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Abstract

Representation learning with pivot-based
methods and with Neural Networks (NNs)
have lead to significant progress in domain
adaptation for Natural Language Processing.
However, most previous work that follows
these approaches does not explicitly exploit
the structure of the input text, and its output
is most often a single representation vector
for the entire text. In this paper we present
the Pivot Based Language Model (PBLM),
a representation learning model that marries
together pivot-based and NN modeling in
a structure aware manner. Particularly, our
model processes the information in the text
with a sequential NN (LSTM) and its output
consists of a context-dependent representation
vector for every input word. Unlike most
previous representation learning models in
domain adaptation, PBLM can naturally
feed structure aware text classifiers such as
LSTM and CNN. We experiment with the
task of cross-domain sentiment classification
on 20 domain pairs and show substantial
improvements over strong baselines.1

1 Introduction

Domain adaptation (DA, (Daumé III, 2007; Ben-
David et al., 2010)) is a fundamental challenge in
NLP, due to the reliance of many algorithms on
costly labeled data which is scarce in many do-
mains. To save annotation efforts, DA aims to im-
port algorithms trained with labeled data from one
or several domains to new ones. While DA algo-
rithms have long been developed for many tasks
and domains (e.g. (Jiang and Zhai, 2007; Mc-
Closky et al., 2010; Titov, 2011; Bollegala et al.,
2011; Rush et al., 2012; Schnabel and Schütze,

1Our code is publicly available at: https://github.
com/yftah89/PBLM-Domain-Adaptation.

2014)), the unprecedented growth of heteroge-
neous online content calls for more progress.

DA through Representation Learning (DReL),
where the DA method induces shared representa-
tions for the examples in the source and the tar-
get domains, has become prominent in the Neural
Network (NN) era. A seminal (non-NN) DReL
work is structural correspondence learning (SCL)
(Blitzer et al., 2006, 2007) which models the con-
nections between pivot features – features that are
frequent in the source and the target domains and
are highly correlated with the task label in the
source domain – and the other, non-pivot, fea-
tures. While this approach explicitly models the
correspondence between the source and the target
domains, it has been outperformed by NN-based
models, particularly those based on autoencoders
(AEs, (Glorot et al., 2011; Chen et al., 2012))
which employ compress-based noise reduction to
extract features that empirically support domain
adaptation. Recently, Ziser and Reichart (2017)
(ZR17) proposed to marry these approaches. They
have presented the autoencoder-SCL models and
demonstrated their superiority over a large num-
ber of previous approaches, particularly those that
employ pivot-based ideas only or NNs only.

Current DReL methods, however, suffer from
a fundamental limitation: they ignore the struc-
ture of their input text (usually sentence or docu-
ment). This is reflected both in the way they repre-
sent their input text, typically with a single vector
whose coordinates correspond to word counts or
indicators across the text, and in their output which
typically consists of a single vector representa-
tion. This structure-indifferent approach stands
in a sharp contrast to numerous NLP algorithms
where text structure plays a key role.

Moreover, learning a single feature vector per
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input example, these methods can feed only task
classifiers such as SVM and feed-forward NNs
that take a single vector as input, but cannot feed
sequential (e.g. RNNs and LSTMs (Hochreiter
and Schmidhuber, 1997)) or convolution (CNNs
(LeCun et al., 1998)) networks that require an in-
put vector per word or sentence in their input. This
may be a serious limitation given the excellent per-
formance of structure aware models in a large va-
riety of NLP tasks, including sentiment analysis
and text classification (e.g.(Kim, 2014; Yogatama
et al., 2017)) - prominent DA evaluation tasks.

Fig. 1 demonstrates the limitation of structure-
indifferent modeling in DA for sentiment analysis.
While the example review contains more positive
pivot features (see definition in Sec. 2), the senti-
ment expressed in the review is negative. A rep-
resentation learning method should encode the re-
view structure (e.g. the role of the terms at first
and However) in order to uncover the sentiment.2

In this paper we overcome these limitations.
We present (Section 3) the Pivot Based Language
Model (PBLM) - a domain adaptation model that
(a) is aware of the structure of its input text; and
(b) outputs a representation vector for every in-
put word. Particularly, the model is a sequential
NN (LSTM) that operates very similarly to LSTM
language models (LSTM-LMs). The fundamen-
tal difference is that while for every input word
LSTM-LMs output a hidden vector and a predic-
tion of the next word, the output of PBLM is a hid-
den vector and a prediction of the next word if that
word is a pivot feature or else, a generic NONE
tag. Hence, PBLM not only exploits the sequential
nature of its input text, but its output states can nat-
urally feed LSTM and CNN task classifiers. No-
tice that PBLM is very flexible: instead of pivot
based unigram prediction it can be defined to pre-
dict pivots of arbitrary length (e.g. the next bigram
or trigram), or, alternatively, it can be defined over
sentences or other textual units instead of words.

