectly predicting a high score.
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Dataset Reddit Datasets IRC Datasetgadgets iPhone politics
Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

Doc2Vec 0.1757 0.0008 0.0589 0.2318 0.0002 0.0718 0.2672 0.0001 0.0506 0.2046 0.0048 0.1711
Block-10 0.7745 0.1840 0.3411 0.8203 0.2349 0.4251 0.8338 0.1724 0.3451 0.4821 0.0819 0.2087
Speaker 0.7647 0.0440 0.2094 0.7861 0.1001 0.3339 0.7480 0.0637 0.2207 0.7394 0.4572 0.6310
CBME 0.6913 0.0212 0.1465 0.7280 0.0339 0.1966 0.7883 0.0165 0.1382 0.2818 0.0324 0.1970
GTM 0.7942 0.1787 0.2986 0.8198 0.0536 0.2566 0.8496 0.3076 0.4292 0.0226 0.0001 0.2064

CISIR 0.8254 0.4287 0.4939 0.8552 0.4236 0.5187 0.8825 0.3561 0.4950 0.9330 0.9543 0.8798
Oracle 0.8608 0.4852 0.5560 0.9003 0.5448 0.6358 0.9651 0.8286 0.8863 0.9838 0.9850 0.9819

Table 3: Performance of conversation disentanglement in four datasets. Our approach is denoted as CISIR. “Ora-
cle” indicates the optimal performance if CISIR correctly retrieves all message pairs in identical conversations. All
improvements of CISIR against the best baseline are significant at the 1% level of significance in a paired t-test.

4.3 Conversation Identification

For conversation identification, three clustering
metrics are adopted for evaluation: normalized
mutual information (NMI), adjusted rand index
(ARI) and F1 score (F1). Six methods are im-
plemented as the baselines for conversation disen-
tanglement, including Doc2Vec (Le and Mikolov,
2014), blocks of 10 messages (Block-10), mes-
sages of respective speakers (Speaker) (Elsner
and Charniak, 2011), context-based message ex-
pansion (CBME) (Wang and Oard, 2009) and a
graph-theoretical model with chat- and content-
specific features (Elsner and Charniak, 2008)
(GTM). The embedding-based clustering method,
i.e., Doc2Vec, applies affinity propagation (Frey
and Dueck, 2007) to cluster messages embedded
using Doc2Vec without being given the number of
clusters, with the idea that messages in the same
conversation would form a cluster. Note that mes-
sage pairs in the training and validation data are
not utilized in prediction for a fair comparison to
all methods.

Table 3 shows the performance of conversa-
tion disentanglement. Note that “Oracle” repre-
sents the optimal performance for CISIR when
all message pairs in identical conversations in D
are correctly retrieved. Because pairs in D may
not have enough coverage to connect all mes-
sages in a coversation, the optimal performance
could be lower than 1.0. CISIR performs bet-
ter than all baseline methods for all datasets, and
achieves excellent performance in IRC, due in
part to the high-performing similarity estimates
from the first stage. Among the baseline methods,
GTM performs relatively well on all datasets ex-
cept for IRC. This is because messages are more
frequently posted in the IRC dataset, thereby in-
creasing the number of incorrect pairs in the con-
structed graph. Examining the graph constructed
by GTM, there are only two connected compo-
nents, indicating that many conversations were in-

correctly combined; in contrast, CISIR may be ex-
empt from error propagation because it only relies
on top-ranked pairs. Doc2Vec is trained to pre-
dict words in a document in an unsupervised man-
ner. Its lowest performance in the experiments
may point out a need for supervised learning in
the specific task of conversation disentanglement
to tackle the variation in semantic patterns. Time
and author contextual cues do help conversation
disentanglement as seen in the results of Block-10
and Speaker. Both of these contexts are integrated
into our model.

5 Conclusions
In this paper, we propose a novel framework
for disentangling conversations, including similar-
ity estimation for message pairs and conversation
identification. In contrast to previous work, we as-
sume that we do not need to select all message
pairs in the first stage, thereby reducing compu-
tational time without sacrificing performance too
much. To estimate conversation-level similarity,
a Siamese Hierarchical Convolutional Neural Net-
work, SHCNN, is proposed to minimize the es-
timation error as well as preserve both the low-
and high-level semantics of messages. In the sec-
ond stage, we developed the Conversation Identi-
fication by SImilarity Ranking, CISIR, algorithm,
which exploits the assumption made in the first
stage and identifies individual, entangled conver-
sations with high-ranked message pairs. Extensive
experiments conducted on four publicly available
datasets show that SHCNN and CISIR outperform
several existing approaches in both similarity esti-
mation and conversation identification.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep net-
work learning by exponential linear units (elus). In
ICLR’16.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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