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Abstract
NLP algorithms are increasingly used in com-
putational social science to take linguistic ob-
servations and predict outcomes like human
preferences or actions. Making these social
models transparent and interpretable often re-
quires identifying features in the input that pre-
dict outcomes while also controlling for po-
tential confounds. We formalize this need as
a new task: inducing a lexicon that is predic-
tive of a set of target variables yet uncorre-
lated to a set of confounding variables. We
introduce two deep learning algorithms for the
task. The first uses a bifurcated architecture
to separate the explanatory power of the text
and confounds. The second uses an adversarial
discriminator to force confound-invariant text
encodings. Both elicit lexicons from learned
weights and attentional scores. We use them
to induce lexicons that are predictive of timely
responses to consumer complaints (controlling
for product), enrollment from course descrip-
tions (controlling for subject), and sales from
product descriptions (controlling for seller).
In each domain our algorithms pick words
that are associated with narrative persuasion;
more predictive and less confound-related than
those of standard feature weighting and lexi-
con induction techniques like regression and
log odds.

1 Introduction

Applications of NLP to computational social sci-
ence and data science increasingly use lexical fea-
tures (words, prefixes, etc) to help predict non-
linguistic outcomes like sales, stock prices, hospi-
tal readmissions, and other human actions or pref-
erences. Lexical features are useful beyond pre-
dictive performance. They enhance interpretabil-
ity in machine learning because practitioners know
why their system works. Lexical features can also
be used to understand the subjective properties of
a text.

For social models, we need to be able to select
lexical features that predict the desired outcome(s)
while also controlling for potential confounders.
For example, we might want to know which words
in a product description lead to greater sales, re-
gardless of the item’s price. Words in a description
like “luxury” or “bargain” might increase sales
but also interact with our confound (price). Such
words don’t reflect the unique part of text’s ef-
fect on sales and should not be selected. Simi-
larly, we might want to know which words in a
consumer complaint lead to speedy administrative
action, regardless of the product being complained
about; which words in a course description lead to
higher student enrollment, regardless of the course
topic. These instances are associated with narra-
tive persuasion: language that is responsible for
altering cognitive responses or attitudes (Spence,
1983; Van Laer et al., 2013).

In general, we want words which are predictive
of their targets yet decorrelated from confound-
ing information. The lexicons constituted by these
words are useful in their own right (to develop
causal domain theories or for linguistic analysis)
but also as interpretable features for down-stream
modeling. Such work could help widely in appli-
cations of NLP to tasks like linking text to sales
figures (Ho and Wu, 1999), to voter preference
(Luntz, 2007; Ansolabehere and Iyengar, 1995), to
moral belief (Giles et al., 2008; Keele et al., 2009),
to police respect (Voigt et al., 2017), to financial
outlooks (Grinblatt and Keloharju, 2001; Chate-
lain and Ralf, 2012), to stock prices (Lee et al.,
2014), and even to restaurant health inspections
(Kang et al., 2013).

Identifying linguistic features that are indicative
of such outcomes and decorrelated with confounds
is a common activity among social scientists, data
scientists, and other machine learning practition-
ers. Indeed, it is essential for developing transpar-
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ent and interpretable machine learning NLP mod-
els. Yet there is no generally accepted and rigor-
ously evaluated procedure for the activity. Prac-
titioners have conducted it on a largely ad-hoc
basis, applying various forms of logistic and lin-
ear regression, confound-matching, or association
quantifiers like mutual information or log-odds to
achieve their aims, all of which have known draw-
backs (Imai and Kim, 2016; Gelman and Loken,
2014; Wurm and Fisicaro, 2014; Estévez et al.,
2009; Szumilas, 2010).

We propose to overcome these drawbacks via
two new algorithms that consider the causal struc-
ture of the problem. The first uses its architec-
ture to learn the part of the text’s effect which
the confounds cannot explain. The second uses
an adversarial objective function to match text en-
coding distributions regardless of confound treat-
ment. Both elicit lexicons by considering learned
weights or attentional scores. In summary, we

1. Formalize the problem into a new task.

2. Propose a pair of well-performing neural net-
work based algorithms.

3. Conduct the first systematic comparison of
algorithms in the space, spanning three do-
mains: consumer complaints, course enroll-
ments, and e-commerce product descriptions.