Following a large body of DA work, we ex-
periment (Section 5) with the task of binary sen-
timent classification. We consider adaptation be-
tween each domain pair in the four product review
domains of Blitzer et al. (2007) (12 domain pairs)
as well as between these domains and an airline
review domain (Nguyen, 2015) and vice versa (8
domain pairs). The latter 8 setups are particularly

2Pivots are defined with respect to a (source, target) do-
main pair. The pivots highlighted in the figure are the pivots
for this review in all the setups we explored.

I was at first
::::
very

:::::::
excited with my new Zyliss

salad spinner - it is easy to spin and looks
:::::
great

... . However, ... it doesn’t get your greens very
dry. I’ve been surprised and disappointed by
the amount of water left on lettuce after spin-
ning, and spinning, and spinning.

Figure 1: Example review from the kitchen appliances
domain of Blitzer et al. (2007). Positive pivot features
are underlined with a wavy line. Negative pivot fea-
tures are underlined with a straight line. Although there
are more positive pivots than negative ones, the review
is negative.

challenging as the airline reviews tend to be more
negative than the product reviews (see Section 4).

We implement PBLM with two task classi-
fiers, LSTM and CNN, and compare them to
strong previous models, among which are: SCL
(pivot based, no NN), the marginalized stacked de-
noising autoencoder model (MSDA, (Chen et al.,
2012) - AE based, no pivots), the MSDA-DAN
model ((Ganin et al., 2016) - AE with a Do-
main Adversarial Network (DAN) enhancement)
and AE-SCL-SR (the best performing model of
ZR17, combining AEs, pivot information and pre-
trained word vectors). PBLM-LSTM and PBLM-
CNN perform very similarly to each other and
strongly outperform previous models. For exam-
ple, PBLM-CNN achieves averaged accuracies of
80.4%, 84% and 76.2% in the 12 product domain
setups, 4 product to airline setups and 4 airline to
product setups, respectively, while AE-SCL-SR,
the best baseline, achieves averaged accuracies of
78.1%, 78.7% and 68.1%, respectively.

2 Background and Previous Work

DA is an established challenge in machine learn-
ing in general and in NLP in particular (e.g.
(Roark and Bacchiani, 2003; Chelba and Acero,
2004; Daumé III and Marcu, 2006)). While DA
has several setups, the focus of this work is on un-
supervised DA. In this setup we have access to un-
labeled data from the the source and the target do-
mains, but labeled data is available in the source
domain only. We believe that in the current web
era with the abundance of text from numerous do-
mains, this is the most realistic setup.

Several approaches to DA have been proposed,
for example: instance reweighting (Huang et al.,
2007; Mansour et al., 2009), sub-sampling from
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both domains (Chen et al., 2011) and learning joint
target and source feature representations (DReL),
the approach we take here. The rest of this section
hence discusses DReL work that is relevant to our
ideas, but first we describe our problem setup.

Unsupervised Domain Adaptation with DReL
The pipeline of this setup typically consists of two
steps: representation learning and classification.
In the first step, a representation model is trained
on the unlabeled data from the source and target
domains. In the second step, a classifier for the
supervised task is trained on the source domain la-
beled data. To facilitate domain adaptation, ev-
ery example that is fed to the task classifier (sec-
ond step) is first represented by the representation
model of the first step. This is true both when the
task classifier is trained and at test time when it is
applied to the target domain.

An exception of this pipeline are end-to-end
models that jointly learn to represent the data and
to perform the classification task, exploiting the
unlabeled and labeled data together. A representa-
tive member of this class of models (MSDA-DAN,
(Ganin et al., 2016)) is one of our baselines.

Pivot Based Domain Adaptation This ap-
proach was proposed by Blitzer et al. (2006,
2007), through their SCL method. Its main idea
is to divide the shared feature space of the source
and the target domains to a set of pivot features
that are frequent in both domains and have a strong
impact on the source domain task classifier, and a
complementary set of non-pivot features.

In SCL, after the original feature set is divided
into the pivot and non-pivot subsets, this divi-
sion is utilized in order to map the original fea-
ture space of both domains into a shared, low-
dimensional, real-valued feature space. To do so,
a binary classifier is defined for each of the pivot
features. This classifier takes the non-pivot fea-
tures of an input example as its representation,
and is trained on the unlabeled data from both the
source and the target domains, to predict whether
its associated pivot feature appears in the example
or not. Note that no human annotation is required
for the training of these classifiers, the supervision
signal is in the unlabeled data. The matrix whose
columns are the weight vectors of the classifiers is
post-processed with singular value decomposition
(SVD) and the derived matrix maps feature vectors
from the original space to the new.

Since the presentation of SCL, pivot-based DA
has been researched extensively (e.g. (Pan et al.,
2010; Gouws et al., 2012; Bollegala et al., 2015;
Yu and Jiang, 2016; Ziser and Reichart, 2017)).
PBLM is a pivot-based method but, in contrast to
previous models, it relies on sequential NNs to ex-
ploit the structure of the input text. Even models
such as (Bollegala et al., 2015), that embed pivots
and non-pivots so that the former can predict if the
latter appear in their neighborhood, learn a single
representation for all the occurrences of a word in
the input corpus. That is, Bollegala et al. (2015),
as well as other methods that learn cross-domain
word embeddings (Yang et al., 2017), learn word-
type representations, rather than context specific
representations. In Sec. 3 we show how PBLM’s
context specific outputs naturally feed structure
aware task classifiers such as LSTM and CNN.

