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Abstract

Many text classification tasks are known to be
highly domain-dependent. Unfortunately, the
availability of training data can vary drasti-
cally across domains. Worse still, for some
domains there may not be any annotated data
at all. In this work, we propose a multino-
mial adversarial network1 (MAN) to tackle this
real-world problem of multi-domain text clas-
sification (MDTC) in which labeled data may
exist for multiple domains, but in insufficient
amounts to train effective classifiers for one
or more of the domains. We provide theo-
retical justifications for the MAN framework,
proving that different instances of MANs are
essentially minimizers of various f-divergence
metrics (Ali and Silvey, 1966) among multi-
ple probability distributions. MANs are thus
a theoretically sound generalization of tradi-
tional adversarial networks that discriminate
over two distributions. More specifically, for
the MDTC task, MAN learns features that are
invariant across multiple domains by resort-
ing to its ability to reduce the divergence
among the feature distributions of each do-
main. We present experimental results show-
ing that MANs significantly outperform the
prior art on the MDTC task. We also show that
MANs achieve state-of-the-art performance for
domains with no labeled data.

1 Introduction

Text classification is one of the most fundamen-
tal tasks in Natural Language Processing, and has
found its way into a wide spectrum of NLP ap-
plications, ranging from email spam detection and
social media analytics to sentiment analysis and
data mining. Over the past couple of decades,
supervised statistical learning methods have be-
come the dominant approach for text classification

1The source code of MAN is available at https://
github.com/ccsasuke/man.

(e.g. McCallum et al. (1998); Kim (2014); Iyyer
et al. (2015)). Unfortunately, many text classifica-
tion tasks are highly domain-dependent in that a
text classifier trained using labeled data from one
domain is likely to perform poorly on another. In
the task of sentiment classification, for example,
the phrase “runs fast” is usually associated with
positive sentiment in the sports domain; not so
when a user is reviewing the battery of an elec-
tronic device. In real applications, therefore, an
adequate amount of training data from each do-
main of interest is typically required, and this is
expensive to obtain.

Two major lines of work attempt to tackle
this challenge: domain adaptation (Blitzer
et al., 2007) and multi-domain text classification
(MDTC) (Li and Zong, 2008). In domain adap-
tation, the assumption is that there is some do-
main with abundant training data (the source do-
main), and the goal is to utilize knowledge learned
from the source domain to help perform classifica-
tions on another lower-resourced target domain.2

The focus of this work, MDTC, instead simulates
an arguably more realistic scenario, where labeled
data may exist for multiple domains, but in insuffi-
cient amounts to train an effective classifier for one
or more of the domains. Worse still, some domains
may have no labeled data at all. The objective of
MDTC is to leverage all the available resources in
order to improve the system performance over all
domains simultaneously.

One state-of-the-art system for MDTC, the
CMSC system of Wu and Huang (2015), com-
bines a classifier that is shared across all do-
mains (for learning domain-invariant knowledge)
with a set of classifiers, one per domain, each of
which captures domain-specific text classification
knowledge. This paradigm is sometimes known

2See §6 for other variants of domain adaptation.
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as the Shared-Private model (Bousmalis et al.,
2016). CMSC, however, lacks an explicit mech-
anism to ensure that the shared classifier captures
only domain-independent knowledge: the shared
classifier may well also acquire some domain-
specific features that are useful for a subset of the
domains. We hypothesize that better performance
can be obtained if this constraint were explicitly
enforced.

In this paper, we thus propose Multinomial Ad-
versarial Networks (henceforth, MANs) for the task
of multi-domain text classification. In contrast to
standard adversarial networks (Goodfellow et al.,
2014), which serve as a tool for minimizing the
divergence between two distributions (Nowozin
et al., 2016), MANs represent a family of theoret-
ically sound adversarial networks that, in contrast,
leverage a multinomial discriminator to directly
minimize the divergence among multiple proba-
bility distributions. And just as binomial adversar-
ial networks have been applied to numerous tasks
(e.g. image generation (Goodfellow et al., 2014),
domain adaptation (Ganin et al., 2016), cross-
lingual text classification (Chen et al., 2016)), we
anticipate that MANs will make a versatile machine
learning framework with applications beyond the
MDTC task studied in this work.

We introduce the MAN architecture in §2 and
prove in §3 that it directly minimizes the (gener-
alized) f-divergence among multiple distributions
so that they are indistinguishable upon successful
training. Specifically for MDTC, MAN is used to
overcome the aforementioned limitation in prior
art where domain-specific features may sneak into
the shared model. This is accomplished by rely-
ing on MAN’s power of minimizing the divergence
among the feature distributions of each domain.
The high-level idea is that MAN will make the ex-
tracted feature distributions of each domain indis-
tinguishable from one another, thus learning gen-
eral features that are invariant across domains.

We then validate the effectiveness of MAN in
experiments on two MDTC data sets. We find
first that MAN significantly outperforms the state-
of-the-art CMSC method (Wu and Huang, 2015)
on the widely used multi-domain Amazon review
dataset, and does so without relying on external re-
sources such as sentiment lexica (§4.1). When ap-
plied to the second dataset, FDU-MTL (§4.3), we
obtain similar results: MAN achieves substantially
higher accuracy than the previous top-performing

method, ASP-MTL (Liu et al., 2017). ASP-MTL
is the first empirical attempt to use a multinomial
adversarial network for multi-task learning, but is
more restricted and can be viewed as a special case
of MAN. In addition, we provide the first theoretical
guarantees for multinomial adversarial networks
(§3). Finally, while many MDTC methods such as
CMSC require labeled data for each domain, MANs
can be applied in cases where no labeled data ex-
ists for a subset of domains. To evaluate MAN in
this semi-supervised setting, we compare MAN to a
method that can accommodate unlabeled data for
(only) one domain (Zhao et al., 2017), and show
that MAN achieves performance comparable to the
state of the art (§4.2).