The techniques presented in this paper will help
scientists (1) better interpret the relationship be-
tween words and real-world phenomena, and (2)
render their NLP models more interpretable1.

2 Deconfounded Lexicon Induction

We begin by formalizing this language processing
activity into a task. We have access to text(s) T ,
target variable(s) Y , and confounding variable(s)
C. The goal is to pick a lexicon L such that when
words in T belonging to L are selected, the re-
sulting set L(T ) is related to Y but not C. There
are two types of signal at play: the part of Y that
T can explain, and that explainable by C. These
signals often overlap because language reflects cir-
cumstance, but we are interested in the part of T ’s
explanatory power which is unique to T , and hope
to choose L accordingly.

So if Var [E [Y |L(T ), C]] is the information in
Y explainable by both L(T ) and C, then our goal

1Code, hyperparameters, and instructions for practi-
tioners are online at https://nlp.stanford.edu/
projects/deconfounded-lexicon-induction/

is to choose L such that this variance is maximized
after C has been fixed. With this in mind, we for-
malize the task of deconfounded lexicon induc-
tion as finding a lexicon L that maximizes an
informativeness coefficient,

I(L) = E
[
Var
[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]
, (1)

which measures the explanatory power of the lex-
icon beyond the information already contained in
the confounders C. Thus, highly informative lexi-
cons cannot simply collect words that reflect the
confounds. Importantly, this coefficient is only
valid for comparing different lexicons of the same
size, because in terms of maximizing this criterion,
using the entire text will trivially make for the best
possible lexicon.

Our coefficient I(L) can also be motivated via
connections to the causal inference literature: in
Section 7, we show that—under assumptions of-
ten used to analyze causal effects in observational
studies—the coefficient I(L) can correspond ex-
actly to the strength of T ’s causal effects on Y .

Finally, note that by expanding out an ANOVA
decomposition for Y , we can re-write this criterion
as

I(L) = E
[(
Y − E

[
Y
∣∣C, L(T )

])2]

− E
[(
Y − E

[
Y
∣∣C
])2]

,
(2)

i.e., I(L) measures the performance improvement
L(T ) affords to optimal predictive models that al-
ready have access to C. We use this fact for eval-
uation in Section 4.

3 Proposed Algorithms

We continue by describing the pair of novel algo-
rithms we are proposing for deconfounded lexicon
induction problems.

3.1 Deep Residualization (DR)

Motivation. Our first method is directly motivated
by the setup from Section 2. Recall that I(L)
measures the amount by which L(T ) can improve
predictions of Y made from the confounders C.
We accordingly build a neural network architec-
ture that first predicts Y directly from C as well as
possible, and then seeks to fine-tune those predic-
tions using T .
Description. First we pass the confounds through
a feed-forward neural network (FFNN) to obtain
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Figure 1: The Deep Residualization (DR) selector. Val-
ues which are used to calculate losses are enclosed in
red ovals. Top: DR+ATTN, which represents text as
a sequence of word embeddings. Bottom: DR+BOW,
which represents text as a vector of word frequencies.

preliminary predictions Ŷ ′. We also encode the
text into a continuous vector e ∈ Rd via two alter-
native mechanisms:

1. DR+ATTN: the text is converted into a
sequence of embeddings and fed into
Long Short-Term Memory (LSTM) cell(s)
(Hochreiter and Schmidhuber, 1997) fol-
lowed by an attention mechanism inspired
by Bahdanau et al. (2015). If the words
of a text have been embedded as vectors
x1, x2, ..., xn then e is calculated as a
weighted average of hidden states, where the
weights are decided by a FFNN whose pa-
rameters are shared across timesteps:

h0 = ~0

ht = LSTM(xt,ht−1)

lt = ReLU(W attnht) · vattn

pt =
exp(lt)∑
exp(li)

e =
∑

pihi

2. DR+BOW: the text is converted into a vec-
tor of word frequencies, which is compressed
with a two-layer feedforward neural network