AE Based Domain Adaptation The basic ele-
ments of an autoencoder are an encoder function
e and a decoder function d, and its output is a re-
construction of its input x: r(x) = d(e(x)). The
parameters of the model are trained to minimize a
loss between x and r(x), such as their Kullback-
Leibler (KL) divergence or their cross entropy.

Variants of AEs are prominent in recent DA
literature. Examples include Stacked Denoising
Autoencoders (SDA, (Vincent et al., 2008; Glo-
rot et al., 2011) and marginalized SDA (MSDA,
(Chen et al., 2012)) that is more computationally
efficient and scalable to high-dimensional feature
spaces than SDA, and has been extended in var-
ious manners (e.g. (Yang and Eisenstein, 2014;
Clinchant et al., 2016)). Finally, models based
on variational autoencoders (Kingma and Welling,
2014; Rezende et al., 2014) have recently been
applied in DA (e.g. variational fair autoencoder
(Louizos et al., 2016)), but in our experiments they
were still not competitive with MSDA.

While AE based models have set a new state-
of-the-art for DA in NLP, they are mostly based
on noise reduction in the representation and do
not exploit task specific and linguistic information.
This paved the way for ZR17 that integrated pivot-
based ideas into domain adaptation with AEs.

Combining Pivots and AEs in Domain Adapta-
tion ZR17 combined AEs and pivot-based mod-
eling for DA. Their basic model (AE-SCL) is a
three layer feed-forward network where the non-
pivot features are fed to the input layer, encoded
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into a hidden representation and this hidden rep-
resentation is then decoded into the pivot features
of the input example. Their advanced model (AE-
SCL-SR) has the same architecture but the decod-
ing matrix consists of pre-trained embeddings of
the pivot features, which encourages input docu-
ments with similar pivots to have similar hidden
representations. These embeddings are induced by
word2vec (Mikolov et al., 2013) trained with unla-
beled data from the source and the target domains.

ZR17 have demonstrated the superiority of
their models (especially, AE-SCL-SR) over SCL
(pivot-based, no AE), MSDA (AE-based, no piv-
ots) and MSDA-DAN (AE-based with adversar-
ial enhancement, no pivots) in 16 cross-domain
sentiment classification setups, including the 12
legacy setups of Blitzer et al. (2007). However,
as in previous pivot based methods, AE-SCL and
AE-SCL-SR learn a single, structure-indifferent,
feature representation of the input text. Our core
idea is to implement a pivot-based sequential neu-
ral model that exploits the structure of its input text
and that its output representations can be smoothly
integrated with structure aware classifiers such as
LSTM and CNN. Our second goal is motivated by
the strong performance of LSTM and CNN in text
classification tasks (Yogatama et al., 2017).

3 Domain Adaptation with PBLMs

We now introduce our PBLM model that learns
representations for DA. As PBLM is inspired by
language modeling, we assume the original fea-
ture set of the NLP task classifier consists of word
unigrams and bigrams. This choice of features
also allows us to directly compare our work to the
rich literature on DA for sentiment classification
where this is the standard feature set. PBLM, how-
ever, is not limited to word n-gram features.

We start with a brief description of LSTM based
language modeling (LSTM-LM, (Mikolov et al.,
2010)) and then describe how PBLM modifies that
model in order to learn pivot-based representations
that are aware of the structure of the input text. We
then show how to employ these representations in
structure aware text classification (with LSTM or
CNN) and how to train such PBLM-LSTM and
PBLM-CNN classification pipelines.

LSTM Language Modeling LSTMs address
the vanishing gradient problem commonly found
in RNNs (Elman, 1990) by incorporating gating
functions into their state dynamics (Hochreiter and

Schmidhuber, 1997). At each time step, an LSTM
maintains a hidden vector, ht, computed in a se-
quence of non-linear transformations of the input
xt and the previous hidden states h1, . . . , ht−1.

Given an input word, an LSTM-LM should pre-
dict the next word in the sequence. For a lexicon
V , the probability of the j-th word is:

p(yt = j) =
eht·Wj

∑|V |
k=1 e

ht·Wk

Here, Wi is a parameter vector learned by the net-
work for each of the words in the vocabulary. The
loss function we consider in this paper is the cross-
entropy loss over these probabilities.

very witty great story not bad overall

NONE
not 

bad
NONENONENONEgreat NONE

(a)

very witty great story not bad overall

Sentiment 

class

(b)

very witty great story not bad overall

Text matrix 

Filters 

Max-Pooling  

Sentiment 
class

FCClassification

(c)

Figure 2: (a) Second order PBLM for representa-
tion learning. (b+c) PBLM based models for DA:
PBLM-LSTM (b) and PBLM-CNN (c).