2 Model

In this paper, we strive to tackle the text classifi-
cation problem in the real-world setting in which
texts come from a variety of domains, each with a
varying amount of labeled data. Specifically, as-
sume we have a total of N domains, N1 labeled
domains (denoted as �L) for which there is some
labeled data, and N2 unlabeled domains (�U ) for
which no annotated training instances are avail-
able. Denote � = �L [ �U as the collection
of all domains, with N = N1 + N2. The goal of
this work, and of MDTC in general, is to improve
the overall classification performance across all N
domains, measured in this paper as the average3

classification accuracy across the N domains in �.

2.1 Model Architecture

As shown in Figure 1, the Multinomial Adver-
sarial Network (MAN) adopts the Shared-Private
paradigm of Bousmalis et al. (2016) and consists
of four components: a shared feature extractor Fs,
a domain feature extractor Fdi for each labeled
domain di 2 �L, a text classifier C, and a domain
discriminator D. The main idea of MAN is to ex-
plicitly model the domain-invariant features that
are beneficial to the main classification task across
all domains (i.e. the shared features, extracted by
Fs), as well as the domain-specific features that
mainly contribute to the classification in its own
domain (the domain features, extracted by Fd).
Here, the adversarial domain discriminator D has
a multinomial output that takes a shared feature

3In this work, we use macro-average over domains, but
MAN can be readily adapted for micro-average or other
(weighted) averaging schemes.
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Forward and backward passes when updating the parameters of Fs, Fd and C
Forward and backward passes when updating the parameters of D

Shared 
Feature Extractor 

Domain 
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Mini-batch of documents from domain di ∈ Δ
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C

Domain 
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JD JC(if di 2 �L)

Fdi
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Figure 1: MAN for MDTC. The figure demonstrates the
training on a mini-batch of data from one domain. One
training iteration consists of one such mini-batch train-
ing from each domain. The parameters of Fs, Fd, C are
updated together, and the training flows are illustrated
by the green arrows. The parameters of D are updated
separately, shown in red arrows. Solid lines indicate
forward passes while dotted lines are backward passes.
JD

Fs
is the domain loss for Fs, which is anticorrelated

with JD (e.g. JD
Fs

= �JD). (See §2,§3)

vector and predicts the likelihood of that sample
coming from each domain. As seen in Figure 1,
during the training of Fs (green arrows denote the
training flow), Fs aims to confuse D by minimiz-
ing JD

Fs
, which is anticorrelated to JD (detailed in

§2.2), so that D cannot predict the domain of a
sample given its shared features. The intuition is
that if even a strong discriminator D cannot tell the
domain of a sample from the extracted features,
those features Fs learned are essentially domain
invariant. By enforcing domain-invariant features
to be learned by Fs, when trained jointly via back-
propagation, the set of domain feature extractors
Fd will each learn domain-specific features bene-
ficial within its own domain.

The architecture of each component is relatively
flexible, and can be decided by the practitioners
to suit their particular classification tasks. For in-
stance, the feature extractors can adopt the form
of Convolutional Neural Nets (CNN), Recurrent
Neural Nets (RNN), or a Multi-Layer Perceptron
(MLP), depending on the input data (see §4). The
input of MAN will also be dependent on the feature

Algorithm 1 MAN Training
Require: labeled corpus X; unlabeled corpus U; Hyperpa-

mameter � > 0, k 2 N
1: repeat
2: . D iterations
3: for diter = 1 to k do
4: lD = 0

5: for all d 2 � do . For all N domains
6: Sample a mini-batch x ⇠ Ud

7: fs = Fs(x) . Shared feature vector
8: lD += JD(D(fs); d) . Accumulate D loss
9: Update D parameters using rlD

10: . Main iteration
11: loss = 0

12: for all d 2 �L do . For all labeled domains
13: Sample a mini-batch (x, y) ⇠ Xd

14: fs = Fs(x)

15: fd = Fd(x) . Domain feature vector
16: loss += JC(C(fs, fd); y) . Compute C loss
17: for all d 2 � do . For all N domains
18: Sample a mini-batch x ⇠ Ud

19: fs = Fs(x)

20: loss += � · JD

Fs
(D(fs); d) . Domain loss of Fs

21: Update Fs, Fd, C parameters using rloss
22: until convergence

extractor choice. The output of a (shared/domain)
feature extractor is a fixed-length vector, which is
considered the (shared/domain) hidden features of
some given input text. On the other hand, the out-
puts of C and D are label probabilities for class
and domain prediction, respectively. For example,
both C and D can be MLPs with a softmax layer on
top. In §3, we provide alternative architectures for
D and their mathematical implications. We now
present a detailed description of the MAN training
in §2.2 as well as the theoretical grounds in §3.

