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Abstract

In this paper, we propose a novel end-to-end
neural architecture for ranking candidate an-
swers, that adapts a hierarchical recurrent neu-
ral network and a latent topic clustering mod-
ule. With our proposed model, a text is en-
coded to a vector representation from an word-
level to a chunk-level to effectively capture the
entire meaning. In particular, by adapting the
hierarchical structure, our model shows very
small performance degradations in longer text
comprehension while other state-of-the-art re-
current neural network models suffer from it.
Additionally, the latent topic clustering mod-
ule extracts semantic information from tar-
get samples. This clustering module is use-
ful for any text related tasks by allowing each
data sample to find its nearest topic cluster,
thus helping the neural network model ana-
lyze the entire data. We evaluate our mod-
els on the Ubuntu Dialogue Corpus and con-
sumer electronic domain question answering
dataset, which is related to Samsung products.
The proposed model shows state-of-the-art re-
sults for ranking question-answer pairs.

1 Introduction

Recently neural network architectures have shown
great success in many machine learning fields such
as image classification, speech recognition, ma-
chine translation, chat-bot, question answering,
and other task-oriented areas. Among these, the
automatic question answering (QA) task has long
been considered a primary objective of artificial
intelligence.

In the commercial sphere, the QA task is usually
tackled by using pre-organized knowledge bases
and/or by using information retrieval (IR) based
methods, which are applied in popular intelligent
voice agents such as Siri, Alexa, and Google Assis-
tant (from Apple, Amazon, and Google, respec-
tively). Another type of advanced QA systems is

IBM’s Watson who builds knowledge bases from
unstructured data. These raw data are also indexed
in search clusters to support user queries (Fan
et al., 2012; Chu-Carroll et al., 2012).

In academic literature, researchers have in-
tensely studied sentence pair ranking task which
is core technique in QA system. The ranking
task selects the best answer among candidates re-
trieved from knowledge bases or IR based mod-
ules. Many neural network architectures with end-
to-end learning methods are proposed to address
this task (Yin et al., 2016; Wang and Jiang, 2016;
Wang et al., 2017). These works focus on match-
ing sentence-level text pair (Wang et al., 2007;
Yang et al., 2015; Bowman et al., 2015). There-
fore, they have limitations in understanding longer
text such as multi-turn dialogue and explanatory
document, resulting in performance degradation
on ranking as the length of the text become longer.

With the advent of the huge multi-turn dialogue
corpus (Lowe et al., 2015), researchers have pro-
posed neural network models to rank longer text
pair (Kadlec et al., 2015; Baudiš et al., 2016).
These techniques are essential for capturing con-
text information in multi-turn conversation or un-
derstanding multiple sentences in explanatory text.

In this paper, we focus on investigating a novel
neural network architecture with additional data
clustering module to improve the performance in
ranking answer candidates which are longer than a
single sentence. This work can be used not only for
the QA ranking task, but also to evaluate the rel-
evance of next utterance with given dialogue gen-
erated from the dialogue model. The key contribu-
tions of our work are as follows:

First, we introduce a Hierarchical Recurrent
Dual Encoder (HRDE) model to effectively cal-
culate the affinity among question-answer pairs
to determine the ranking. By encoding texts from
an word-level to a chunk-level with hierarchi-
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cal architecture, the HRDE prevents performance
degradations in understanding longer texts while
other state-of-the-art neural network models suf-
fer.

Second, we propose a Latent Topic Clustering
(LTC) module to extract latent information from
the target dataset, and apply these additional infor-
mation in end-to-end training. This module allows
each data sample to find its nearest topic cluster,
thus helping the neural network model analyze the
entire data. The LTC module can be combined to
any neural network as a source of additional infor-
mation. This is a novel approach using latent topic
cluster information for the QA task, especially by
applying the combined model of HRDE and LTC
to the QA pair ranking task.

Extensive experiments are conducted to inves-
tigate efficacy and properties of the proposed
model. Our proposed model outperforms previ-
ous state-of-the-art methods in the Ubuntu Dia-
logue Corpus, which is one of the largest text pair
scoring datasets. We also evaluate the model on
real world QA data crawled from crowd-QA web
pages and from Samsung’s official web pages. Our
model also shows the best results for the QA data
when compared to previous neural network based
models.