Representation Learning with PBLM Fig-
ure 2a provides an illustration of the PBLM model.
The first (bottom) layer is an embedding layer,
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where a 1-hot word vector input is multiplied by
a (randomly initialized) parameter matrix before
being passed to the next layer. The second layer is
an LSTM that predicts the next bigram or unigram
if one of these is a pivot (if both are, it predicts the
bigram). Otherwise its prediction is NONE.

PBLM operates similarly to LSTM-LM. The
basic difference between the models is the predic-
tion they make for a given input word (xt). While
an LSTM-LM aims to predict the next input word,
PBLM predicts the next word unigram or bigram
if one of these is a pivot, and NONE otherwise.

PBLM is very flexible. It can be of any order:
a k-order PBLM predicts the longest prefix of the
sequence consisting of the next k words, as long
as that prefix forms a pivot. If none of the pre-
fixes forms a pivot then PBLM predicts NONE.3

Moreover, while PBLM is defined here over word
sequences, it can be defined over other sequences,
e.g., the sentence sequence of a document.

Intuitively, in the example of fig. 2a a second or-
der model is more informative for sentiment clas-
sification than a first-order model (that predicts
only the next word unigram in case that word is
a pivot) would be. Indeed, ”not bad” conveys
the relevant sentiment-related information, while
”bad” is misleading with respect to that same sen-
timent. Notice that after the prefix ”very witty”
the model predicts ”great” and not ”great story”
because in this example ”great” is a pivot while
”great story” is not, as ”great story” is unlikely to
be frequent outside the book review domain.

Figures 2a and 1 also demonstrate a major ad-
vantage of PBLM over models that learn a single
text representation. From the book review exam-
ple in fig. 2a, PBLM learns the connection be-
tween witty - an adjective that is often used to
describe books, but not kitchen appliances - and
great - a common positive adjective in both do-
mains, and hence a pivot feature. Likewise, from
the example of fig. 1 PBLM learns the connection
between easy - an adjective that is often used to
describe kitchen appliances, but not books - and
great. That is, PBLM is able to learn the connec-
tion between witty and easy which will facilitate
adaptation between the books and kitchen appli-
ances domains. Previous work that learns a single
text representation, in contrast, would learn from
fig. 1 a connection between easy and the three piv-
ots: very excited, great and disappointed. From

3A word sequence is one of its own prefixes.

fig. 2a such a method would learn the connection
between witty and great and not bad. The connec-
tion between witty and easy will be much weaker.

Structure Aware Classification with PBLM
Representations PBLM not only exploits the
sequential nature of its input text, but its output
vectors can feed LSTM (PBLM-LSTM, fig. 2b)
and CNN (PBLM-CNN, fig. 2c) classifiers.

PBLM-LSTM is a three-layer model. The bot-
tom two layers are the PBLM model of fig. 2a.
When PBLM is combined with a classifier, its
softmax layer (top layer of fig. 2a) is cut and only
its output vectors (ht) are passed to the next LSTM
layer (third layer of fig. 2b). The final hidden vec-
tor of that layer feeds the task classifier.

Note that since we cut the PBLM softmax layer
when it is combined with the task classifier, PBLM
should be trained before this combination is per-
formed. Below we describe how we exploit this
modularity to facilitate domain adaptation.

In PBLM-CNN, the combination between the
PBLM and the CNN is similar to fig. 2b: the
PBLM’s softmax layer is cut and a matrix whose
columns are the ht vectors of the PBLM is passed
to the CNN. We employ K different filters of size
|ht|×d, each going over the input matrix in a slid-
ing window of d consecutive hidden vectors, and
generating a 1×(n−d+1) size vector, where n is
the input text length. A max pooling is performed
for each of the k vectors to generate a single 1×K
vector that is fed into the task classifier.

PBLM can feed structure aware classifiers other
than LSTM and CNN. Moreover, PBLM can also
generate a single text representation as in most
previous work. This can be done, e.g., by aver-
aging the PBLM’s hidden vectors and feeding the
averaged vector into a linear non-structured clas-
sifier (e.g. logistic regression) or a feed-forward
NN. In Sec. 5 we demonstrate that PBLM’s ability
to feed structure aware classifiers such as LSTM
and CNN provides substantial accuracy gains. To
the best of our knowledge, PBLM is unique in
its structure aware representation: previous work
generated one representation per input example.

Domain Adaptation with PBLM Representa-
tions We focus on unsupervised DA where the
input consists of a source domain labeled set and
a plentiful of unlabeled examples form the source
and the target domains. Our goal is to use the un-
labeled data as a bridge between the domains.
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Our fundamental idea is to decouple the PBLM
training which requires only unlabeled text, from
the NLP classification task which is supervised
and for which the required labeled example set is
available only for the source domain. We hence
employ a two step training procedure. First PBLM
(figure 2a) is trained with unlabeled data from
both the source and the target domains. Then the
trained PBLM is combined with the classifier lay-
ers (top layer of fig. 2b, CNN layers of fig. 2c) and
the final model is trained with the source domain
labeled data to perform the classification task. As
noted above, in the second step we cut the PBLM’s
softmax layer, only its ht vectors are passed to the
classifier. Moreover, during this step the parame-
ters of the pre-trained PBLM are held fixed, only
the parameters of the classifier layers are trained.