2.2 Training

Denote the annotated corpus in a labeled domain
di 2 �L as Xi; and (x, y) ⇠ Xi is a sample drawn
from the labeled data in domain di, where x is the
input and y is the task label. On the other hand, for
any domain di0 2 �, denote the unlabeled corpus
as Ui0 . Note for the choice of unlabeled data of a
labeled domain, one can use a separate unlabeled
corpus or simply use the labeled data (or use both).

In Figure 1, the arrows illustrate the training
flows of various components. Due to the adver-
sarial nature of the domain discriminator D, it
is trained with a separate optimizer (red arrows),
while the rest of the networks are updated with the
main optimizer (green arrows). C is only trained
on the annotated data from labeled domains, and it
takes as input the concatenation of the shared and
domain feature vectors. At test time, for data from
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unlabeled domains with no Fd, the domain fea-
tures are set to the 0 vector for C’s input. On the
contrary, D only takes the shared features as input,
for both labeled and unlabeled domains. The MAN
training procedure is described in Algorithm 1.

In Algorithm 1, LC and LD are the loss func-
tions of the text classifier C and the domain dis-
criminator D, respectively. As mentioned in §2.1,
C has a softmax layer on top for classifica-
tion. We hence adopt the canonical negative log-
likelihood (NLL) loss:

LC(ŷ, y) = � log P (ŷ = y) (1)

where y is the true label and ŷ is the softmax
predictions. For D, we consider two variants of
MAN. The first one is to use the NLL loss same
as C which suits the classification task; while an-
other option is to use the Least-Square (L2) loss
that was shown to be able to alleviate the gradient
vanishing problem when using the NLL loss in the
adversarial setting (Mao et al., 2017):

LNLL
D (d̂, d) = � log P (d̂ = d) (2)

LL2

D (d̂, d) =
NX

i=1

(d̂i � {d=i})
2 (3)

where d is the domain index of some sample and
d̂ is the prediction. Without loss of generality, we
normalize d̂ so that

PN
i=1

d̂i = 1 and 8i : d̂i � 0.
Therefore, the objectives of C and D that we are

minimizing are:

JC =
NX

i=1

E
(x,y)⇠Xi

[LC(C(Fs(x), Fd(x)); y)] (4)

JD =
NX

i=1

E
x⇠Ui

[LD(D(Fs(x)); d)] (5)

For the feature extractors, the training of do-
main feature extractors is straightforward, as their
sole objective is to help C perform better within
their own domain. Hence, JFd = JC for any do-
main d. Finally, the shared feature extractor Fs

has two objectives: to help C achieve higher accu-
racy, and to make the feature distribution invariant
across all domains. It thus leads to the following
bipartite loss:

JFs = JC

Fs
+ � · JD

Fs

where � is a hyperparameter balancing the two
parts. JD

Fs
is the domain loss of Fs anticorrelated

to JD:

(NLL)JD

Fs
= �JD (6)

(L2)JD

Fs
=

NX

i=1

E
x⇠Ui

2

4
NX

j=1

(Dj(Fs(x)) � 1

N
)2

3

5

(7)

If D adopts the NLL loss (6), the domain loss is
simply �JD. For the L2 loss (7), JD

Fs
intuitively

translates to pushing D to make random predic-
tions. See §3 for theoretical justifications.

3 Theories of Multinomial Adversarial
Networks

Binomial adversarial nets are known to have
theoretical connections to the minimization of
various f-divergences4 between two distribu-
tions (Nowozin et al., 2016). However, for ad-
versarial training among multiple distributions, no
theoretical justifications have been provided to our
best knowledge, despite that this idea has recently
been explored empirically (Liu et al., 2017).

In this section, we present a theoretical analy-
sis showing the validity of MAN. In particular, we
show that MAN’s objective is equivalent to mini-
mizing the total f-divergence between each of the
shared feature distributions of the N domains, and
the centroid of the N distributions. The choice
of loss function will determine which specific f-
divergence is minimized. Furthermore, with ade-
quate model capacity, MAN achieves its optimum
for either loss function if and only if all N shared
feature distributions are identical, hence learning
an invariant feature space across all domains.

First, consider the distribution of the shared fea-
tures f for instances in each domain di 2 �:

Pi(f) , P (f = Fs(x)|x 2 di) (8)

Combining (5) with the two loss functions (2),
(3), the objective of D can be written as:

JNLL
D = �

NX

i=1

E
f⇠Pi

[log Di(f)] (9)

JL2

D =
NX

i=1

E
f⇠Pi

2

4
NX

j=1

(Dj(f) � {i=j})
2

3

5

(10)
4An f-divergence (Ali and Silvey, 1966) is a function that

measures the distance between two probability distributions,
e.g. the KL or Jensen-Shannon divergence.
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where Di(f) is the i-th dimension of D’s (nor-
malized) output vector, which conceptually corre-
sponds to the probability of D predicting that f is
from domain di

We first derive the optimal D for any fixed Fs.

Lemma 1. For any fixed Fs, with either NLL or
L2 loss, the optimum domain discriminator D⇤ is:

D⇤

i (f) =
Pi(f)PN

j=1
Pj(f)

(11)

The proof involves an application of the La-
grangian Multiplier to solve the minimum value
of JD, and the details can be found in the Ap-
pendix. We then have the following main theo-
rems for the domain loss for Fs:

Theorem 1. Let P =
PN

i=1 Pi

N . When D is trained
to its optimality, if D adopts the NLL loss:

JD

Fs
= � min

✓D

JD = �JD⇤

= �N log N + N · JSD(P1, P2, . . . , PN )

= �N log N +
NX

i=1

KL(PikP )

where JSD(·) is the generalized Jensen-Shannon
Divergence (Lin, 1991) among multiple distribu-
tions, defined as the average Kullback-Leibler di-
vergence of each Pi to the centroid P (Aslam and
Pavlu, 2007).

