
Proceedings of NAACL-HLT 2018, pages 1314–1324
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Fast Lexically Constrained Decoding with Dynamic Beam Allocation for
Neural Machine Translation

Matt Post and David Vilar
Amazon Research
Berlin, Germany

Abstract

The end-to-end nature of neural machine
translation (NMT) removes many ways of
manually guiding the translation process that
were available in older paradigms. Recent
work, however, has introduced a new capa-
bility: lexically constrained or guided de-
coding, a modification to beam search that
forces the inclusion of pre-specified words and
phrases in the output. However, while theoret-
ically sound, existing approaches have com-
putational complexities that are either linear
(Hokamp and Liu, 2017) or exponential (An-
derson et al., 2017) in the number of con-
straints. We present an algorithm for lexi-
cally constrained decoding with a complex-
ity of O(1) in the number of constraints. We
demonstrate the algorithm’s remarkable abil-
ity to properly place these constraints, and use
it to explore the shaky relationship between
model and BLEU scores. Our implementation
is available as part of SOCKEYE.

1 Introduction

One appeal of the phrase-based statistical ap-
proach to machine translation (Koehn et al., 2003)
was that it provided control over system output.
For example, it was relatively easy to incorporate
domain-specific dictionaries, or to force a transla-
tion choice for certain words. These kinds of in-
terventions were useful in a range of settings, in-
cluding interactive machine translation or domain
adaptation. In the new paradigm of neural ma-
chine translation (NMT), these kinds of manual
interventions are much more difficult, and a lot of
time has been spent investigating how to restore
them (cf. Arthur et al. (2016)).

At the same time, NMT has also provided new
capabilities. One interesting recent innovation is
lexically constrained decoding, a modification to
beam search that allows the user to specify words

No one has the intention of building a wall.

“errichten”

Niemand hat die Absicht, eine Mauer zu bauen.  
“No one has the intention, a wall to build.”

Niemand hat die Absicht, eine Mauer zu errichten. 
“No one has the intention, a wall to construct.”

“Keiner”

“Keiner” 
"errichten”

Keiner hat die Absicht, eine Mauer zu bauen.  
“No one has the intention, a wall to build.”

Keiner hat die Absicht, eine Mauer zu errichten. 
“No one has the intention, a wall to construct.”

Figure 1: An example translating from English to Ger-
man. The first translation is unconstrained, whereas
the remaining ones have one or two constraints im-
posed. A word-for-word translation of the German
output has been provided for the convenience of non-
German speaking readers.

and phrases that must appear in the system output
(Figure 1). Two algorithms have been proposed
for this: grid beam search (Hokamp and Liu,
2017, GBS) and constrained beam search (Ander-
son et al., 2017, CBS). These papers showed that
these algorithms do a good job automatically plac-
ing constraints and improving results in tasks such
as simulated post-editing, domain adaptation, and
caption generation.

A downside to these algorithms is their runtime
complexity: linear (GBS) or exponential (CBS) in
the number of constraints. Neither paper reported
decoding speeds, but the complexities alone sug-
gest a large penalty in runtime. Beyond this, other
factors of these approaches (a variable sized beam,
finite-state machinery) change the decoding pro-
cedure such that it is difficult to integrate with
other operations known to increase throughput,
like batch decoding.

We propose and evaluate a new algorithm, dy-
namic beam allocation (DBA), that is constant in
the number of provided constraints (Table 1). Our
algorithm works by grouping together hypotheses
that have met the same number of constraints into

1314

work complexity
Anderson et al. (2017) O(Nk2C)
Hokamp and Liu (2017) O(NkC)
This work O(Nk)

Table 1: Complexity of decoding (sentence length N ,
beam size k, and constraint count C) with target-side
constraints under various approaches.

banks (similar in spirit to the grouping of hypothe-
ses into stacks for phrase-based decoding (Koehn
et al., 2003)) and dynamically dividing a fixed-size
beam across these banks at each time step. As a re-
sult, the algorithm scales easily to large constraint
sets that can be created when words and phrases
are expanded, for example, by sub-word process-
ing such as BPE (Sennrich et al., 2016). We com-
pare it to GBS and demonstrate empirically that it
is significantly faster, making constrained decod-
ing with an arbitrary number of constraints feasi-
ble with GPU-based inference. We also use the al-
gorithm to study beam search interactions between
model and metric scores, beam size, and pruning.

2 Beam Search and Grid Beam Search

Inference in statistical machine translation seeks
to find the output sequence, ŷ, that maximizes
the probability of a function parameterized by a
model, θ, and an input sequence, x:

ŷ = argmaxy∈Y pθ(y | x)

The space of possible translations, Y , is the set of
all sequences of words in the target language vo-
cabulary, VT . It is impossible to explore this en-
tire space. Models decompose this problem into a
sequence of time steps, t. At each time step, the
model produces a distribution over VT . The sim-
plest approach to translation is therefore to run the
steps of the decoder, choosing the most-probable
token at each step, until either the end-of-sentence
token, 〈/s〉, is generated, or some maximum out-
put length is reached. An alternative, which ex-
plores a slightly larger portion of the search space,
is beam search.