4 Experimental Setup
4Task and Domains Following a large body of
DA work, we experiment with the task of cross-
domain sentiment classification. To facilitate com-
parison with previous work we experiment with
the product review domains of (Blitzer et al.,
2007) – Books (B), DVDs (D), Electronic items
(E) and Kitchen appliances (K) (12 ordered do-
main pairs) – replicating the experimental setup
of ZR17 (including baselines, design, and hyper-
parameter details). For each domain there are
2000 labeled reviews, 1000 positive and 1000 neg-
ative, and unlabeled reviews: 6000 (B), 34741 (D),
13153 (E) and 16785 (K).

To consider a more challenging setup we ex-
periment with a domain consisting of user reviews
on services rather than products. We downloaded
an airline review dataset, consisting of reviews la-
beled by their authors (Nguyen, 2015). We ran-
domly sampled 1000 positive and 1000 negative
reviews for our labeled set, the remaining 39396
reviews form our unlabeled set. We hence have 4
product to airline and 4 airline to product setups.

Interestingly, in the product domains unlabeled
reviews tend to be much more positive than in the
airline domain. Particularly, in the B domain there
are 6.43 positive reviews on every negative review;
in D the ratio is 7.39 to 1; in E it is 3.65 to 1; and
in K it is 4.61 to 1. In the airline domain there are
only 1.15 positive reviews for every negative re-
view. We hence expect DA from product to airline

4The URLs of the datasets and the code (previous models
and standard packages) we used, are in Appendix A.

reviews and vice versa to be more challenging than
DA from one product review domain to another.5

Baselines We consider the following baselines:
(a) AE-SCL-SR (ZR17). We also experimented
with the more basic AE-SCL but, like in ZR17,
we got lower results in most cases; (b) SCL with
pivot features selected using the mutual informa-
tion criterion (SCL-MI, (Blitzer et al., 2007)). For
this method we used the implementation of ZR17;
(c) MSDA (Chen et al., 2012), with code taken
from the authors’ web page; (d) The MSDA-DAN
model (Ganin et al., 2016) which employs a do-
main adversarial network (DAN) with the MSDA
vectors as input. The DAN code is taken from
the authors’ repository; (e) The no domain adapta-
tion case where the sentiment classifier is trained
in the source domain and applied to the target do-
main without adaptation. For this case we consider
three classifiers: logistic regression (denoted NoSt
as it is not aware of its input’s structure), as well as
LSTM and CNN which provide a control for the
importance of the structure aware task classifiers
in PBLM models. To further control for this effect
we compare to the PBLM-NoSt model where the
PBLM output vectors (ht vectors generated after
each input word) are averaged and the averaged
vector feeds the logistic regression classifier.6

In all the participating methods, the input fea-
tures consist of word unigrams and bigrams. The
division of the feature set into pivots and non-
pivots is based on the the method of ZR17 that
followed the work of Blitzer et al. (2007) (de-
tails are in Appendix C). The sentiment classi-
fier employed with the SCL-MI, MSDA and AE-
SCL-SR representations is the same logistic re-
gression classifier as in the NoSt condition men-
tioned above. For these methods we concatenate
the representation learned by the model with the
original representation and this representation is
fed to the classifier. MSDA-DAN jointly learns
the feature representation and performs the senti-
ment classification task. It is hence fed by a con-
catenation of the original and the MSDA-induced
representations.

5While we have the labels for our unlabeled data, we did
not use them in our research except in this analysis.

6We considered several additional baselines: (1) Vari-
ational fair autoencoder (Louizos et al., 2016) which per-
formed substantially worse than the DA baselines ((a)-(d));
(2) We tried to compare to (Bollegala et al., 2015) but, sim-
ilarly to ZR17, failed to replicate their results; and (3) We
replaced PBLM with an LSTM-LM, but the results substan-
tially degraded. We do not report results for these models.
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Five Fold CV We employ a 5-fold cross-
validation protocol as in (Blitzer et al., 2007; Ziser
and Reichart, 2017). In all five folds 1600 source
domain examples are randomly selected for train-
ing data and 400 for development, such that both
the training and the development sets are balanced
and have the same number of positive and negative
reviews. The results we report are the averaged
performance of each model across these 5 folds.

Hyperparameter Tuning For all previous
models, we follow the tuning process described
in ZR17 (paper and appendices). Hyperparameter
tuning for the PBLM models and the non-adapted
CNN and LSTM is described in Appendix B.

5 Results

Overall Results Table 1 presents our results.
PBLM models with structure aware classifiers
(PBLM-LSTM and PBLM-CNN, henceforth de-
noted together as S-PBLM) outperform all other
alternatives in all 20 setups and three averaged
evaluations (All columns in the tables). The gaps
are quite substantial – the average accuracy of
PBLM-LSTM and PBLM-CNN compared to the
best baseline, AE-SCL-SR, are: 79.6% and 80.4%
vs. 78.1% for the product review setups, 85% and
84% vs. 78.7% for the product to airline (service)
review setups, and 76.1% and 76.2% vs. 68.1%
for the airline to product review setups.