(FFNN):

t = [freq1, freq2, ..., freqk]

h = ReLU(W hiddent)

e = ReLU(W outputt)

We then concatenate e with Ŷ ′ and feed the re-
sult through another neural network to generate fi-
nal predictions Ŷ . If Y is continuous we compute
loss with

Lcontinuous = ||Ŷ − Y ||2

If Y is categorical we compute loss with

Lcategorical = −p∗ log p̂∗

Where p̂∗ corresponds to the predicted probability
of the correct class. The errors from Ŷ are propa-
gated through the whole model, but the errors from
Ŷ ′ are only used to train its progenitor (Figure 1).

Note the similarities between this model and the
popular residualizing regression (RR) technique
(Jaeger et al., 2009; Baayen et al., 2010, inter alia).
Both use the text to improve an estimate gener-
ated from the confounds. RR treats this as two
separate regression tasks, by regressing the con-
founds against the variables of interest, and then
using the residuals as features, while our model
introduces the capacity for nonlinear interactions
by backpropagating between RR’s steps.
Lexicon Induction. We elicit lexicons from
+ATTN style models by (1) running inference on
a test set, but rather than saving those predictions,
saving the attentional distribution over each source
text, and (2) mapping each word to its average at-
tentional score and selecting the k highest-scoring
words.

For +BOW style models, we take the matrix that
compresses the text’s word frequency vector, then
score each word by computing the l1 norm of the
column that multiplies it, with the intuition that
important words are dotted with big vectors in or-
der to be a large component of e.

3.2 Adversarial Selector (A)

Motivation. We begin by observing that a desir-
able L can explain Y , but is unrelated to C, which
implies it should should struggle to predict C. The
Adversarial Selector draws inspiration from this.
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Figure 2: The Adversarial (A) selector. Values which
are used to calculate losses are enclosed in red ovals.
Top: A+ATTN, which represents text as a sequence of
word embeddings. Bottom: A+BOW, which represents
text as a vector of word frequencies.

It learns adversarial encodings of T which are use-
ful for predicting Y , but not useful for predicting
C. It is depicted in Figure 2.
Description. First, we encode T into e ∈ Rd via
the same mechanisms as the Deep Residualizer of
Section 3.1. e is then passed to a series of FFNNs
(“prediction heads”) which are trained to predict
each target and confound with the same loss func-
tions as that of Section 3.1. As gradients back-
propagate from the confound prediction heads to
the encoder, we pass them through a gradient re-
versal layer in the style of Ganin et al. (2016) and
Britz et al. (2017), which multiplies gradients by
−1. If the cumulative loss of the target variables
is Lt and that of the confounds is Lc, then the
loss which is implicitly used to train the encoder
is Le = Lt−Lc, thereby encouraging the encoder
to learn representations of the text which are not
useful for predicting the confounds.

Lexicons are elicited from this model via the
same mechanism as the Deep Residualizer of Sec-
tion 3.1.

4 Experiments

We evaluate the approaches described in Sec-
tions 3 and 5 by generating and evaluating de-
confounded lexicons in three domains: financial
complaints, e-commerce product descriptions, and
course descriptions. In each case the goal is

to find words which can always help someone
net a positive outcome (fulfillment, sales, enroll-
ment), regardless of their situation. This involves
finding words associated with narrative persua-
sion: predictive of human decisions or preferences
but decorrelated from non-linguistic information
which could also explain things. We analyze the
resulting lexicons, especially with respect to the
classic Aristotelian modes of persuasion: logos,
pathos, and ethos.

We compare the following algorithms:
Regression (R), Regression with Confound
features (RC), Mixed effects Regression (M),
Residualizing Regressions (RR), Log-Odds Ratio
(OR), Mutual Information (MI), and MI/OR with
regresssion (R+MI and R+OR). See Section 5 for
a discussion of these baselines, and the online
supplementary information for implementation
details. We also compare the proposed algorithms:
Deep Residualization using word frequencies
(DR+BOW) and embeddings (DR+ATTN), and
Adversarial Selection using word frequencies
(A+BOW) and embeddings (A+ATTN).