In beam search (Lowerre, 1976; Sutskever et al.,
2014), the decoder maintains a beam of size k con-
taining a set of active hypotheses (Algorithm 1).
At each time step t, the decoder model is used to
produce a distribution over the target-language vo-
cabulary, VT , for each of these hypotheses. This
produces a large matrix of dimensions k × |VT |,

Algorithm 1 Beam search. Inputs: max output
length N , beam size k. Output: highest-scoring
hypothesis.

1: function BEAM-SEARCH(N, k)
2: beam← DECODER-INIT(k)
3: for time step t in 1..N do
4: scores = DECODER-STEP(beam)
5: beam← KBEST(scores)
6: return beam[0]
7: function KBEST(scores)
8: beam = ARGMAX K(k, scores)
9: return beam

that can be computed quickly with modern GPU
hardware. Conceptually, a (row, column) entry
(i, j) in this matrix contains the state obtained
from starting from the ith state in the beam and
generating the target word corresponding to the
jth word of VT . The beam for the next time step
is filled by taking the states corresponding to the
k-best items from this entire matrix and sorting
them.

A principal difference between beam search for
phrase-based and neural MT is that in NMT, there
is no recombination: each hypothesis represents
a complete history, back to the first word gener-
ated. This makes it easy to record properties of
the history of each hypothesis that were not possi-
ble with dynamic programming. Hokamp and Liu
(2017) introduced an algorithm for forcing certain
words to appear in the output called grid beam
search (GBS). This algorithm takes a set of con-
straints, which are words that must appear in the
output, and ensures that hypotheses have met all
these constraints before they can be considered to
be completed. For C constraints, this is accom-
plished by maintaining C + 1 separate beams or
banks, B0, B1, . . . , BC , where Bi groups together
hypotheses that have generated (or met) i of the
constraints. Decoding proceeds as with standard
beam decoding, but with the addition of bookkeep-
ing that tracks the number of constraints met by
each hypothesis, and ensures that new candidates
are generated, such that each bank is filled at each
time step. When beam search is complete, the
hypothesis returned is the highest-scoring one in
bank BC . Conceptually, this can be thought of as
adding an additional dimension to the beam, since
we multiply out some base beam size b by (one
plus) the number of constraints.

1315

We note two problems with GBS:

• Decoding complexity is linear in the num-
ber of constraints: The effective beam size,
k · (C + 1), varies with the number of con-
straints.

• It is impractical. The beam size changes
for every sentence, whereas most decoders
specify the beam size at model load time in
order to optimize computation graphs, spe-
cially when running on GPUs. It also compli-
cates beam search optimizations that increase
throughput, such as batching.

Our extension, fast lexically-constrained decoding
via dynamic beam allocation (DBA), addresses
both of these issues. Instead of maintaining C +1
beams, we maintain a single beam of size k, as
with unconstrained decoding. We then dynami-
cally allocate the slots of this beam across the con-
straint banks at each time step. There is still book-
keeping overhead, but this cost is constant in the
number of constraints, instead of linear. The result
is a practical algorithm for incorporating arbitrary
target-side constraints that fits within the standard
beam-decoding paradigm.

3 Dynamic Beam Allocation (DBA)

Our algorithm (Algorithm 2) is based on a small
but important alteration to GBS. Instead of multi-
plying the beam by the number of constraints, we
divide. A fixed beam size is therefore provided
to the decoder, just as in standard beam search.
As different sentences are processed with differing
numbers of constraints, the beam is dynamically
allocated to these different banks. In fact, the allo-
cation varies not just by sentence, but across time
steps in processing each individual sentence.

We need to introduce some terminology. A
word constraint provided to the decoder is a sin-
gle token in the target language vocabulary. A
phrasal constraint is a sequence of two or more
contiguous tokens. Phrasal constraints come into
play when the user specifies a multi-word phrase
directly (e.g., high-ranking member), or when a
word gets broken up by subword splitting (e.g.,
thou@@ ghtful). The total number of constraints
is the sum of the number of tokens across all word
and phrasal constraints. It is easier for the decoder
to place multiple sequential tokens in a phrasal
constraint (where the permutation is fixed) com-
pared to placing separate, independent constraints

(see discussion at the end of §5), but the algorithm
does not distinguish them when counting.

DBA fits nicely within standard beam decod-
ing; we simply replace the kbest implementation
from Algorithm 1 with one that involves a bit more
bookkeeping. Instead of selecting the top-k items
from the k × VT scores matrix, the new algorithm
must consider two important matters.

1. Generating a list of candidates (§3.1).
Whereas the baseline beam search simply
takes the top-k items from the scores matrix
(a fast operation on a GPU), we now need to
ensure that candidates progress through the
set of provided constraints.

2. Allocating the beam across the constraint
banks (§3.2). With a fixed-sized beam and
an arbitrary number of constraints, we need
to find an allocation strategy for dividing the
beam across the constraint banks.

3.1 Generating the candidate set
We refer to Figure 2 for discussion of the algo-
rithm. The set of candidates for the beam at time
step t + 1 is generated from the hypotheses in the
current beam at step t, which are sorted in de-
creasing order, with the highest-scoring hypoth-
esis at position 1. The DECODER-STEP function
of beam search generates a matrix, scores , where
each row r corresponds to a probability distribu-
tion over all target words, expanding the hypoth-
esis in position r in the beam. We build a set of
candidates from the following items:

1. The best k tokens across all rows of scores
(i.e., normal top-k);

2. for each hypothesis in the beam, all unmet
constraints (to ensure progress through the
constraints); and

3. for each hypothesis in the beam, the
single-best token (to ensure consideration of
partially-completed hypotheses).