Theorem 2. If D uses the L2 loss:

JD

Fs
=

NX

i=1

E
f⇠Pi

2

4
NX

j=1

(D⇤

j (f) � 1

N
)2

3

5

=
1

N

NX

i=1

�2

Neyman(PikP )

where �2

Neyman
(·k·) is the Neyman �2 diver-

gence (Nielsen and Nock, 2014). The proof of
both theorems can be found in the Appendix.

Consequently, by the non-negativity and joint
convexity of the f-divergence (Csiszar and Korner,
1982), we have:

Corollary 1. The optimum of JD

Fs
is �N log N

when using NLL loss, and 0 for the L2 loss. The
optimum value above is achieved if and only if
P1 = P2 = · · · = PN = P for either loss.

Therefore, the loss of Fs can be interpreted as
simultaneously minimizing the classification loss

Book DVD Elec. Kit. Avg.
Domain-Specific Models Only

LS 77.80 77.88 81.63 84.33 80.41
SVM 78.56 78.66 83.03 84.74 81.25
LR 79.73 80.14 84.54 86.10 82.63

MLP 81.70 81.65 85.45 85.95 83.69
Shared Model Only

LS 78.40 79.76 84.67 85.73 82.14
SVM 79.16 80.97 85.15 86.06 82.83
LR 80.05 81.88 85.19 86.56 83.42

MLP 82.40 82.15 85.90 88.20 84.66
MAN-L2-MLP 82.05 83.45 86.45 88.85 85.20
MAN-NLL-MLP 81.85 83.10 85.75 89.10 84.95

Shared-Private Models
RMTL1 81.33 82.18 85.49 87.02 84.01

MTLGraph2 79.66 81.84 83.69 87.06 83.06
CMSC-LS3 82.10 82.40 86.12 87.56 84.55

CMSC-SVM3 82.26 83.48 86.76 88.20 85.18
CMSC-LR3 81.81 83.73 86.67 88.23 85.11
SP-MLP 82.00 84.05 86.85 87.30 85.05

MAN-L2-SP-MLP 82.46
(±0.25)

83.98
(±0.17)

87.22*
(±0.04)

88.53
(±0.19)

85.55*
(±0.07)

MAN-NLL-SP-MLP 82.98*
(±0.28)

84.03
(±0.16)

87.06
(±0.23)

88.57*
(±0.15)

85.66*
(±0.14)

1 Evgeniou and Pontil (2004)
2 Zhou et al. (2011)
3 Wu and Huang (2015)

Table 1: MDTC results on the Amazon dataset. Mod-
els in bold are ours while the performance of the rest is
taken from Wu and Huang (2015). Numbers in paren-
theses indicate standard errors, calculated based on 5
runs. Bold numbers indicate the highest performance
in each domain, and ⇤ shows statistical significance
(p < 0.05) over CMSC under a one-sample T-Test.

JC as well as the divergence among feature distri-
butions of all domains. It can thus learn a shared
feature mapping that is invariant across domains
upon successful training while being beneficial to
the main classification task.

4 Experiments

4.1 Multi-Domain Text Classification

In this experiment, we compare MAN to state-of-
the-art MDTC systems on the multi-domain Ama-
zon review dataset (Blitzer et al., 2007), which is
one of the most widely used MDTC datasets. Note
that this dataset was already preprocessed into a
bag of features (unigrams and bigrams), losing all
word order information. This prohibits the use of
CNNs or RNNs as feature extractors, limiting the
potential performance of the system. Nonetheless,
we adopt the same dataset for fair comparison and
employ a MLP as our feature extractor. In par-
ticular, we take the 5000 most frequent features
and represent each review as a 5000d feature vec-
tor, where feature values are raw counts of the fea-
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tures. Our MLP feature extractor would then have
an input size of 5000 in order to process the re-
views.

The Amazon dataset contains 2000 samples for
each of the four domains: book, DVD, electron-
ics, and kitchen, with binary labels (positive, neg-
ative). Following Wu and Huang (2015), we con-
duct 5-way cross validation. Three out of the five
folds are treated as the training set, one serves as
the validation set, while the remaining is the test
set. The 5-fold average test accuracy is reported.

Table 1 shows the main results. Three types of
models are shown: Domain-Specific Models Only,
where only in-domain models are trained5; Shared
Model Only, where a single model is trained with
all data; and Shared-Private Models, a combina-
tion of the previous two. Within each category,
various architectures are examined, such as Least
Square (LS), SVM, and Logistic Regression (LR).
As explained before, we use MLP as our feature
extractors for all our models (bold ones). Among
our models, the ones with the MAN prefix use ad-
versarial training, and MAN-L2 and MAN-NLL in-
dicate MAN with the L2 loss and the NLL loss, re-
spectively.

From Table 1, we can see that by adopting mod-
ern deep neural networks, our methods achieve su-
perior performance within the first two model cat-
egories even without adversarial training. This is
corroborated by the fact that our SP-MLP model
performs comparably to CMSC, while the latter
relies on external resources such as sentiment lex-
ica. Moreover, when our multinomial adversar-
ial nets are introduced, further improvement is
observed. With both loss functions, MAN out-
performs all Shared-Private baseline systems on
each domain, and achieves statistically signifi-
cantly higher overall performance. For our MAN-
SP models, we provide the mean accuracy as well
as the standard errors over five runs, to illustrate
the performance variance and conduct significance
tests. It can be seen that MAN’s performance
is relatively stable, and consistently outperforms
CMSC.