2 Related Work

Researchers have released question and answer
datasets for research purposes and have proposed
various models to solve these datasets. (Wang
et al., 2007; Yang et al., 2015; Tan et al., 2015) in-
troduced small dataset to rank sentences that have
higher probabilities of answering questions such
as WikiQA and insuranceQA. To alleviate the dif-
ficulty in aggregating datasets, that are large and
have no license restrictions, some researchers in-
troduced new datasets for sentence similarity rank-
ings (Baudiš et al., 2016; Lowe et al., 2015). As
of now, the Ubuntu Dialogue dataset is one of the
largest corpus openly available for text ranking.

To tackle the Ubuntu dataset, (Lowe et al.,
2015) adopted the “term frequency-inverse doc-
ument frequency” approach to capture important
words among context and next utterances (Ramos
et al., 2003). (Bordes et al., 2014; Yu et al.,
2014) proposed deep neural network architecture
for embedding sentences and measuring similar-
ities to select answer sentence for a given ques-
tion. (Kadlec et al., 2015) used convolution neu-

ral network (CNN) architecture to embed the sen-
tence while a final output vector was compared
to the target text to calculate the matching score.
They also tried using long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997), bi-
directional LSTM and ensemble method with all
of those neural network architectures and achieved
the best results on the Ubuntu Dialogues Cor-
pus dataset. Another type of neural architecture is
the RNN-CNN model, which encodes each token
with a recurrent neural network (RNN) and then
feeds them to the CNN (Baudiš et al., 2016). Re-
searchers also introduced an attention based model
to improve the performance (Tan et al., 2015;
Wang and Jiang, 2016; Wang et al., 2017).

Recently, the hierarchical recurrent encoder-
decoder model was proposed to embed contex-
tual information in user query prediction and di-
alogue generation tasks (Sordoni et al., 2015; Ser-
ban et al., 2016). This shows improvement in the
dialogue generation model where the context for
the utterance is important. As another type of neu-
ral network architecture, memory network was
proposed by (Sukhbaatar et al., 2015). Several re-
searchers adopted this architecture for the reading
comprehension (RC) style QA tasks, because it
can extract contextual information from each sen-
tence and use it in finding the answer (Xiong et al.,
2016; Kumar et al., 2016). However, none of this
research is applied to the QA pair ranking task di-
rectly.

3 Model

In this section, we depict a previously released
neural text ranking model, and then introduce our
proposed neural network model.

3.1 Recurrent Dual Encoder (RDE)
A subset of sequential data is fed into the recurrent
neural network (RNN) which leads to the forma-
tion of the network’s internal hidden state ht to
model the time series patterns. This internal hid-
den state is updated at each time step with the in-
put data wt and the hidden state of the previous
time step ht−1 as follows:

ht = fθ(ht−1, wt), (1)

where fθ is the RNN function with weight param-
eter θ, ht is hidden state at t-th word input, wt is
t-th word in a target question wQ = {wQ1:tq} or an
answer text wA = {wA1:ta} .
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Figure 1: Diagram of the HRDE model. The word-
lever RNN encodes words sequences of each chunk.
The the final hidden status of the word-level RNN is
fed into chunk-level RNN.

The previous RDE model uses two RNNs for
encoding question text and answer text to calcu-
late affinity among texts (Lowe et al., 2015). After
encoding each part of the data, the affinity among
the text pairs is calculated by using the final hidden
state value of each question and answer RNNs.
The matching probability between question text
wQ and answer text wA with the training objec-
tive are as follows:

p(label) = σ((hQtq)
TM hAta + b),

L = − log

N∏

n=1

p(labeln|hQn,tq , hAn,ta),
(2)

where hQtq and hAta are last hidden state of each
question and answer RNN with the dimensionality
ht ∈ Rd. The M ∈ Rd×d and bias b are learned
model parameters. The N is total number of sam-
ples used in training and σ is the sigmoid function.