Each of these candidates is denoted by its coordi-
nates in scores. The result is a set of candidates
which can be grouped into banks according to how
many constraints they have met, and then sorted
within those banks. The new beam for timestep
t + 1 is then built from this list according to an
allocation policy (next section).

1316

t V

0.93 0.96
�

1.09 0.91
�

1.06
→

0.95 1.03
→

1.02
�

1.04
→
1.00

0.89
�

1.08
�⟲
1.07 1.03 0.97

→
0.98 0.93

→
0.99 1.02 0.98

1.01 0.91 0.94 1.00 0.94 0.93 0.90 0.96
⬦

1.03
→

0.88

0.97
→

0.88 0.93
⬦⟲
1.03 0.92 0.90 0.81 0.98 0.87 0.81

0.91 0.93 0.91 0.84
⬦
0.95 0.90 0.83 0.94 0.83 0.87

ge
ne

ra
te

, a
llo

ca
te

, a
dj

us
t

t+1

(1, 3)

(1, 10)

(2, 2)

(3, 10)

(5, 5)

for b in [0.9, 0.88, 0.85, 0.81, 0.79]:

 t = [random.random() for x in range(10)];

 t = [b + x / sum(t) for x in t];

 print('\t'.join(['{:.2f}'.format(x) for x in t]))

Figure 2: A single step of the constrained decoder. Along the left is the beam (k = 5) at time step t. The shapes
in this beam represent constraints, both met (filled) and unmet (outlined). The blue square represents a phrasal
constraint of length 2, which must be completed in order (left half, then right half). A step of the decoder produces
a k × VT matrix of scores. Each constraint corresponds to a single token in the vocabulary, and is marked along
the bottom. Gray squares denote the set of candidates that are produced (§3.1) from the k best items (F), from
extending each hypothesis with all unfilled constraints (→), and from its single-best next token (3). Items that
violate a phrasal constraint () require the phrasal constraint from that hypotheses to be unwound (set to unmet).
From these fifteen candidates, the beam at time step t+1 is filled, according to the bank allocation strategy, which
here assigns one slot in the beam to each bank. The final beam includes coordinates indicating the provenance of
chosen items (which are also indicated in bold in the grid).

For hypotheses partially through a phrasal con-
straint, special care must be taken. If a phrasal
constraint has been begun, but not finished, and a
token is chosen that does not match the next word
of the constraint, we must reset or “unwind” those
tokens in this constraint that are marked as having
been met. This permits the decoder to abort the
generation of a phrasal constraint, which is impor-
tant in situations where a partial prefix of a phrasal
constraint appears in the decoded sentence earlier
than the entire phrase.

3.2 Allocating the beam

The task is to allocate a size-k beam across C + 1
constraint banks, where C may be greater than k.
We use the term bank to denote the portion of the
beam reserved for items having met the same num-
ber of constraints (including one bank for hypothe-
ses with zero constraints met). We use a simple
allocation strategy, setting each bin size to bk/Cc,
irrespective of the timestep. Any remaining slots
are assigned to the “topmost” or maximally con-
strained bank, C.

This may at first appear wasteful. For exam-
ple, space allocated at timestep 1 to a bank rep-
resenting candidates having met more than one
constraint cannot be used, and similarly, for later

timesteps, it seems wasteful to allocate space to
bank 1. Additionally, if the number of candidates
in a bank is smaller than the allocation for that
bank, the beam is in danger of being underfilled.
These problems are mitigated by bank adjustment
(Figure 3). We provide here only a sketch of this
procedure. An overfilled bank is one that has been
allocated more slots than it has candidates to fill.
Each such overfilled bank, in turn, gives its extra
allotments to banks that have more candidates than
slots, looking first to its immediate neighbors, and
moving outward until it has distributed all of its
extra slots. In this way, the beam is filled, up to
the minimum of the beam size or the number of
candidates.

3.3 Finishing

Hypotheses are not allowed to generate the end-
of-sentence token, 〈/s〉, unless they have met all
of their constraints. When beam search is finished,
the highest-scoring completed item is returned.

4 Experimental Setup

Our experiments were done using SOCKEYE

(Hieber et al., 2017). We used an English–German
model trained on the complete WMT’17 train-
ing corpora (Bojar et al., 2017), which we pre-

1317

Algorithm 2 k-best extraction with DBA. Inputs: A k × |VT | matrix of model states.

1: function KBEST-DBA(beam, scores)
2: constraints← [hyp.constraint for hyp in beam]
3: candidates← [(i, j, constraints[i].add(j)] for i, j in ARGMAX K(k, scores) . Top overall k
4: for 1 ≤ h ≤ k do . Go over current beam
5: for all w ∈ VT that are unmet constraints for beam[h] do . Expand new constraints
6: candidates.append((h,w, constraints[h].add(w)))
7: w = ARGMAX(scores[h, :])
8: candidates.append((h,w, constraints[h].add(w))) . Best single word
9: selected← ALLOCATE(candidates, k)

10: newBeam← [candidates[i] for i in selected]
11: return newBeam

0

1

2

3

4

0

0

1

1

1

candidates allocation reallocation

Figure 3: Beam reallocation for k = 5 with 4 con-
straints at timestep t. There are eight candidates, each
having met only 0 or 1 constraint. The allocation pol-
icy gives one slot of the beam to each bank. However,
there are no candidates for banks 2–4 (greyed), so their
slots are redistributed to banks 0 and 1.

processed with the Moses tokenizer (preserving
case) and with a joint byte-pair-encoded vocabu-
lary with 32k merge operations (Sennrich et al.,
2016). The model was a 4 layer RNN with atten-
tion. We trained using the Adam optimizer with
a batch size of 80 until cross-entropy on the de-
velopment data (newstest2016) stopped increasing
for 10 consecutive iterations.