4.2 Experiments for Unlabeled Domains

As CMSC requires labeled data for each domain,
their experiments were naturally designed this
way. In reality, however, many domains may not

5For our models, it means Fs is disabled. Similarly, for
Shared Model Only, no Fd is used.

Target Domain Book DVD Elec. Kit. Avg.
MLP 76.55 75.88 84.60 85.45 80.46

mSDA1 76.98 78.61 81.98 84.26 80.46
DANN2 77.89 78.86 84.91 86.39 82.01

MDAN (H-MAX)3 78.45 77.97 84.83 85.80 81.76
MDAN (S-MAX)3 78.63 80.65 85.34 86.26 82.72
MAN-L2-SP-MLP 78.45 81.57 83.37 85.57 82.24
MAN-NLL-SP-MLP 77.78 82.74 83.75 86.41 82.67

1 Chen et al. (2012)
2 Ganin et al. (2016)
3 Zhao et al. (2017)

Table 2: Results on unlabeled domains. Models in bold
are our models while the rest is taken from Zhao et al.
(2017). Highest domain performance is shown in bold.

have any annotated corpora available. It is there-
fore also important to look at the performance
in these unlabeled domains for a MDTC system.
Fortunately, as depicted before, MAN’s adversarial
training only utilizes unlabeled data from each do-
main to learn the domain-invariant features, and
can thus be used on unlabeled domains as well.
During testing, only the shared feature vector is
fed into C, while the domain feature vector is set
to 0.

In order to validate MAN’s effectiveness, we
compare to state-of-the-art multi-source domain
adaptation (MS-DA) methods (see §6). Compared
to standard domain adaptation methods with one
source and one target domain, MS-DA allows the
adaptation from multiple source domains to a sin-
gle target domain. Analogically, MDTC can be
viewed as multi-source multi-target domain adap-
tation, which is superior when multiple target do-
mains exist. With multiple target domains, MS-
DA will need to treat each one as an independent
task, which is more expensive and cannot utilize
the unlabeled data in other target domains.

In this work, we compare MAN with one re-
cent MS-DA method, MDAN (Zhao et al., 2017).
Their experiments only have one target domain
to suit their approach, and we follow this setting
for fair comparison. However, it is worth not-
ing that MAN is designed for the MDTC setting,
and can deal with multiple target domains at the
same time, which can potentially improve the per-
formance by taking advantage of more unlabeled
data from multiple target domains during adver-
sarial training. We adopt the same setting as Zhao
et al. (2017), which is based on the same multi-
domain Amazon review dataset. Each of the four
domains in the dataset is treated as the target do-
main in four separate experiments, while the re-
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books elec. dvd kitchen apparel camera health music toys video baby magaz. softw. sports IMDb MR Avg.
Domain-Specific Models Only

BiLSTM 81.0 78.5 80.5 81.2 86.0 86.0 78.7 77.2 84.7 83.7 83.5 91.5 85.7 84.0 85.0 74.7 82.6
CNN 85.3 87.8 76.3 84.5 86.3 89.0 87.5 81.5 87.0 82.3 82.5 86.8 87.5 85.3 83.3 75.5 84.3

Shared Model Only
FS-MTL 82.5 85.7 83.5 86.0 84.5 86.5 88.0 81.2 84.5 83.7 88.0 92.5 86.2 85.5 82.5 74.7 84.7

MAN-L2-CNN 88.3 88.3 87.8 88.5 85.3 90.5 90.8 85.3 89.5 89.0 89.5 91.3 88.3 89.5 88.5 73.8 87.7
MAN-NLL-CNN 88.0 87.8 87.3 88.5 86.3 90.8 89.8 84.8 89.3 89.3 87.8 91.8 90.0 90.3 87.3 73.5 87.6

Shared-Private Models
ASP-MTL 84.0 86.8 85.5 86.2 87.0 89.2 88.2 82.5 88.0 84.5 88.2 92.2 87.2 85.7 85.5 76.7 86.1

MAN-L2-SP-CNN 87.6* 87.4 88.1* 89.8* 87.6 91.4* 89.8* 85.9* 90.0* 89.5* 90.0 92.5 90.4* 89.0* 86.6 76.1 88.2*
(0.2) (1.0) (0.4) (0.4) (0.7) (0.4) (0.3) (0.1) (0.1) (0.2) (0.6) (0.5) (0.4) (0.4) (0.5) (0.5) (0.1)

MAN-NLL-SP-CNN 86.8* 88.8 88.6* 89.9* 87.6 90.7 89.4 85.5* 90.4* 89.6* 90.2 92.9 90.9* 89.0* 87.0* 76.7 88.4*
(0.4) (0.6) (0.4) (0.4) (0.4) (0.4) (0.3) (0.1) (0.2) (0.3) (0.6) (0.4) (0.7) (0.2) (0.1) (0.8) (0.1)

Table 3: Results on the FDU-MTL dataset. Bolded models are ours, while the rest is from Liu et al. (2017). High-
est performance is each domain is highlighted. For our full MAN models, standard errors are shown in parenthese
and statistical significance (p < 0.01) over ASP-MTL is indicated by *.

maining three are used as source domains.
In Table 2, the target domain is shown on top,

and the test set accuracy is reported for various
systems. It shows that MAN outperforms several
baseline systems, such as a MLP trained on the
source-domains, as well as single-source domain
adaptation methods such as mSDA (Chen et al.,
2012) and DANN (Ganin et al., 2016), where the
training data in the multiple source domains are
combined and viewed as a single domain. Finally,
when compared to MDAN, MAN and MDAN each
achieves higher accuracy on two out of the four
target domains, and the average accuracy of MAN
is similar to MDAN. Therefore, MAN achieves
competitive performance for the domains without
annotated corpus. Nevertheless, unlike MS-DA
methods, MAN can handle multiple target domains
at one time.