In Section 2 we observed that I(L) measures
the improvement in predictive power that L(T ) af-
fords a model already having access to C. Thus,
we evaluate each algorithm by (1) regressing C
on Y , (2) drawing a lexicon L, (3) regressing
C + L(T ) on Y , and (4) measuring the size of
gap in test prediction error between the models of
step (1) and (3). For classification problems, we
measured error with cross-entropy (XE):

XE = −
∑

i

pi log p̂i

performance = XEC −XEL(T ),C

And for regression, we computed the mean
squared error (MSE):

MSE =
1

n

∑

i

(Ŷi − Yi)2

performance =MSEC −MSEL(T ),C

Because we fix lexicon size but vary lexicon con-
tent, lexicons with good words will score highly
under this metric, yielding the large performance
improvements when combined with C.

We also report the average strength of associa-
tion between words in L and C. For categorical
confounds, we measure Cramer’s V (V ) (Cramér,
2016), and for continuous confounds, we use the
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point-biserial correlation coefficient (rpb) (Glass
and Hopkins, 1970). Note that rpb is mathemat-
ically equivalent to Pearson correlation in bivari-
ate settings. Here the best lexicons will score the
lowest.

We implemented neural models with the Ten-
sorflow framework (Abadi et al., 2016) and opti-
mized using Adam (Kingma and Ba, 2014). We
implemented linear models with the scikit learn
package (Pedregosa et al., 2011). We implemented
mixed models with the lme4 R package (Bates
et al., 2014). We refer to the online supplementary
materials for per-experiment hyperparameters.

For each dataset, we constructed vocabularies
from the 10,000 most frequently occurring tokens,
and randomly selected 2,000 examples for evalu-
ation. We then conducted a wide hyperparameter
search and used lexicon performance on the evalu-
ation set to select final model parameters. We then
used these parameters to induce lexicons from 500
random train/test splits. Significance is estimated
with a bootstrap procedure: we counted the num-
ber of trials each algorithm “won” (i.e. had the
largest errorC − errorL(T ),C). We also report
the average performance and correlation of all the
lexicons generated from each split. We ran these
experiments using lexicon sizes of k = 50, 150,
250, and 500 and observed similar behavior. The
results reported in the following sections are for
k = 150, and the words in Tables 1, and 2, 3 are
from randomly selected lexicons (other lexicons
had similar characteristics).

4.1 Consumer Financial Protection Bureau
(CFPB) Complaints

Setup. We consider 189,486 financial complaints
publicly filed with the Consumer Financial Pro-
tection Bureau (CFPB)2. The CFPB is a product
of Dodd-Frank legislation which solicits and ad-
dresses complaints from consumers regarding a
variety of financial products: mortgages, credit re-
ports, etc. Some submissions are handled on a
timely basis (< 15 days) while others languish.

We are interested in identifying salient words
which help push submissions through the bureau-
cracy and obtain timely responses, regardless of
the specific nature of the complaint. Thus, our
target variable is a binary indicator of whether
the complaint obtained a timely response. Our

2These data can be obtained from https:
//www.consumerfinance.gov/data-research/
consumer-complaints/

confounds are twofold, (1) a categorical variable
tracking the type of issue (131 categories), and (2)
a categorical variable tracking the financial prod-
uct (18 categories). For the proposed DR+BOW,
DR+ATTN, A+BOW, and A+ATTN models, we
set |e| to 1, 64, 1, and 256, respectively.
Results. In general, this seems to be a tractable
classification problem, and the confounds alone
are moderately predictive of timely response
(XEC = 1.06). The proposed methods appear
to perform the best, and DR+BOW achieved the
largest performance/correlation ratio (Figure 3).

Figure 3: Predictive performance (XEC −XEL(T ),C)
and average confound correlation (V/rpb) of lexicons
generated via our proposed algorithms and a variety of
methods in current use. The numbers to the right of
each bar indicate the number of winning bootstrap tri-
als.