For decoding, we normalize completed hy-
potheses (those that have generated 〈/s〉), divid-
ing the cumulative sentence score by the num-
ber of words. Unless otherwise noted, we apply
threshold pruning to the beam, removing hypothe-
ses whose log probability is not within 20 com-
pared to the best completed hypothesis. This prun-
ing is applied to all hypotheses, whether they are

complete or not. (We explore the importance of
this pruning in §6.3). Decoding stops when either
all hypotheses still on the beam are completed or
the maximum length, N , is reached. All experi-
ments were run on a single a Volta P100 GPU. No
ensembling or batching were used.

For experiments, we used the newstest2014
English–German test set (the developer version,
with 2,737 sentences). All BLEU scores are com-
puted on detokenized output using SACREBLEU
(Post, 2018),1 and are thus directly comparable to
scores reported in the WMT evaluations.

5 Validation Experiment

We center our exploration of DBA by experiment-
ing with constraints randomly selected from the
references. We extract five sets of constraints:
from one to four randomly selected words from
the reference (rand1 to rand4), and a randomly
selected four-word phrase (phr4). We then apply
BPE to these sets, which often yields a much larger
number of token constraints. Statistics about these
extracted phrases can be found in Table 2.

We simulate the GBS baseline within our
framework. After applying BPE, We group to-
gether translations with the same number of con-
straints, C, and then translate them as a group,
with the beam set for that group set to b(C + 1),
where b is the “base beam” parameter. We use
b = 10 as reported in Hokamp et al., but also try
smaller values of b = 5 and 1. Finally, we disable
beam adjustment (§3.2), so that the space allocated
to each constraint bank does not change.

Table 4 compares speeds and BLEU scores (in
the legend) as a function of the number of post-

1The signature is BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+test.wmt14+tok.13a+v.1.2.6

1318

num rand1 rand2 rand3 rand4 phr4
1 2,182 0 0 0 0
2 548 3,430 0 0 0
3 516 1,488 4,074 0 0
4 272 1,128 2,316 4,492 4,388
5 150 765 1,860 3,275 2,890
6 30 306 1,218 2,520 2,646
7 42 133 805 1,736 1,967
8 0 112 488 1,096 1,280
9 0 36 171 702 720
10 0 10 140 400 430
11+ 0 22 189 417 575
total 3,726 7,477 11,205 14,885 14,926
mean 1.36 2.73 4.09 5.43 5.45

Table 2: Histogram of the number of token constraints
for some constraint sets after applying BPE (model
trained with 32k merge operations). mean denotes the
mean number of constraints per sentence in the 2,737-
sentence test set.

BPE constraints for the rand3 dataset. We plot
all points for which there were at least 10 sen-
tences. The times are decoding only, and exclude
model loading and other setup. The linear trend
in C is clear for GBS, as is the constant trend
for DBA. In terms of absolute runtimes, DBA im-
proves considerably over GBS, whose beam sizes
quickly become quite large with a non-unit base
beam size. On the Tesla V100 GPU, DBA (k =
10) takes about 0.6 seconds/sentence, regardless
of the number of constraints.2 This is about 3x
slower than unconstrained decoding.

It is difficult to compare these algorithms ex-
actly because of GBS’s variable beam size. An
important comparison is that between DBA (k =
10) and GBS/1 (base beam of 1). A beam of
k = 10 is a common setting for decoding in gen-
eral, and GBS/1 has a beam size of k ≥ 10 for
C ≥ 9. At this setting, DBA finds better transla-
tions (BLEU 26.7 vs. 25.6) with the same runtime
and with a fixed, instead of variable-sized, beam.

We note that the bank adjustment correction
of the DBA algorithm allows it to work when
C >= k. The DBA (k = 5) plot demonstrates
this, while still finding a way to increase the BLEU
score over GBS (23.5 vs. 22.3). However, while
possible, low k relative to C reduces the observed
improvement considerably. Looking at Figure 5
across different constraint sets, we can get a better
feel for this relationship. DBA is still always able
to meet the constraints even with a beam size of 5,

2On a K80, it is about 1.4 seconds / sentence

Volta decoding rand3 
beam size = 10 (DBA), 5(C+1) (GBS)

GBS/10 (BLEU
27.8, k=(C+1)×10)

GBS/5 (BLEU 27.5,
k=(C+1)×5)

GBS/1 (BLEU 25.6,
k=(C+1)×1)

DBA (BLEU 27.2,
k=20)

DBA (BLEU 26.7,
k=10)