3.2 Hierarchical Recurrent Dual Encoder
(HRDE)

From now we explain our proposed model. The
previous RDE model tries to encode the text in
question or in answer with RNN architecture. It
would be less effective as the length of the word
sequences in the text increases because RNN’s
natural characteristic of forgetting information
from long ranging data. To address this RNN’s
forgetting phenomenon, (Bahdanau et al., 2014)
proposed an attention mechanism, however, we
found that it still showed a limitation when we
consider very large sequential length data such as
162 steps average in the Ubuntu Dialogue Corpus
dataset (see Table 1). To overcome this limitation,
we designed the HRDE architecture. The HRDE

model divides long sequential text data into small
chunk such as sentences, and encodes the whole
text from word-level to chunk-level by using two
hierarchical level of RNN architecture.

Figure 1 shows a diagram of the HRDE model.
The word-level RNN part is responsible for en-
coding the words sequence wc = {wc,1:t} in each
chunk. The chunk can be sentences in paragraph,
paragraphs in essay, turns in dialogue or any kinds
of smaller meaningful sub-set from the text. Then
the final hidden states of each chunk will be fed
into chunk-level RNN with its original sequence
order kept. Therefore the chunk-level RNN can
deal with pre-encoded chunk data with less se-
quential steps. The hidden states of the hierarchi-
cal RNNs are as follows:

hc,t = fθ(hc,t−1, wc,t),

uc = gθ(uc−1, hc),
(3)

where fθ and gθ are the RNN function in hierar-
chical architecture with weight parameters θ, hc,t
is word-level RNN’s hidden status at t-th word in
c-th chunk. The wc,t is t-th word in c-th chunk of
target question or answer text. The uc is chunk-
level RNN’s hidden state at c-th chunk sequence,
and hc is word-level RNN’s last hidden state of
each chunk hc ∈ {h1:c,t}.

We use the same training objective as the RDE
model, and the final matching probability be-
tween question and answer text is calculated using
chunk-level RNN as follows:

p(label) = σ((uQcq)
TM uAca + b), (4)

where uQcq and uAca are chunk-level RNN’s last hid-
den state of each question and answer text with
the dimensionality uc ∈ Rdu , which involves the
M ∈ Rdu×du .

3.3 Latent Topic Clustering (LTC)
To learn how to rank QA pairs, a neural net-
work should be trained to find the proper feature
that represents the information within the data and
fits the model parameter that can approximate the
true-hypothesis. For this type of problem, we pro-
pose the LTC module for grouping the target data
to help the neural network find the true-hypothesis
with more information from the topic cluster in
end-to-end training.

The blue-dotted box on the right-side of Figure
2 shows LTC structure diagram. To assign topic
information, we build internal latent topic memory
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Figure 2: Diagram of the HRDE-LTC. Input vector is
compared to each latent topic memory mk to calculate
cluster-info contained vector. This vector will be con-
catenated to original input vector.

m ∈ Rdm×K , which is only model parameter to
be learned, where dm is vector dimension of each
latent topic andK is number of latent topic cluster.
For a given input sequence x = {x1:t}with these
K vectors, we construct LTC process as follows:

pk = softmax((x)Tmk),

xK =
K∑

k=1

pkmk,

e = concat{x,xK}.

(5)

First, the similarity between the x and each la-
tent topic vector is calculated by dot-product. Then
the resulting K values are normalized by the soft-
max function softmax(zk) = ezk/

∑
i e
zi to pro-

duce a similarity probability pk. After calculat-
ing the latent topic probability pk, xK is retrieved
from summing over mk weighted by the pk. Then
we concatenate this result with the original encod-
ing vector to generate the final encoding vector e
with the LTC information added.

Note that the input sequence of the LTC could
be any type of neural network based encoding
function x = f enc

θ (w) such as RNN, CNN and
multilayer perceptron model (MLP). In addition,
if the dimension size of x is different from that
of memory vector, additional output projection
layer should be placed after x before applying dot-
product to the memory.

3.4 Combined Model of (H)RDE and LTC
As the LTC module extracts additional topic clus-
ter information from the input data, we can com-
bine this module with any neural network in
their end-to-end training flow. In our experiments,

we combine the LTC module with the RDE and
HRDE models.