DR+BOW MI RR R

. secondly being 100
ma’am forget 6 fargo
multiple focus issued wells
guide questions agreement .
submitted battle starting fdcpa
’nt vs 150.00 angry
honor certainly question owe
, contained in hipaa
xx/xx/xxxx the . file
ago be agreement across

Table 1: The ten highest-scoring words in lexicons gen-
erated by Deep Residualization + BOW (DR+BOW),
Mutual Information (MI), Residialized Regression
(RR), and regression (R).
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We obtain further evidence upon examining
the lexicons selected by four representative algo-
rithms: proposed (DR+BOW), a well-performing
baseline (RR), and two naive baselines (R, MI)
(Table 1). MI’s words appear unrelated to the
confounds, but don’t seem very persuasive, and
our results corroborate this: these words failed
to add predictive power over the confounds (Fig-
ure 3). On the opposite end of the spectrum, R’s
words appear somewhat predictive of the timely
response, but are confound-related: they include
the FDCPA (Fair Debt Collection Practices Act)
and HIPAA (Health Insurance Portability and Ac-
countability Act), which are directly related to the
confound of financial product.

The top-scoring words in RR’s lexicon include
numbers (“6”, “150.00”) and words that suggest
that the issue is ongoing (“being”, “starting”). On
the other hand, the words of DR+BOW draw on
the rhetorical devices of ethos by respecting the
reader’s authority (“ma’am”, “honor”), and logos
by suggesting that the writer has been proactive
about solving the issue (“multiple”, “submitted”,
“xx/xx/xxx”, “ago”). These are narrative qualities
that align with two of the persuasion literature’s
“weapons of influence”: reciprocation and com-
mitment (Kenrick et al., 2005). Several algorithms
implicitly favored longer (presumably more de-
tailed) complaints by selecting common punctu-
ation.

4.2 University Course Descriptions

Setup. We consider 141,753 undergraduate and
graduate course offerings over a 6-year period
(2010 - 2016) at Stanford University. We are in-
terested in how the writing style of a description
convinces students to enroll. We therefore choose
log(enrollment) as our target variable and control
for non-linguistic information which students also
use when making enrollment decisions: course
subject (227 categories), course level (26), num-
ber of requirements satisfied (7), whether there is
a final (3), the start time, and the combination of
days the class meets (26). All except start time are
modeled as categorical variables. For the proposed
DR+BOW, DR+ATTN, A+BOW, and A+ATTN
models, we set |e| to 1, 100, 16, and 64, respec-
tively.
Results. This appears to be a tractable regression
problem; the confounds alone are highly predic-
tive of course enrollment (MSEC = 3.67). (Fig-

A+ATTN R OR

future programming summer
instructor required interpretation
eating prerequisites stability
or computer attitude
doing management optimization
guest introduction completion
sexual chemical during
culture applications labor
research you production
project clinical background

Table 2: The ten highest-scoring words in lexicons gen-
erated by Adversarial + ATTN (A+ATTN), Regression
(R), and Log-Odds Ratio (OR).

ure 4). A+ATTN performed the best, and in gen-
eral, the proposed techniques produced the most-
predictive and least-correlated lexicons. Interest-
ingly, Residualization (RR) and Regression with
Confounds (RC) appear to outperform the Deep
Residualization selector.

In Table 2 we observe stark differences between
the highest-scoring words of a proposed technique
(A+ATTN) and two baselines with opposing char-
acteristics (R, OR) (Table 2). Words chosen via
Regression (R) appear predictive of enrollment,
but also related to the confounds of subject (“pro-
gramming”, “computer”, “management”, “chemi-
cal”, “clinical”) and level (“required”, “prerequi-
sites”, “introduction”).

Figure 4: Course description comparative perfor-
mance.