S-PBLM performance in the more challenging
product to airline and airline to product setups are
particularly impressive. The challenging nature
of these setups stems from the presumably larger
differences between product and service reviews
and from the different distribution of positive and
negative reviews in the unlabeled data of both do-
mains (Sec. 4). These differences are reflected
by the lower performance of the non-adapted clas-
sifiers: an averaged accuracy of 70.6%-73.1%
across product domain pairs (three lower lines of
the All column of the top table), compared to an
average of 67.3%-69.9% across product to airline
setups and an average of 61.3%-62.4% across air-
line to product setups. Moreover, while the best
previous method (AE-SCL-SR) achieves an av-
eraged accuracy of 78.1% for product domains
and an averaged accuracy of 78.7% when adapt-
ing from product to airline reviews, when adapt-
ing from airline to product reviews its averaged
accuracy drops to 68.1%. The S-PBLM models
do consistently better in all three setups, with an
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Figure 3: PBLM loss (solid, red line) vs. sentiment
accuracy (dashed, blue line) of PBLM-CNN (top) and
PBLM-LSTM (bottom) in four representative setups.
Patterns in other setups are very similar.

averaged accuracy of 80.4%, 85% and 76.2% of
the best S-PBLM model, respectively.

Analysis of S-PBLM Strength The results shed
light on the sources of the S-PBLM models suc-
cess. The accuracy of these models, PBLM-
LSTM and PBLM-CNN, is quite similar across
setups: their accuracy gap is up to 3.1% in all
20 setups and up to 1% in the three averages (All
columns). However, the S-PBLM models sub-
stantially outperform PBLM-NoSt that employs a
structure-indifferent classifier. The averaged gaps
are 5.6% (80.4% vs. 74.8%) in the product to
product setups, 11.1% in the product to airline se-
tups (85% vs. 73.9%) and 10.9% in the airline
to product setups (76.2% vs. 65.3%). Hence, we
can safely conclude that while the integration of
PBLM with a structured task classifier has a dra-
matic impact on cross-domain accuracy, it is less
important if that classifier is an LSTM or a CNN.

Comparison with non-adapted models reveals
that structure aware modeling, as provided by
LSTM and CNN, is not sufficient for high perfor-
mance. Indeed, non-adapted LSTM and CNN do
substantially worse than S-PBLM in all setups. Fi-
nally, comparison with AE-SCL-SR demonstrates
that while the integration of pivot based learning
with NNs leads to stronger results than in any
other previous work, the structure awareness of the
S-PBLM models substantially improves accuracy.
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Product Review Domains (Blitzer et al., 2007)
Source-Target D-B E-B K-B B-D E-D K-D B-E D-E K-E B-K D-K E-K All

PBLM Models
PBLM-LSTM 80.5 70.8 73.5 82.6 77.6 78.6 74.5 80.4 85.4 80.9 83.3 87.1 79.6
PBLM-CNN 82.5 71.4 74.2 84.2 75 79.8 77.6 79.6 87.1 82.5 83.2 87.8 80.4
PBLM-NoSt 74 68.6 67.4 78.3 73.2 73.3 71.3 74.2 82.1 75.5 76.9 83.2 74.8

Previous Work Models
AE-SCL-SR 77.3 71.1 73 81.1 74.5 76.3 76.8 78.1 84 80.1 80.3 84.6 78.1
MSDA 76.1 71.9 70 78.3 71 71.4 74.6 75 82.4 78.8 77.4 84.5 75.9
MSDA-DAN 75 71 71.2 79.7 73.1 73.8 74.7 74.5 82.1 75.4 77.6 85 76.1
SCL-MI 73.2 68.5 69.3 78.8 70.4 72.2 71.9 71.5 82.2 77.2 74 82.9 74.3

No Domain Adaptation
NoSt 73.6 67.9 67.6 76 69.1 70.2 70 70.9 81.6 74 73.2 82.4 73.1
LSTM 69.2 67.9 67.5 72.8 68.1 66.2 65.9 68.3 78.2 72.1 70.5 80.6 70.6
CNN 71.2 65.6 66.5 73.6 67.1 70.8 69.6 69.7 79.9 72.7 72.6 80.6 71.6

Product and Airline Review Domains (Blitzer et al., 2007; Nguyen, 2015)
Source-Target B-A D-A E-A K-A All (P-Air) A-B A-D A-E A-K All (Air-P)

PBLM Models
PBLM-LSTM 83.7 81 87.7 87.4 85 70.3 71.1 80.5 82.6 76.1
PBLM-CNN 83.8 78.3 86.5 86.1 84 70.6 71.3 81.1 81.8 76.2
PBLM-NoSt 74.2 74.9 72.4 73.9 73.9 62.5 62 69.6 67.3 65.3