3.4.1 RDE with LTC
The RDE model encodes question and answer
texts to hQtq and hAta , respectively. Hence, the LTC
module could take these vectors as the input to
generate latent topic cluster information added
vector e. With this vector, we calculate the affinity
among question and answer texts as well as addi-
tional cluster information. The following equation
shows our RDE-LTC process:

p(label) = σ((hQtq)
TM eA + b). (6)

In this case, we applied the LTC module only for
the answer side, assuming that the answer text is
longer than the question. Thus, it needs to be clus-
tered. To train the network, we use the same train-
ing objective, to minimize cross-entropy loss, as in
equation (2).

3.4.2 HRDE with LTC
The LTC can be combined with the HRDE model,
in the same way it is applied to the RDE-LTC
model by modifying equation (6 as follows:

p(label) = σ((uQcq)
TM eu,A + b), (7)

where uQcq is the final network hidden state vec-
tor of the chunk-level RNN for a question input
sequence. The eu,A is the LTC information added
vector from equation (5), where the LTC module
takes the input x = uA from the HRDE model
equation (3). The HRDE-LTC model also use the
same training objective, minimizing cross-entropy
loss, as in equation (2). Figure 2 shows a diagram
of the combined model with the HRDE and the
LTC.

4 Experimental Setup and Dataset

4.1 The Ubuntu Dialogue Corpus
The Ubuntu Dialogue Corpus has been developed
by expanding and preprocessing the Ubuntu Chat
Logs1, which refer to a collection of logs from the
Ubuntu-related chat room for solving problem in
using the Ubuntu system by (Lowe et al., 2015).

Among the utterances in the dialogues, they
consider each utterance, starting from the third
one, as a potential {response} while the previous
utterance is considered as a {context}. The data

1These logs are available from http://irclogs.ubuntu.com

1578



Dataset # Samples Message (Avg.) Response (Avg.)

Train Val. Test # tokens # groups # tokens
/group # tokens # groups # tokens

/group

Ubuntu-v1 1M 35,609 35,517 162.47
±132.47

8.43
±6.32

20.14
±18.41

14.44
±13.93

1 -

Ubuntu-v2 1M 19,560 18,920 85.92
±74.71

4.95
±2.98

20.73
±20.19

17.01
±16.41

1 -

Samsung QA 163,616 10,000 10,000 12.84
±6.42

1 - 173.48
±192.12

6.09
±5.58

29.28
±31.91

Table 1: Properties of the Ubuntu and Samsung QA dataset. The message and response are {context}, {response}
in Ubuntu and {question}, {answer} in the Samsung QA dataset.

was processed extracting ({context}, {response},
flag) tuples from the dialogues.

We called this original Ubuntu dataset as
Ubuntu-v1 dataset. After releasing the Ubuntu-
v1 dataset, researchers published v2 version
of this dataset. Main updates are separating
train/valid/test dataset by time so that mimics
real life implementation, where we are training a
model on past data to predict future data, chang-
ing sampling procedure to increase average turns
in the {context}. We consider this Ubuntu dataset
is one of the best dataset in terms of its quality,
quantity and availability for evaluating the perfor-
mance of the text ranking model.

To encode the text with the HRDE and HRDE-
LTC model, a text needs to be divided into several
chunk sequences with predefined criteria. For the
Ubuntu-v1 dataset case, we divide the {context}
part by splitting with end-of-sentence delimiter
“ eos ”, and we do not split the {response} part
since it is normally short and does not contain
“ eos ” information. For the Ubuntu-v2 dataset
case, we split the {context} part in the same way
as we do in the Ubuntu-v1 dataset while only us-
ing end-of-turn delimiter “ eot ”. Table 1 shows
properties of the Ubuntu dataset.

Question
how do i set a timer of clock in applications
and development for samsung galaxy s4 mini?

Answer
1 from within the clock application, tap timer
tab. 2 tap the hours, minutes, or seconds field
and use the on-screen keypad to enter the
hour, minute, or seconds. the timer plays an
alarm at the end of the countdown. 3 tap start
to start the timer. 4 tap stop to stop the timer
or reset to reset the timer and start over. 5 tap
restart to resume the timer counter.