DBA (BLEU 23.5,
k=5)

unconstrained
(k=10)

counts

3 1.8101 1.0757 0.4725 1.1538 0.6817 0.4805 0.2133 1358

4 2.1669 1.2887 0.4923 1.1083 0.7240 0.5139 0.2133 579

5 2.5580 1.4420 0.5556 1.1052 0.6874 0.4012 0.2133 372

6 2.8908 1.6499 0.5844 1.0443 0.6858 0.4204 0.2133 203

7 3.4037 1.9266 0.7074 1.1524 0.7445 0.4466 0.2133 115

8 3.8006 2.0444 0.7642 1.1847 0.8012 0.4802 0.2133 61

9 3.9575 2.1997 0.8096 1.1856 0.8057 0.4603 0.2133 19

10 4.3779 2.4897 0.9564 1.1785 0.6904 0.5947 0.2133 14

11 4.7845 2.6689 1.1181 1.3284 0.8735 0.7886 0.2133 8

12 4.8664 2.9615 1.2622 1.5562 1.0878 0.8452 0.2133 5

13 3.0738 1.9880 1.0199 1.0908 0.8781 0.7931 0.2133 2

15 4.4652 2.7549 1.3539 1.4413 1.0156 0.9548 0.2133 1

se
co

nd
s /

 se
nt

en
ce

0

1

2

3

4

5

number of constraints, C (after BPE)

3 4 5 6 7 8 9 10

GBS/10 (BLEU 27.8, k=(C+1)×10)
GBS/5 (BLEU 27.5, k=(C+1)×5)
GBS/1 (BLEU 25.6, k=(C+1)×1)
DBA (BLEU 27.2, k=20)
DBA (BLEU 26.7, k=10)
DBA (BLEU 23.5, k=5)
unconstrained (k=10)

Volta decoding 
beam size = 10 (DBA), 5(C+1) (GBS)-1

constraints phr2 phr3 phr4 rand1 rand2 rand3
0

1 0.6303
2 0.6407 0.6862 0.6560
3 0.6534 0.6404 0.6865 0.6584 0.6817
4 0.6493 0.6799 0.6439 0.7503 0.7267 0.7240
5 0.6441 0.6165 0.6141 0.7177 0.6706 0.6874
6 0.7285 0.7219 0.6195 0.7096 0.6858
7 0.7426 0.6765 0.6883 0.7445
8 0.7091 0.6819 0.8012
9 0.8327

10 0.5532
11

12

13

14

15

16

17

threshold 30

times
0

1 0.6303
2 0.6407 0.6862 0.6560
3 0.6534 0.6404 0.6865 0.6584 0.6817
4 0.6493 0.6799 0.6439 0.7503 0.7267 0.7240
5 0.6441 0.6165 0.6141 0.7177 0.6706 0.6874
6 0.7285 0.7219 0.6195 0.8798 0.7096 0.6858
7 0.7426 0.6765 0.6883 0.8994 0.7814 0.7445
8 1.1061 0.7091 0.6819 1.2610 0.8012
9 1.4579 0.8107 0.8327 0.8215 0.8057

10 0.7694 0.5532 1.0103 0.6904
11 0.7960 0.8048 0.6271 1.4163 0.8735
12 0.6904 1.0627 1.0878
13 0.7613 1.2263 0.8781
14 0.9635 0.7614 1.0156
15 0.7341
16

17

counts
0 0
1 0 2149

2 1679 317 1765

3 517 1355 171 453 1398

4 301 572 1100 53 284 554

5 135 400 600 33 136 356

6 57 208 467 9 62 209

7 36 104 254 5 20 113

8 7 57 152 6 61

9 2 25 78 5 25

10 5 42 5 14

11 3 2 19 1 4

12 4 8 1

13 2 2 1

14 1 4 1

15 2

16

17

constraints

25.6

27.5

27.8

23.5

26.7

27.2

�1

Figure 4: Running time (seconds / sentence, lower is
better) as a function of the number of constraints, C
(after applying BPE) on the rand3 dataset. The un-
constrained baselines have BLEU scores of 22.3, 22.3,
and 22.1 for k = 5, 10, and 20, respectively.

but the quality suffers. This should not be too sur-
prising; correctly placing independent constraints
is at least as hard as finding their correct permuta-
tion, which is exponential in the number of inde-
pendent constraints. But it is remarkable that the
only failure to beat the baseline in terms of BLEU
is when the algorithm is tasked with placing four
random constraints (before BPE) with a beam size
of 5. In contrast, DBA never has any trouble plac-
ing phrasal constraints (dashed lines).

6 Analysis

6.1 Placement
It’s possible that the BLEU gains result from a
boost in n-gram counts due to the mere presence of
the reference constraints in the output, as opposed
to their correct placement. This appears not to be
the case. Experience examining the outputs shows
its uncanny ability to sensibly place constrained
words and phrases. Figure 6 contains some exam-
ples from translating a German sentence into En-
glish, manually identifying interesting phrases in
the target, choosing paraphrases of those words,
and then decoding with them as constraints. Note
that the word weak, which doesn’t fit in the seman-
tics of the reference, is placed haphazardly.