4.3 Experiments on the MTL Dataset

To make fair comparisons, the previous experi-
ments follow the standard settings in the literature,
where the widely adopted Amazon review dataset
is used. However, this dataset has a few limita-
tions. First, it has only four domains. In addition,
the reviews are already tokenized and converted to
a bag of features consisting of unigrams and bi-
grams. Raw review texts are hence not available
in this dataset, making it impossible to use certain
modern neural architectures such as CNNs and
RNNs. To provide more insights on how well MAN
works with other feature extractor architectures,
we provide a third set of experiments on the FDU-
MTL dataset (Liu et al., 2017). This dataset is cre-
ated as a multi-task learning dataset with 16 tasks,
where each task is essentially a different domain of
reviews. It has 14 Amazon domains: books, elec-

tronics, DVD, kitchen, apparel, camera, health,
music, toys, video, baby, magazine, software, and
sports, in addition to two movie review domains
from the IMDb and the MR datasets. Each domain
has a development set of 200 samples, and a test
set of 400 samples. The amount of training and un-
labeled data vary across domains but are roughly
1400 and 2000, respectively.

We compare MAN with ASP-MTL (Liu et al.,
2017) on this FDU-MTL dataset. ASP-MTL also
adopts adversarial training for learning a shared
feature space, and can be viewed as a special
case of MAN that adopts the NLL loss (MAN-NLL)
and chooses LSTM as their feature extractor. In
contrast, we found a CNN-based feature extrac-
tor (Kim, 2014) achieves much better accuracy
while being ⇠ 10 times faster. Indeed, as shown in
Table 3, with or without adversarial training, our
CNN models outperform LSTM ones by a large
margin. When used in our MAN framework, we at-
tain the state-of-the-art performance on every do-
main with a 88.4% overall accuracy, surpassing
ASP-MTL by a significant margin of 2.3%.

We hypothesize the reason a LSTM performs
much worse than a CNN is its lack of an atten-
tion mechanism. In ASP-MTL, only the last hid-
den unit is taken as the extracted features. While
LSTMs are effective for representing the context
for each token, it might not be powerful enough
for directly encoding the entire document (Bah-
danau et al., 2015). Therefore, various atten-
tion mechanisms have been introduced on top
of the vanilla LSTM to select words (and con-
texts) most relevant for making the predictions.
In our preliminary experiments, we find that a
Bi-directional LSTM with the dot-product atten-
tion (Luong et al., 2015) yields better performance
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than the vanilla LSTM in ASP-MTL. However, it
still does not outperform CNN and is much slower.
As a result, we conclude that, for text classifica-
tion tasks, CNN is both effective and efficient in
extracting local and higher-level features for mak-
ing a single categorization.

Finally, we observe that MAN-NLL achieves
slightly higher overall performance compared to
MAN-L2, providing evidence for the claim in a re-
cent study (Lucic et al., 2017) that the original
GAN loss (NLL) may not be inherently inferior
to the L2 loss. Moreover, the two variants excel
in different domains, suggesting the possibility of
further performance gain when using ensemble.

5 Implementation Details

For all three of our experiments, we use � = 0.05
and k = 5 (See Algorithm 1). For both optimiz-
ers, Adam (Kingma and Ba, 2015) is used with
learning rate 0.0001. The size of the shared fea-
ture vector is set to 128 while that of the domain
feature vector is 64. Dropout of p = 0.4 is used
in all components. C and D each has one hidden
layer of the same size as their input (128 + 64 for
C and 128 for D). ReLU is used as the activation
function. Batch normalization (Ioffe and Szegedy,
2015) is used in both C and D but not F . We use
a batch size of 8.

For our first two experiments on the Amazon
review dataset, the MLP feature extractor is used.
As described in §4.1, it has an input size of 5000.
Two hidden layers are used, with size 1000 and
500, respectively.

For the CNN feature extractor used in the FDU-
MTL experiment, a single convolution layer is
used. The kernel sizes are 3, 4, and 5, and the num-
ber of kernels are 200. The convolution layers take
as input the 100d word embeddings of each word
in the input sequence. We use word2vec word em-
beddings (Mikolov et al., 2013) trained on a bunch
of unlabeled raw Amazon reviews (Blitzer et al.,
2007). After convolution, the outputs go through
a ReLU layer before fed into a max pooling layer.
The pooled output is then fed into a single fully
connected layer to be converted into a feature vec-
tor of size either 128 or 64. More details of us-
ing CNN for text classification can be found in the
original paper (Kim, 2014). MAN is implemented
using PyTorch (Paszke et al., 2017).