Table 2: Example of the Samsung QA dataset.

4.2 Consumer Product QA Corpus

To test the robustness of the proposed model,
we introduce an additional question and answer
pair dataset related to an actual user’s interaction
with the consumer electronic product domain. We
crawled data from various sources like the Sam-
sung Electronics’ official web site2 and crowd
QA web sites34 in a similar way that (Yoon
et al., 2016) did in building QA system for con-
sumer products. On the official web page, we
can retrieve data consisting of user questions and
matched answers like frequently asked questions
and troubleshooting. From the crowd QA sites,
there are many answers from various users for
each question. Among these answers, we choose
answers from company certificated users to keep
the reliability of the answers high. If there are
no such answers, we skip that question answer
pair. Table 2 shows an example of question-answer
pair crawled from the web page. In addition, we
crawl hierarchical product category information
related to QA pairs. In particular, mobile, office,
photo, tv/video, accessories, and home appliance
as top-level categories, and specific categories like
galaxy s7, tablet, led tv, and others are used.
We collected these meta-information for further
use. The total size of the Samsung QA data is
over 100,000 pairs and we split the data into ap-
proximately 80,000/10,000/10,000 samples to cre-
ate train/valid/test sets, respectively. To create the
train set, we use a QA pair sample as a ground-
truth and perform negative sampling for answers
among training sets to create false-label datasets.
In this way, we generated ({question}, {answer},
flag) triples (see Table 1). We do the same pro-
cedure to create valid and test sets by only dif-
ferentiating more negative sampling within each
dataset to generate 9 false-label samples with one

2http://www.samsung.com/us
3http://answers.yahoo.com
4http://answers.us.samsung.com
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ground-truth sample. We apply the same method
in such a way that the Ubuntu dataset is gener-
ated from the Ubuntu Dialogue Corpus to main-
tain the consistency. The Samsung QA dataset is
available via web repository. We refer the readers
to Appendix A for more examples of each dataset.

4.3 Implementation Details

4.3.1 Ubuntu dataset case

To implement the RDE model, we use two single
layer Gated Recurrent Unit (GRU) (Chung et al.,
2014) with 300 hidden units . Each GRU is used
to encode {context} and {response}, respectively.
The weight for the two GRU are shared. The hid-
den units weight matrix of the GRU are initialized
using orthogonal weights (Saxe et al., 2013), while
input embedding weight matrix is initialized using
a pre-trained embedding vector, the Glove (Pen-
nington et al., 2014), with 300 dimension. The
vocabulary size is 144,953 and 183,045 for the
Ubuntu-v1/v2 case, respectively. We use the Adam
optimizer (Kingma and Ba, 2014), with gradients
clipped with norm value 1. The maximum time
step for calculating gradient of the RNN is deter-
mined according to the input data statistics in Ta-
ble 1.

For the HRDE model, we use two single layer
GRU with 300 hidden units for word-level RNN
part, and another two single layer GRU with
300 hidden units for chunk-level RNN part. The
weight of the GRU is shared within the same hi-
erarchical part, word-level and chunk-level. The
other settings are the same with the RDE model
case. As for the combined model with the (H)RDE
and the LTC, we choose the latent topic memory
dimensions as 256 in both ubuntu-v1 and ubuntu-
v2. The number of the cluster in LTC module is de-
cided to 3 for both the RDE-LTC and the HRDE-
LTC cases. In HRDE-LTC case, we applied LTC
module to the {context} part because we think it is
longer having enough information to be clustered
with. All of these hyper-parameters are selected
from additional parameter searching experiments.

The dropout (Srivastava et al., 2014) is applied
for the purpose of regularization with the ratio of:
0.2 for the RNN in the RDE and the RDE-LTC,
0.3 for the word-level RNN part in the HRDE and
the HRDE-LTC, 0.8 for the latent topic memory in
the RDE-LTC and the HRDE-LTC.