We also confirm this correct placement quanti-
tatively by comparing the location of the first word
of each constraint in (a) the reference and (b) the
output of the constrained decoder, represented as a
percentage of the respective sentence lengths (Fig-
ure 7). We would not expect these numbers to

1319

Volta decoding rand3  
beam size = 10 (DBA), 5(C+1) (GBS)

5 10 20 30

phr4 31.34 35.68 36.29 36.45

phr3 29.03 31.33 32.00 32.04

rand4 20.70 26.91 28.43 28.76

phr2 26.72 27.66 28.13 28.06

rand3 23.51 26.73 27.23 27.64

rand2 24.64 25.64 26.13 26.22

rand1 24.38 24.60 24.71 24.70

unconstrained 22.33 22.33 22.15 21.86

B
LE

U

15

20

25

30

35

40

beam size

5 10 20 30

phr4 phr3
rand4 phr2
rand3 rand2
rand1 unconstrained

B
LE

U

15

20

25

30

35

40

beam size

5 10 20 30

phr4 phr3
rand4 phr2
rand3 rand2
rand1 unconstrained

�1

Figure 5: BLEU score as a function of beam size un-
der DBA. All constraint sets improve as the beam gets
larger (recall that the actual number of constraints in-
creases after BPE and varies by sentence). rand4 per-
forms under the unconstrained baseline if the beam is
too low.

be perfectly matched, but the strong correlation is
pretty apparent (Pearson’s r = 0.82). Together,
Figures 6 and 7 provide confidence that DBA is
intelligently placing the constraints.

6.2 Reference Aversion
The inference procedure in SOCKEYE maximizes
the length-normalized version of the sentence’s
log probability. While there is no explicit training
towards the metric, BLEU, modeling in machine
translation assumes that better model scores cor-
relate with better BLEU scores. However, a gen-
eral repeated observation from the NMT literature
is the disconnect between model score and BLEU
score. For example, work has shown that open-
ing up the beam to let the decoder find better hy-
potheses results in lower BLEU score (Koehn and
Knowles, 2017), even as the model score rises.
The phenomenon is not well understood, but it
seems that NMT models have learned to travel a
path straight towards their goal; as soon as they
get off this path, they get lost, and can no longer
function (Ott et al., 2018).

Another way to look at this problem is to ask
what the neural model thinks of the references.
Scoring against complete references is easy with
NMT (Sennrich, 2017), but lexically-constrained
decoding allows us to investigate this in finer-
grained detail by including just portions of the
references. We observe that forcing the decoder
to include even a single word from the reference
imposes a cost in model score that is inversely

0 3 5 10 20 30
none 24.4 24.5 24.5 24.4 24.5 24.4
rand1 25.2 25.1 25.2 25.6 25.5 25.3
rand2 26.0 25.3 25.6 26.1 26.7 26.4
rand3 26.5 24.7 24.9 25.7 26.9 27.2
rand4 26.2 23.7 23.9 24.6 26.0 26.9
phr4 35.1 33.5 33.5 34.0 35.0 35.9

Table 3: BLEU scores decoding with a beam size of 10.
Runtimes for unpruned systems (column 0) are nearly
twice those of the other columns. But it is only at large
thresholds that BLEU scores are higher than the un-
pruned setting.

correlated with BLEU score, and that this grows
with the number of constraints that are added (Fig-
ure 8). The NMT system seems quite averse to the
references, even in small pieces, and even while
it improves the BLEU score. At the same time,
the hypotheses it finds in this reduced space are
still good, and become better as the beam is en-
largened (Figure 5). This provides a complemen-
tary finding to that of Koehn and Knowles (2017):
in that setting, higher model scores found by a
larger beam produce lower BLEU scores; here,
lower model scores are associated with signifi-
cantly higher BLEU scores.

6.3 Effects of Pruning

In the results reported above, we used a prun-
ing threshold of 20, meaning that any hypothe-
sis whose log probability is not within 20 of the
best completed hypothesis is removed from the
beam. This pruning threshold is far greater than
those explored in other papers; for example, Wu
et al. (2016) use 3. However, we observed two
things: first, without pruning, running time for
constrained decoding is nearly doubled. This in-
creased runtime applies to both DBA and GBS
in Figure 4. Second, low pruning thresholds are
harmful to BLEU scores (Table 3). It is only once
the thresholds reach 20 that the algorithm is able
to find better BLEU scores compared to the un-
pruned baseline (column 0).

6.4 Garbage Generation

Why is the algorithm so slow without pruning?
One might suspect that the outputs are longer,
but mean output length with all constraint sets is
roughly the same. The reason turns out to be that
the the decoder never quits before the maximum

1320

constraint score output
source Einer soll ein hochrangiges Mitglied aus Berlin gewesen sein .
no constraints -0.217 One should have been a high-ranking member from Berlin .
is said to -0.551 One is said to have been a high-ranking member from Berlin .
of them -0.577 One of them was to be a high-ranking member from Berlin .
participant -0.766 One should have been a high-ranking participant from Berlin .
is thought to -0.792 One is thought to have been a high-ranking member from Berlin .
considered -0.967 One is considered to have been a high-ranking member from Berlin .
Hamburg -1.165 One should have been a high-ranking member from Hamburg .
powerful -1.360 One is to have been a powerful member from Berlin .
powerful, is said to -1.496 One is said to have been a powerful member from Berlin .
powerful, is said to, participant -1.988 One is said to have been a powerful participant from Berlin .
weak -1.431 One weak point was to have been a high-ranking member from Berlin .
reference One is said to have been a high-ranking member from Berlin.