6 Related Work

Multi-Domain Text Classification The MDTC
task was first examined by Li and Zong (2008),
who proposed to fuse the training data from multi-
ple domains either at the feature level or the classi-
fier level. The prior art of MDTC (Wu and Huang,
2015) decomposes the text classifier into a gen-
eral one and a set of domain-specific ones. How-
ever, the general classifier is learned by param-
eter sharing and domain-specific knowledge may
sneak into it. They also require external resources
to help improve accuracy and compute domain
similarities.

Domain Adaptation Domain Adaptation at-
tempts to transfer the knowledge from a source
domain to a target one, and the traditional form
is the single-source, single-target (SS,ST) adapta-
tion (Blitzer et al., 2006). Another variant is the
SS,MT adaptation (Yang and Eisenstein, 2015),
which tries to simultaneously transfer the knowl-
edge to multiple target domains from a single
source. However, it cannot fully take advantage
the training data if it comes from multiple source
domains. MS,ST adaptation (Mansour et al.,
2009; Zhao et al., 2017) can deal with multiple
source domains but only transfers to a single target
domain. Therefore, when multiple target domains
exist, they need to treat them as independent prob-
lems, which is more expensive and cannot utilize
the additional unlabeled data in these domains. Fi-
nally, MDTC can be viewed as MS,MT adapta-
tion, which is arguably more general and realistic.

Adversarial Networks The idea of adversar-
ial networks was proposed by Goodfellow et al.
(2014) for image generation, and has been applied
to various NLP tasks as well (Chen et al., 2016; Yu
et al., 2017). Ganin et al. (2016) first used it for
the SS,ST domain adaptation followed by many
others. Bousmalis et al. (2016) utilized adversar-
ial training in a shared-private model for domain
adaptation to learn domain-invariant features, but
still focused on the SS,ST setting. Finally, the idea
of using adversarial nets to discriminate over mul-
tiple distributions was empirically explored by a
very recent work (Liu et al., 2017) under the multi-
task learning setting, and can be considered as a
special case of our MAN framework with the NLL
domain loss. We propose MAN as a more gen-
eral framework with alternative architectures for
the adversarial component, and for the first time
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provide theoretical justifications the multinomial
adversarial nets. Moreover, Liu et al. (2017) used
a LSTM without attention as their feature extrac-
tor, which we found to perform sub-optimal in
the experiments. We instead chose Convolutional
Neural Nets as our feature extractor that achieves
higher accuracy while running an order of magni-
tude faster (see §4.3).

7 Conclusion

In this work, we propose a family of Multinomial
Adversarial Networks (MANs) that generalize the
traditional binomial adversarial nets in the sense
that MAN can simultaneously minimize the differ-
ence among multiple probability distributions in-
stead of just two. We provide theoretical justifi-
cations for two instances of MAN, MAN-NLL and
MAN-L2, showing they are minimizers of two dif-
ferent f-divergence metrics among multiple distri-
butions, respectively. This indicates MAN can be
used to make multiple distributions indistinguish-
able from one another. It can hence be applied to
a variety of tasks, similar to the versatile binomial
adversarial nets, which have been used in many
areas for making two distributions alike.

In this paper, we design a MAN model for
the MDTC task, following the shared-private
paradigm that has a shared feature extractor to
learn domain-invariant features and domain fea-
ture extractors to learn domain-specific ones. MAN
is used to enforce the shared feature extractor to
learn only domain-invariant knowledge, by resort-
ing to MAN’s power of making indistinguishable
the shared feature distributions of samples from
each domain. We conduct extensive experiments,
demonstrating our MAN model outperforms the
prior art systems in MDTC, and achieves state-of-
the-art performance on domains without labeled
data when compared to multi-source domain adap-
tation methods.
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Costeira, José M. F. Moura, and Geoffrey J. Gor-
don. 2017. Multiple source domain adaptation with
adversarial training of neural networks. Comput-
ing Research Repository arXiv:1705.09684. http:
//arxiv.org/abs/1705.09684.

J. Zhou, J. Chen, and J. Ye. 2011. MAL-
SAR: Multi-tAsk Learning via StructurAl
Regularization. Arizona State University.
http://www.public.asu.edu/˜jye02/
Software/MALSAR.

1236



Appendix A Proofs

A.1 Proofs for MAN-NLL
Assume we have N domains, consider the distribution of the shared features Fs for instances in each
domain di:

Pi(f) , P (f = Fs(x)|x 2 di)

The objective that D attempts to minimize is:

JD = �
NX

i=1

E
f⇠Pi

[log Di(f)] (12)

where Di(f) is the i-th dimension of D’s output vector, which conceptually corresponds to the softmax
probability of D predicting that f is from domain di. We therefore have property that for any f :

NX

i=1

Di(f) = 1 (13)

Lemma 1. For any fixed Fs, the optimum domain discriminator D⇤ is:

D⇤

i (f) =
Pi(f)PN

j=1
Pj(f)

(14)

Proof. For a fixed Fs, the optimum

D⇤ = arg min
D

JD = arg min
D

�
NX

i=1

E
f⇠Pi

[log Di(f)]

= arg max
D

NX

i=1

Z

f

Pi(f) log Di(f)df

= arg max
D

Z

f

NX

i=1

Pi(f) log Di(f)df

We employ the Lagrangian Multiplier to derive arg maxD

PN
i=1

Pi(f) log Di(f) under the constraint of
(13). Let

L(D1, . . . , DN , �) =
NX

i=1

Pi log Di � �(
NX

i=1

Di � 1)