We need to mention that our implementation
of the RDE module has the same architecture as

the LSTM model (Kadlec et al., 2015) in ubuntu-
v1/v2 experiments case. It is also the same archi-
tecture with the RNN model (Baudiš et al., 2016)
in ubuntu-v2 experiment case. We implement the
same model ourselves, because we need a base-
line model to compare with other proposed models
such as the RDE-LTC, HRDE and HRDE-LTC.

4.3.2 Samsung QA dataset case
To test the Samsung QA dataset, we use the
same implementation of the model (RDE, RDE-
LTC, HRDE and HRDE-LTC) used in testing the
Ubuntu dataset. Only the differences are, we use
100 hidden units for the RDE and the RDE-LTC,
300 hidden units for the HRDE and 200 hid-
den units for the HRDE-LTC, and the vocabulary
size of 28,848. As for the combined model with
the (H)RDE and LTC, the dimensions of the la-
tent topic memory is 64 and the number of la-
tent cluster is 4. We chose best performing hyper-
parameter of each model by additional extensive
hyper-parameter search experiments.

All of the code developed for the empirical re-
sults are available via web repository 5.

5 Empirical Results

5.1 Evaluation Metrics
We regards all the tasks as selecting the best an-
swer among text candidates for the given ques-
tion. Following the previous work (Lowe et al.,
2015), we report model performance as recall at
k (R@k) relevant texts among given 2 or 10 can-
didates (e.g., 1 in 2 R@1). Though this metric is
useful for ranking task, R@1 metric is also mean-
ingful for classifying the best relevant text.

Each model we implement is trained multiple
times (10 and 15 times for Ubuntu and the Sam-
sung QA datasets in our experiments, respectively)
with random weight initialization, which largely
influences performance of neural network model.
Hence we report model performance as mean and
standard derivation values (Mean±Std).

5.2 Performance Evaluation
5.2.1 Comparison with other methods
As Table 3 shows, our proposed HRDE and
HRDE-LTC models achieve the best performance
for the Ubuntu-v1 dataset. We also find that the
RDE-LTC model shows improvements from the
baseline model, RDE.

5http://github.com/david-yoon/QA HRDE LTC
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Model Ubuntu-v1
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

TF-IDF [1] 0.659 0.410 0.545 0.708
CNN [2] 0.848 0.549 0.684 0.896
LSTM [2] 0.901 0.638 0.784 0.949
CompAgg [3] 0.884 0.631 0.753 0.927
BiMPM [4] 0.897 0.665 0.786 0.938

RDE 0.898
±0.002

0.643
±0.009

0.784
±0.007

0.945
±0.002

RDE-LTC 0.903
±0.001

0.656
±0.003

0.794
±0.003

0.948
±0.001

HRDE 0.915
±0.001

0.681
±0.001

0.820
±0.001

0.959
±0.001

HRDE-LTC 0.916
±0.001

0.684
±0.001

0.822
±0.001

0.960
±0.001

Table 3: Model performance results for the Ubuntu-
v1 dataset. Models [1-4] are from (Lowe et al., 2015;
Kadlec et al., 2015; Wang and Jiang, 2016; Wang et al.,
2017), respectively.

Model Ubuntu-v2
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

LSTM [1] 0.869 0.552 0.721 0.924
RNN [5] 0.907

±0.002
0.664
±0.004

0.799
±0.004

0.951
±0.001

CNN [5] 0.863
±0.003

0.587
±0.004

0.721
±0.005

0.907
±0.003

RNN-CNN [5] 0.911
±0.001

0.672
±0.002

0.809
±0.002

0.956
±0.001

Attention [6]
(RNN-CNN)

0.903
±0.002

0.653
±0.005

0.788
±0.005

0.945
±0.002

CompAgg [3] 0.895 0.641 0.776 0.937
BiMPM [4] 0.877 0.611 0.747 0.921

RDE 0.894
±0.002

0.610
±0.008

0.776
±0.006

0.947
±0.002

RDE-LTC 0.899
±0.002

0.625
±0.004

0.788
±0.004

0.951
±0.001

HRDE 0.914
±0.001

0.649
±0.001

0.813
±0.001

0.964
±0.001

HRDE-LTC 0.915
±0.002

0.652
±0.003

0.815
±0.001

0.966
±0.001

Table 4: Model performance results for the Ubuntu-v2
dataset. Models [1,3-6] are from (Lowe et al., 2015;
Wang and Jiang, 2016; Wang et al., 2017; Baudiš et al.,
2016; Tan et al., 2015), respectively.