Figure 6: Example demonstrating the correct placement of manually chosen constraints (beam size 10). The
unnatural placement of the constraint weak demonstrates what the model does when forced to include a word that
is not a semantic fit.

po
si

tio
n

in
 o

ut
pu

t (
%

)

position in reference (%)

Figure 7: Location of the first word of each constraint
from phr3 in the reference versus the constrained out-
put (Pearson’s r = 0.82). DBA correctly places its
constraints, even though no source word or alignment
information is provided.

timestep, N . SOCKEYE’s stopping criterium is
to wait until all hypotheses on the beam are fin-
ished. Without pruning, the decoder generates
a finished hypotheses, but continues on until the
maximum timestep N , populating the rest of the
beam with low-cost garbage. An example can be
found in Figure 9. This may be an example of
the well-attested phenomenon where NMT sys-
tems become unhinged from the source sentence,
switching into “language model” mode and gen-
erating high-probable output with no end. But
strangely, this doesn’t seem to affect the best hy-
potheses, but only the rest of the beam. This seems
to be more evidence of reference aversion, where

beam=10

run model BLEU

none -1039.86 22.33

rand1 -1337.54 24.60

rand2 -1724.98 25.64 test

rand3 -2236.24 26.73

rand4 -3082.17 26.91

phr2 -1766.27 27.66

phr3 -2156.17 31.33

phr4 -2681.62 35.68

ref 95.86 4396.46

0

10

20

30

40

-4,000 -3,000 -2,000 -1,000 0

none

rand1
rand4

phr4
phr3

rand3 rand2

phr2

�1

Figure 8: BLEU score as a function of model score
(summed over the corpus). The reference model score
is -4,396.

the decoder, having been forced into a place it
doesn’t like, does not know how to generate good
competing hypotheses.

An alternative to pruning is early stopping,
which is to stop when the first complete hypothe-
sis is generated. In our experiments, while this did
fix the problem of increasing runtimes, the BLEU
scores were lower.

6.5 Conclusions

By setting a large pruning threshold, we produced
large speedups over GBS, and demonstrated a con-
stant overhead in the number of constraints. Com-
pared to GBS, our DBA algorithm makes lexi-
cally constrained decoding possible, requiring less
than half a second on average on a Volta GPU with
a 4-layer RNN.

1321

1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 41
-0.51 〈s〉 Er und Kerr lieben einander noch immer , betonte die 36-Jährige . 〈/s〉
-0.52 〈s〉 Er und Kerr lieben einander noch immer , betonte der 36-Jährige . 〈/s〉
-0.56 〈s〉 Er und Kerr lieben einander noch immer , betonte die 36-jährige . 〈/s〉
-0.57 〈s〉 Er und Kerr lieben einander noch immer , betonte den 36-jährigen . 〈/s〉

-25.11 〈s〉 Er und Kerr lieben sich weiterhin einander , betonte die 36-Jährige
-27.92 〈s〉 Er und Kerr lieben sich weiterhin einander , betonte die 36-Jährige

Figure 9: The sentence He and Kerr still love each other , emphasised the 36-year-old . translated with the
constraint noch immer , betonte (BPE removed for readability). The first column is the log probability, which
is normalized only for finished hypotheses. The decoder completes a few hypotheses well before the maximum
timestep, but then fills the lower beam with garbage until forced to stop.

7 Related Work

Hokamp and Liu (2017) was novel in that it
allowed the specification of arbitrary target-side
words as hard constraints, implemented entirely as
a restructuring of beam search, and without refer-
ence to the source. A related approach was that of
Anderson et al. (2017), who extended beam search
with a finite state machine whose states marked
completed subsets of the set of constraints, at an
exponential cost in the number of constraints.

Lexically-constrained decoding also general-
izes prefix decoding (Knowles and Koehn, 2016;
Wuebker et al., 2016), since the 〈s〉 symbol can
easily be included as the first word of a constraint.

Our work here has not explored where to get
lexical constraints, but considering that question
naturally brings to mind attempts to improve NMT
by using lexicons and phrase tables (Arthur et al.,
2016; Tang et al., 2016).

Finally, another approach which shares the
hard-decision made by lexically constrained de-
coding is the placeholder approach (Crego et al.,
2016), wherein identifiable elements in the in-
put are transformed to masks during preprocess-
ing, and then replaced with their original source-
language strings during postprocessing.

8 Summary

Neural machine translation removes many of the
knobs from phrase-based MT that provided fine-
grained control over system output. Lexically-
constrained decoding restores one of these tools,
providing a powerful and interesting way to in-
fluence NMT output. It requires only the speci-
fication of the target-side constraints; without any
source word or alignment information, it correctly
places the constraints. Although we have only
tested it here with RNNs, the code works with-
out modification with other architectures generate
target-side words one-by-one, such as the Trans-

former (Vaswani et al., 2017).
This paper has introduced a fast and practical

solution. Building on previous approaches, con-
strained decoding with DBA does away with lin-
ear and exponential complexity (in the number of
constraints), imposing only a constant overhead.
On a Volta GPU, lexically-constrained decoding
with DBA is practical, requiring about 0.6 sec-
onds per sentence on average even with 10+ con-
straints, well within the realm of feasibility even
for applications with strict lattency requirements,
like post-editing tasks. We imagine that there are
further optimizations in reach that could improve
this even further.

Acknowledgments We thank Felix Hieber for
valuable discussions.