Log-Odds Ratio (OR) selected words which
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A+BOW RR

word transliteration translation word transliteration translation

ます masu polite suffix ７５
プロテイン purotein protein ５
お oh polite prefix ニチバン nichiban adhesive company
粒 tsubu grain ４
栄養 eiyō nutrition 群 gun group
ご go polite prefix サイズ saizu size
配合 haigō formulation 摂取 sesshu intake
デザート dezāto dessert 枚 mai sheet
錠 jō tablet 化学 kagaku chemical
大豆 daizu soy ミニ mini mini

Table 3: The ten highest-scoring words in lexicons generated by Adversarial Selection + BOW (A+BOW) and
Residualization (RR).

appear unrelated to both the confounds and
enrollment. The Adversarial Selector (A+ATTN)
selected words which are both confound-
decorrelated and predictive of enrollment. Its
words appeal to the concept of variety (“or”,
“guest”), and to pathos, in the form of universal
student interests (“future”, “eating”, “sexual”).
Notably, the A+ATTN words are also shorter
(mean length of 6.2) than those of R (9.3) and
OR (9.0), which coincides with intuition (students
often skim descriptions) and prior research (short
words are known to be more persuasive in some
settings (Pratkanis et al., 1988)). The lexicon also
suggests that students prefer courses with research
project components (“research”, “project”).

4.3 eCommerce Descriptions
Setup. We consider 59,487 health product listings
on the Japanese e-commerce website Rakuten3.
These data originate from a December 2012 snap-
shot of the Rakuten marketplace. They were tok-
enized with the JUMAN morphological analyzer
(Kurohashi and Nagao, 1999).

We are interested in identifying words which
advertisers could use to increase their sales, re-
gardless of the nature of the product. Therefore,
we set log(sales) as our target variable, and con-
trol for an item’s price (continuous) and seller (207
categories). The category of an item (i.e. tooth-
brush vs. supplement) is not included in these
data. In practice, sellers specialize in particular
product types, so this may be indirectly accounted
for. For the proposed DR+BOW, DR+ATTN,
A+BOW, and A+ATTN models, we set |e| to 4,

3These data can be obtained from https://rit.
rakuten.co.jp/data_release/

Figure 5: E-commerce comparative performance.

64, 4, and 30, respectively.
Results. This appears to be a more difficult pre-
diction task, and the confounds are only slightly
predictive of sales (MSEC = 116.34) (Figure 5).
Again, lexicons obtained via the proposed meth-
ods were the most successful, achieving the high-
est performance with the lowest correlation (Ta-
ble 3). When comparing the words selected by
A+BOW (proposed) and RR (widely used and
well performing), we find that both draw on the
rhetorical element of logos and demonstrate in-
formativeness (“nutrition”, “size”, etc.). A+BOW
also draws on ethos by identifying word stems as-
sociated with politeness. This quality draws on the
authority of shared cultural values, and has been
shown to appeal to Japanese shoppers (Pryzant
et al., 2017). On the other hand, RR selected sev-

1621



eral numbers and failed to avoid brand indicators:
“nichiban”, a large company which specializes in
medical adhesives, is one of the highest-scoring
words.

5 Related Work

There are three areas of related work which we
draw on. We address these in turn.
Lexicon induction. Some work in lexicon in-
duction is intended to help interpret the subjective
properties of a text or make make machine learn-
ing models more interpretable, i.e. so that prac-
titioners can know why their system works. For
example, Taboada et al. (2011); Hamilton et al.
(2016) induce sentiment lexicons, and Moham-
mad and Turney (2010); Hu et al. (2009) induce
emotion lexicons. Practitioners often get these
words by considering the high-scoring features of
regressions trained to predict an outcome (McFar-
land et al., 2013; Chahuneau et al., 2012; Ran-
ganath et al., 2013; Kang et al., 2013). They ac-
count for confounds through manual inspection,
residualizing (Jaeger et al., 2009; Baayen et al.,
2010), hierarchical modeling (Bates, 2010; Gus-
tarini, 2016; Schillebeeckx et al., 2016), log-odds
(Szumilas, 2010; Monroe et al., 2008), mutual in-
formation (Berg, 2004), or matching (Tan et al.,
2014; DiNardo, 2010). Many of these methods
are manual processes or have known limitations,
mostly due to multicollinearity (Imai and Kim,
2016; Chatelain and Ralf, 2012; Wurm and Fisi-
caro, 2014). Furthermore, these methods have not
been tested in a comparative setting: this work is
the first to offer an experimental analysis of their
abilities.
Causal inference. Our methods for lexicon in-
duction have connections to recent advances in the
causal inference literature. In particular, Johans-
son et al. (2016) and Shalit et al. (2016) propose
an algorithm for counterfactual inference which
bear similarities to our Adversarial Selector (Sec-
tion 3.2), Imai et al. (2013) advocate a lasso-based
method related to our Deep Residualization (DR)
method (Section 3.1), and Egami et al. (2017) ex-
plore how to make causal inferences from text
through careful data splitting. Unlike us, these pa-
pers are largely unconcerned with the underlying
features and algorithmic interpretability. Athey
(2017) has a recent survey of machine learning
problems where causal modeling is important.
Persuasion. Our experiments touch on the mech-