For the ubuntu-v2 dataset case, Table 4 reveals
that the HRDE-LTC model is best for three cases
(1 in 2 R@1, 1 in 10 R@2 and 1 in 10 R@5). Com-
paring the same model with our implementation
(RDE) and (Baudiš et al., 2016)’s implementation
(RNN), there is a large gap in the accuracy (0.610
and 0.664 of 1 in 10 R@1 for RDE and RNN, re-
ceptively). We think this is largely influenced by
the data preprocessing method, because the only
differences between these models is the data pre-
processing, which is (Baudiš et al., 2016)’s con-
tribution to the research. We are certain that our
model performs better with the exquisite datasets
which adapts extensive preprocessing method, be-
cause we see improvements from the RDE model
to the HRDE model and additional improvements
with the LTC module in all test cases (the Ubuntu-
v1/v2 and the Samsung QA).

Model Samsung QA
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

TF-IDF 0.939 0.834 0.897 0.953
RDE 0.978

±0.002
0.869
±0.009

0.966
±0.003

0.997
±0.001

RDE-LTC 0.981
±0.002

0.880
±0.009

0.970
±0.003

0.997
±0.001

HRDE 0.981
±0.002

0.885
±0.011

0.971
±0.004

0.997
±0.001

HRDE-LTC 0.983
±0.002

0.890
±0.010

0.972
±0.003

0.998
±0.001

Table 5: Model performance results for the Samsung
QA dataset.

# clusters Accuracy (1 in 10 R@1)
Ubuntu-v1 Ubuntu-v2 Samsung QA

1 0.643
±0.009

0.610
±0.008

0.869
±0.009

2 0.655
±0.005

0.616
±0.006

0.876
±0.011

3 0.656
±0.003

0.625
±0.004

0.877
±0.010

4 0.651
±0.005

0.622
±0.005

0.880
±0.009

Table 6: The RDE-LTC model results with different
numbers of latent clusters. “Cluster 1” is the baseline
model, RDE.

In the Samsung QA case, Table 5 indicates
that the proposed RDE-LTC, HRDE, and the
HRDE-LTC model show performance improve-
ments when compared to the baseline model, TF-
IDF and RDE. The average accuracy statistics are
higher in the Samsung QA case when compared
to the Ubuntu case. We think this is due to in the
smaller vocabulary size and context variety. The
Samsung QA dataset deals with narrower topics
than in the Ubuntu dataset case. We are certain
that our proposed model shows robustness in sev-
eral datasets and different vocabulary size environ-
ments.

5.2.2 Degradation Comparison for Longer
Texts

To verify the HRDE model’s ability compared to
the baseline model RDE, we split the testset of the
Ubuntu-v1/v2 datasets based on the “number of
chunks” in the {context}. Then, we measured the
top-1 recall (same case as 1 in 10 R@1 in Table 3,
and 4) for each group. Figure 3 demonstrates that
the HRDE models, in darker blue and red colors,
shows better performance than the RDE models, in
lighter colors, for every “number of chunks” eval-
uations. In particular, the HRDE models are con-
sistent when the “number-of-chunks” increased,
while the RDE models degrade as the “number-
of-chunks” increased.
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Figure 3: The HRDE and RDE model performance comparisons for the number-of-chunk in the Ubuntu dataset.
Each boxplot shows average accuracy with standard deviation. The HRDE models, in darker blue and red colors,
show consistent performances as the number-of-chunks increased. Meanwhile, the RDE models in lighter colors
show performance degradation as the number-of-chunks increased. Furthermore, 13+ indicates all data over 13-
chunks.

Figure 4: Examples of the cluster proportions for four
real categories from 20k evaluated samples. Each color
corresponds to each cluster.