References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
936–945. Association for Computational Linguis-
tics.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1557–1567. Asso-
ciation for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017. Findings of the 2017 conference on
machine translation (wmt17). In Proceedings of the
Second Conference on Machine Translation, pages
169–214. Association for Computational Linguis-
tics.

1322

Josep Crego, Jungi Kim, Guillaume Klein, Anabel Re-
bollo, Kathy Yang, Jean Senellart, Egor Akhanov,
Patrice Brunelle, Aurelien Coquard, Yongchao
Deng, Satoshi Enoue, Chiyo Geiss, Joshua Johan-
son, Ardas Khalsa, Raoum Khiari, Byeongil Ko,
Catherine Kobus, Jean Lorieux, Leidiana Martins,
Dang-Chuan Nguyen, Alexandra Priori, Thomas
Riccardi, Natalia Segal, Christophe Servan, Cyril Ti-
quet, Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou,
and Peter Zoldan. 2016. Systran’s pure neural ma-
chine translation systems. CoRR.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural ma-
chine translation. Computing Research Repository,
abs/1712.05690.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–
1546. Association for Computational Linguistics.

Howard Johnson, Joel Martin, George Foster, and
Roland Kuhn. 2007. Improving translation qual-
ity by discarding most of the phrasetable. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL).

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. In Proceedings
of the Association for Machine Translation in the
Americas, pages 107–120.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39. Association for Compu-
tational Linguistics.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. Euro-
pean Language Resources Association (ELRA).

Bruce T. Lowerre. 1976. The HARPY speech recogni-
tion system. Ph.D. thesis, Carnegie-Mellon Univer-
sity.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd Annual

Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60. As-
sociation for Computational Linguistics.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. CoRR,
abs/1803.00047.

Matt Post. 2018. A call for clarity in report-
ing bleu scores. Computing Research Repository,
abs/1804.08771.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? assessing mt qual-
ity with contrastive translation pairs. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 376–382. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li,
and Philip L. H. Yu. 2016. Neural machine transla-
tion with external phrase memory. CoRR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Joern Wuebker, Spence Green, John DeNero, Sasa
Hasan, and Minh-Thang Luong. 2016. Models and
inference for prefix-constrained machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 66–75. Association for Compu-
tational Linguistics.

1323

A Appendix: Failed Experiments

The main contribution of this paper is a fast,
practical algorithmic improvement to lexically-
constrained decoding. While we did not attempt to
corroborate the experiments in interactive transla-
tion and domain adaptation experiments reported
in (Hokamp and Liu, 2017), the gains discovered
there only become more salient with this faster al-
gorithm. We did try to apply lexical constraints in
a few other settings, but without success. In the
spirit of open scientific inquiry and reporting, we
provide here a brief report on these experiments.

A.1 Automatic Constraint Selection

Our validation experiments (§5) demonstrate the
large potential gains in BLEU score when includ-
ing random phrases from the reference. Even in-
cluding just a single random word from the ref-
erence increased BLEU score by a point; an-
other point was gained from including two ran-
dom words, and a four-word phrase yielded 10+
point gains. Only about 18% of these random un-
igrams were present in the unconstrained output
(less for longer n-grams). This raises the question
of whether we can automatically identify words
that are likely to be in the reference and include
them as constraints, in order to improve transla-
tion quality.

In order to do that, we first extracted a phrase
table using Moses and filtered it with the signifi-
cance testing approach proposed by Johnson et al.
(2007) in order to keep only high quality phrases.
We then selected the best phrase for each input
sentence according to different criteria (longest
phrase, higher significance, highest probability,
combination of those). Unfortunately, adding such
phrases as constraints when translating WMT or
IWSLT data did not help.

A.2 Name Entity Translation

One topic that has received attention in the litera-
ture is the tendency of NMT systems to do poorly
with rare words, and in particular, named entities
(e.g., Arthur et al. (2016)). BPE helps address this
by breaking down words into pieces and allowing
all words to be represented in the decoder’s vocab-
ulary. But even with BPE, many times the correct
translation does not follow any pattern, even at the
subword level. This is specially true for named
entities; e.g. “Aachen” in German is translated as
“Aquisgrán” in Spanish or “Aix-la-Chapelle” in

French, which bear little resemblance to the origi-
nal form except for the starting letter. Named en-
tities (NEs) also have the advantage that in several
languages they are not inflected; therefore a simple
lookup in a dictionary, if available, should produce
the correct translation.

To the best of our knowledge, there is no pub-
licly available parallel corpus of named entities. In
order to create one, we downloaded the OpenSub-
titles database (Lison and Tiedemann, 2016) for
German and English and applied a simple method
for extracting named entity correspondences. We
first tagged the source and target sides with the
Stanford NER system (Manning et al., 2014).
We then selected a subset of the tags that were
produced by both systems (“Person”, “Location”
and “Organization”) and selected those sentences
where they appeared only once for each language.
From those we extracted the corresponding NEs,
selecting the most frequent target side at the cor-
pus level as the translation of a given source NE.

Given such a dictionary, we can add the trans-
lation of a NE found in new sentences to translate
as decoding constraints. It didn’t help. Manual in-
spection showed that the dictionary extracted with
this simple method was still too noisy. We think
that a manual, high-quality dictionary may provide
a way to produce improvements.

1324