anism of persuasion, which has been widely stud-
ied. Most of this prior work uses lexical, syntac-
tic, discourse, and dialog interactive features (Stab
and Gurevych, 2014; Habernal and Gurevych,
2016; Wei et al., 2016), power dynamics (Rosen-
thal and Mckeown, 2017; Moore, 2012), or diction
(Wei et al., 2016) to study discourse persuasion as
manifested in argument. We study narrative per-
suasion as manifested in everyday decisions. This
important mode of persuasion is understudied be-
cause researchers have struggled to isolate the “ac-
tive ingredient” of persuasive narratives (Green,
2008; De Graaf et al., 2012), a problem that the
formal framework of deconfounded lexicon induc-
tion (Section 2) may help alleviate.

6 Conclusion

Computational social scientists frequently develop
algorithms to find words that are related to some
information but not other information. We en-
coded this problem into a formal task, proposed
two novel methods for it, and conducted the first
principled comparison of algorithms in the space.
Our results suggest the proposed algorithms of-
fer better performance than those which are cur-
rently in use. Upon linguistic analysis, we also
find the proposed algorithms’ words better reflect
the classic Aristotelian modes of persuasion: lo-
gos, pathos, and ethos.

This is a promising new direction for NLP re-
search, one that we hope will help computational
(and non-computational!) social scientists better
interpret linguistic variables and their relation to
outcomes. There are many directions for future
work. This includes algorithmic innovation, the-
oretical bounds for performance, and investigat-
ing rich social questions with these powerful new
techniques.

7 Appendix: Causal Interpretation of the
Informativeness Coefficient

Recall the definition of I(L):

I(L) = E
[
Var
[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]

Here, we discuss how under standard (albeit
strong) assumptions that are often made to iden-
tify causal effects in observational studies, we can
interpret I(L) with L(T ) = T as a measure of the
strength of the text’s causal effect on Y .

Following the potential outcomes model of Ru-
bin (1974) we start by imagining potential out-
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comes Y (t) corresponding to the outcome we
would have observed given text t for any possible
text t ∈ T ; then we actually observe Y = Y (T ).
With this formalism, the causal effect of the text
is clear, e.g., the effect of using text t′ versus t is
simply Y (t′)− Y (t).

Suppose that T , our observed text, takes on
values in T with a distribution that depends
on C. Let’s also assume that the observed
text T is independent of the potential outcomes
{Y (t)}t∈T , conditioned on the confounders C
(Rosenbaum and Rubin, 1983). So we know
what would happen with any given text, but don’t
yet know which text will get selected (because
T is a random variable). Now if we fix C and
there is any variance remaining in Y (T ) (i.e.
E
[
Var
[
Y (T )

∣∣C, {Y (t)}t∈T
]]
> 0) then the text

has a causal effect on Y .
Now we assume that Y (t) = fc(t) + ε, mean-

ing that the difference in effects of one text t rel-
ative to another text t′ is always the same given
fixed confounders. For example, in a bag of words
model, this would imply that switching from using
the word “eating” versus “homework” in a course
description would always have the same impact on
enrollment (conditionally on confounders). With
this assumption in hand, then the causal effects of
T , E

[
Var
[
Y (T )

∣∣C, {Y (t)}t∈T
]]

, matches I(L)
as described in equation (1) (Imbens and Rubin,
2015). In other words, given the same assumptions
often made in observational studies, the informa-
tiveness coefficient of the full, uncompressed text
in fact corresponds to the amount of variation in Y
due to the causal effects of T .
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