5.2.3 Effects of the LTC Numbers
We analyze the RDE-LTC model for different
numbers of latent clusters. Table 6 indicates that
the model performances increase as the number of
latent clusters increase (until 3 for the Ubuntu and
4 for the Samsung QA case). This is probably a
major reason for the different number of subjects
in each dataset. The Samsung QA dataset has an
internal category related to the type of consumer
electronic products (6 top-level categories; mo-
bile, office, photo, tv/video, accessories, and home
appliance), so that the LTC module makes clus-
ters these categories. The Ubuntu dataset, how-
ever, has diverse contents related to issues in us-
ing the Ubuntu system. Thus, the LTC module has
fewer clusters with the sparse topic compared to
the Samsung QA dataset.

5.2.4 Comprehensive Analysis of LTC
We conduct quantitative and qualitative analysis
on the HRDE-LTC model for four latent topic
clusters. The Samsung QA dataset has category

Cluster Example

1 How to adjust the brightness on the
s**d300 series monitors

2 How do I reject an incoming call on my
Samsung Galaxy Note 3?

3 How should I clean and maintain the
microwave?

4 How do I connnect my surround sound to
this TV and what type of cables do I need

Table 7: Example sentences for each cluster.

information; hence, latent topic clustering results
can be compared with real categories. We ran-
domly choose 20k samples containing real cate-
gory information and evaluate each sample with
the HRDE-LTC model. The cluster with the high-
est similarity among the latent topic clusters is
considered a representative cluster of each sample.

Figure 4 shows proportion of four latent clus-
ters among these samples according to real cat-
egory information. Even though the HRDE-LTC
model is trained without any ground-truth cate-
gory labels, we observed that the latent cluster
is formed accordingly. For instance, cluster 2 is
shown mostly in “Mobile” category samples while
“clusters 2 and 4” are rarely shown in “Home Ap-
pliance” category samples.

Additionally, we explore sentences with higher
similarity score from the HRDE-LTC module for
each four cluster. As can be seen in Table 7, “clus-
ter 1” contains “screen” related sentences (e.g.,
brightness, pixel, display type) while “cluster 2”
contains sentences with exclusive information re-
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lated to the “Mobile” category (e.g., call rejection,
voice level). This qualitative analysis explains why
“cluster 2” is shown mostly in the “Mobile” cate-
gory in Figure 4. We also discover that “cluster
3” has the largest portion of samples. As “cluster
3” contains “security” and “maintenance” related
sentences (e.g., password, security, log-on, main-
tain), we assume that this is one of the frequently
asked issues across all categories in the Samsung
QA dataset. Table 7 shows example sentences with
high scores from each cluster.

6 Conclusion

In this paper, we proposed the HRDE model
and LTC module. HRDE showed higher perfor-
mances in ranking answer candidates and less per-
formance degradations when dealing with longer
texts compared to conventional models. The LTC
module provided additional performance improve-
ments when combined with both RDE and HRDE
models, as it added latent topic cluster information
according to dataset properties. With this proposed
model, we achieved state-of-the-art performances
in Ubuntu datasets. We also evaluated our model
in real world question answering dataset, Samsung
QA. This demonstrated the robustness of the pro-
posed model with the best results.
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A More examples of the dataset

A.1 Ubuntu dataset

Question
“what will happend if i unmounted the ubuntu
partition”, “it will unmount , unless it is in
use”, “srr i did n’t got it”

Answer flag
“you cannot unmount a partition if it is
currently in use”

1

“why do you not have a backup if the
data is important ?”

0

Table 8: Example of the Ubuntu-v2 dataset.

A.2 Samsung QA dataset

Question
how can i place the current call on hold at any
point during a conversation ?

Answer flag
you can place the current call on hold
at any point during a conversation . you
can also make another call while you
have a call in progress if your network
supports this service . 1 while on a call
, tap hold . this action places the
current caller on hold . 2 you can later
reactivate this call by tapping unhold .

1

please try to do a soft reset . turn of the
phone , remove and put the battery
back after 1-2 minutes . we also
recommend you to clear the data of the
samsung keyboard . 1 from the home
screen , touch application 2 select
settings 3 select application manager 4
touch the all tab 5 select samsung
keyboard 6 tap on clear data .

0

Table 9: Example of the Samsung QA dataset.
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