Previous Work Models
AE-SCL-SR 79.1 76.1 82.6 76.9 78.7 60.5 66 74.4 71.7 68.1
MSDA 72.2 73.3 75.1 76.8 74.3 58.5 61 70.6 69 64.8
MSDA-DAN 73.5 73.9 76.3 76.6 75 59.5 60.7 71 71.7 65.7
SCL 70.9 69 80.2 72.3 73 61.7 62.1 72.3 69.7 66.4

No Domain Adaptation
NoSt 68.5 67.6 74 69.6 69.9 57.5 59.7 67.2 65.2 62.4
LSTM 68.3 65 72.1 68.6 67.3 56.7 57.3 66.2 65 61.3
CNN 67.6 66.7 72 70 69.1 56.3 59 66 66.6 62

Table 1: Accuracy of adaption between product review domains (top table). and between product review
domains and the airline (A) review domain (bottom table). All the differences between PBLM-CNN and
AE-SCL-SR and between PBLM-LSTM and AE-SCL-SR are statistically significant (except from E-B
in the former comparison and E-B and K-B in the latter). Statistical significance is computed with the
McNemar paired test for labeling disagreements ((Gillick and Cox, 1989; Blitzer et al., 2006), p < 0.05).

Figure 3 further demonstrates the adequacy of
the PBLM architecture for domain adaptation.
The graphs demonstrate, for both S-PBLM mod-
els, a strong correlation between the PBLM cross-
entropy loss values and the sentiment accuracy
of the resulting PBLM-LSTM and PBLM-CNN
models. We show these patterns for two product
domain setups and two setups that involve a prod-
uct domain and the airline domain – the patterns
for the other setups of table 1 are very similar.

This analysis highlights our major contribution.
We have demonstrated that it is the combination
of four components that makes DA for sentiment
classification very effective: (a) Neural network
modeling; (b) Pivot based modeling; (c) Structure
awareness of the pivot-based model; and (d) Struc-
ture awareness of the task classifier.

6 Conclusions

We addressed the task of DA in NLP and presented
PBLM: a representation learning model that com-
bines pivot-based ideas and NN modeling, in a
structure aware manner. Unlike previous work,
PBLM exploits the structure of its input, and its
output consists of a vector per input word. PBLM-
LSTM and PBLM-CNN substantially outperform
strong previous models in traditional and newly
presented sentiment classification DA setups.

In future we intend to extend PBLM so that it
could deal with NLP tasks that require the predic-
tion of a linguistic structure. For example, we be-
lieve that PBLM can be smoothly integrated with
recent LSTM-based parsers (e.g. (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017)). We also intend to extend the
reach of our approach to cross-lingual setups.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. 1998. Gradient-based learn-
ing applied to document recognition. Pro-
ceedings of the IEEE 86(11):2278–2324.
https://doi.org/10.1109/5.726791.

Christos Louizos, Kevin Swersky, Yujia Li, Max
Welling, and Richard Zemel. 2016. The
variational fair autoencoder http://dblp.uni-
trier.de/rec/bib/journals/corr/LouizosSLWZ15.

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. 2009. Domain adaptation with multiple
sources. In Proc. of NIPS.

David McClosky, Eugene Charniak, and Mark
Johnson. 2010. Automatic domain adap-
tation for parsing. In Proc. of NAACL.
http://aclweb.org/anthology/N10-1004.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Interspeech. https://doi.org/10.1109/AINL-ISMW-
FRUCT.2015.7382966.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proc. of NIPS.

Quang Nguyen. 2015. The airline review dataset.
https://github.com/quankiquanki/
skytrax-reviews-dataset. Scraped from
www.airlinequality.com.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain sen-
timent classification via spectral feature alignment.
In Proceedings of the 19th international confer-
ence on World wide web. ACM, pages 751–760.
https://doi.org/10.1145/1772690.1772767.

Danilo Jimenez Rezende, Shakir Mohamed, and
Daan Wierstra. 2014. Stochastic backpropaga-
tion and approximate inference in deep genera-
tive models. In Proc. of ICML. http://dblp.uni-
trier.de/rec/bib/conf/icml/RezendeMW14.

Brian Roark and Michiel Bacchiani. 2003. Su-
pervised and unsupervised pcfg adaptation to
novel domains. In Proc. of HLT-NAACL.
http://aclweb.org/anthology/N03-1027.

Alexander M Rush, Roi Reichart, Michael Collins,
and Amir Globerson. 2012. Improved pars-
ing and pos tagging using inter-sentence consis-
tency constraints. In Proc. of EMNLP-CoNLL.
http://aclweb.org/anthology/D12-1131.

Tobias Schnabel and Hinrich Schütze. 2014. Flors:
Fast and simple domain adaptation for part-
of-speech tagging. Transactions of the Asso-
ciation for Computational Linguistics 2:15–26.
http://aclweb.org/anthology/Q/Q14/Q14-1002.pdf.

Ivan Titov. 2011. Domain adaptation by con-
straining inter-domain variability of latent
feature representation. In Proc. of ACL.
http://www.aclweb.org/anthology/P11-1007.

Pascal Vincent, Hugo Larochelle, Yoshua Ben-
gio, and Pierre-Antoine Manzagol. 2008. Ex-
tracting and composing robust features with de-
noising autoencoders. In Proc. of ICML.
https://doi.org/10.1145/1390156.1390294.

Wei Yang, Wei Lu, and Vincent Zheng. 2017. A simple
regularization-based algorithm for learning cross-
domain word embeddings. In Proc. of EMNLP.
https://www.aclweb.org/anthology/D17-1312.

Yi Yang and Jacob Eisenstein. 2014. Fast easy unsu-
pervised domain adaptation with marginalized struc-
tured dropout. In Proc. of ACL (short papers).
https://doi.org/10.3115/v1/P14-2088.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. arXiv
preprint arXiv:1703.01898 .

Jianfei Yu and Jing Jiang. 2016. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. In Proc. of EMNLP.
http://aclweb.org/anthology/D16-1023.

Yftah Ziser and Roi Reichart. 2017. Neural structural
correspondence learning for domain adaptation. In
Proc. of CoNLL. http://aclweb.org/anthology/K17-
1040.

A URLs of Code and Data

As mentioned in section 4 of the paper, we provide
here a list of URLs for the code and data we use
in the paper. We do that in order to avoid a large
number of footnotes in the main paper:

• Blitzer et al. (2007) product review
data: http://www.cs.jhu.edu/

˜mdredze/datasets/sentiment/
index2.html.

• The airline review data is (Nguyen, 2015).

• Code for the AE-SCL and AE-SCL-SR
models of ZR17 (Ziser and Reichart, 2017):
https://github.com/yftah89/
Neural-SCLDomain-Adaptation.

• Code for the SCL-MI method of Blitzer et al.
(2007): see footnote 7 (the URL does not fit
into the line width).

7https://github.com/yftah89/
structural-correspondence-learning-SCL
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• Code for MSDA (Chen et al., 2012): http:
//www.cse.wustl.edu/˜mchen.

• Code for the domain adversarial network
used as part of the MSDA-DAN baseline
(Ganin et al., 2016): https://github.
com/GRAAL-Research/domain_
adversarial_neural_network.

• Logistic regression code: http:
//scikit-learn.org/stable/.

B Hyperparameter Tuning and
Experimental Details

Hyperparameter Tuning As discussed in sec-
tion 4 of the paper, for all previous work models,
we follow the experimental setup of ZR17 (pa-
per and appendices) including their hyperparam-
eter estimation protocol. The hyperparameters of
the PBLM models and the non-adapted CNN and
LSTM are provided here. For PBLM we consid-
ered the following hyperparameteres:

• Input word embedding size:
(32, 64, 128, 256).

• Number of pivot features:
(100, 200, 300, 400, 500).

• |ht| : (128, 256, 512).
• PBLM model order: second order.

For the LSTM in PBLM-LSTM as well as the
baseline non-adapted LSTM we considered the
same |ht| and input word embedding size values
as for PBLM. For PBLM-CNN and for the base-
line, non-adapted, CNN we only experimented
with K = 250 filters and with a kernel of size
d = 3.

All the algorithms in the paper that involve a
CNN or a LSTM (including the PBLM itself) are
trained with the ADAM algorithm (Kingma and
Ba, 2015). For this algorithm we used the param-
eters described in the original ADAM article:

• Learning rate: lr = 0.001.

• Exponential decay rate for the 1st moment es-
timates: β1 = 0.9.

• Exponential decay rate for the 2nd moment
estimates: β2 = 0.999.

• Fuzz factor: ε = 1e− 08.

• Learning rate decay over each update:
decay = 0.0.

Experimental Details All sequential models
considered in our experiments are fed with one re-
view example at a time. For all models in the pa-
per, punctuation is first removed from the text be-
fore it is processed by the model (sentence bound-
aries are still encoded). This is the only pre-
precessing step we employ in the paper.

We considered several alternative implementa-
tions of the PBLM-NoSt baseline. In the vari-
ant we selected the PBLM output vectors (ht vec-
tors generated after each word of the input review)
are averaged and the averaged vector feeds a non-
structured logistic regression classifier. We also
tried to take only the final ht vector of PBLM as
an input to the classifier or to sum the ht vectors
instead of taking their average. These alternatives
gave worse results.

C Pivot Feature Selection

As mentioned in the main paper, the division of
the feature set into pivots and non-pivots is based
on the unlabeled data from both the source and the
target domains, using the method of ZR17 (which
is in turn based on (Blitzer et al., 2007)). Here we
provide the details of the pivot selection criterion.

Pivot features are frequent in the unlabeled data
of both the source and the target domains, appear-
ing at least 10 times in each, and among those fea-
tures are the ones with the highest mutual informa-
tion with the task (sentiment) label in the source
domain labeled data. For non-pivot features we
consider unigrams and bigrams that appear at least
10 times in their domain.
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