Let rL = 0:
(

rDi

PN
j=1

Pj log Dj = �rDi(
PN

j=1
Dj � 1) (8i)

PN
i=1

Di � 1 = 0

Solving the two equations, we have:

D⇤

i (f) =
Pi(f)PN

j=1
Pj(f)

On the other hand, the loss function of the shared feature extractor Fs consists of two additive com-
ponents, the loss from the text classifier C, and the loss from the domain discriminator D:

JFs = JC

Fs
+ �JD

Fs
, JC � �JD (15)

We have the following theorem for the domain loss for Fs:
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Theorem 1. When D is trained to its optimality:

JD
Fs

= �JD⇤ = �N log N + N · JSD(P1, P2, . . . , PN ) (16)

where JSD(·) is the generalized Jensen-Shannon Divergence (Lin, 1991) among multiple distribu-
tions.

Proof. Let P =
PN

i=1 Pi

N .
There are two equivalent definitions of the generalized Jensen-Shannon divergence: the original def-

inition based on Shannon entropy (Lin, 1991), and a reshaped one expressed as the average Kullback-
Leibler divergence of each Pi to the centroid P (Aslam and Pavlu, 2007). We adopt the latter one here:

JSD(P1, P2, . . . , PN ) ,
1

N

NX

i=1

KL(PikP ) =
1

N

NX

i=1

E
f⇠Pi


log

Pi(f)

P (f)

�
(17)

Now substituting D⇤ into JD

Fs
:

JD

Fs
= �JD⇤ =

NX

i=1

E
f⇠Pi

[log D⇤

i (f)]

=
NX

i=1

E
f⇠Pi

"
log

Pi(f)PN
j=1

Pj(f)

#

= �N log N +
NX

i=1

E
f⇠Pi

"
log

Pi(f)PN
j=1

Pj(f)
+ log N

#

= �N log N +
NX

i=1

E
f⇠Pi

2

4log
Pi(f)

PN
j=1 Pj(f)

N

3

5

= �N log N +
NX

i=1

E
f⇠Pi


log

Pi(f)

P

�

= �N log N +
NX

i=1

KL(PikP )

= �N log N + N · JSD(P1, P2, . . . , PN )

Consequently, by the non-negativity of JSD (Lin, 1991), we have the following corollary:

Corollary 1. The optimum of JD

Fs
is �N log N , and is achieved if and only if P1 = P2 = · · · = PN = P .

A.2 Proofs for MAN-L2
The proof is similar for MAN with the L2 loss. The loss function used by D is, for a sample from domain
di with shared feature vector f :

LD(D(f), i) =
NX

j=1

(Dj(f) � {i=j})
2 (18)

So the objective that D minimizes is:

JD =
NX

i=1

E
f⇠Pi

2

4
NX

j=1

(Dj(f) � {i=j})
2

3

5 (19)
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For simplicity, we further constrain D’s outputs to be on a simplex:

NX

i=1

Di(f) = 1 (8f) (20)

Lemma 2. For any fixed Fs, the optimum domain discriminator D⇤ is:

D⇤

i (f) =
Pi(f)PN

j=1
Pj(f)

(21)

Proof. For a fixed Fs, the optimum

D⇤ = arg min
D

JD = arg min
D

NX

i=1

E
f⇠Pi

[LD(D(f), i)]

= arg min
D

NX

i=1

Z

f

Pi(f)LD(D(f), i)df

= arg min
D

Z

f

NX

i=1

Pi(f)
NX

j=1

(Dj(f) � {i=j})
2df

Similar to MAN-NLL, we employ the Lagrangian Multiplier to derive
arg maxD

PN
i=1

Pi(f)
PN

j=1
(Dj(f) � {i=j})

2 under the constraint of (20). Let rL = 0:

(
2((

PN
j=1

Pj)Di � Pi) = � (8i)
PN

i=1
Di � 1 = 0

Solving the two equations, we have � = 0 and:

D⇤

i (f) =
Pi(f)PN

j=1
Pj(f)

For the domain loss of Fs:

Theorem 2. Let P =
PN

i=1 Pi

N . When D is trained to its optimality:

JD

Fs
=

NX

i=1

E
f⇠Pi

2

4
NX

j=1

(Dj(f) � 1

N
)2

3

5

=
1

N

NX

i=1

�2

Neyman(PikP ) (22)

where �2

Neyman
(·k·) is the Neyman �2 divergence (Nielsen and Nock, 2014).

1239



Proof. Substituting D⇤ into LD

Fs
:

JD

Fs
=

NX

i=1

E
f⇠Pi

2

4
NX

j=1

(D⇤

j (f) � 1

N
)2

3

5

=
NX

i=1

Z

f

Pi

NX

j=1

(
Pj

NP
� 1

N
)2df

=

Z

f

NX

i=1

NX

j=1

Pi(
Pj

NP
� 1

N
)2df

=
1

N2

NX

j=1

Z

f

NX

i=1

Pi(
Pj

P
� 1)2df

=
1

N2

NX

j=1

Z

f

NP (
Pj

P
� 1)2df

=
1

N

NX

j=1

Z

f

(Pj � P )2

P
df

=
1

N

NX

i=1

�2

Neyman(PikP )

Finally, by the joint convexity of f-divergence, we have the following corollary:

Corollary 2.

LD

Fs
=

1

N

NX

i=1

�2

Neyman(PikP )

� �2

Neyman(
1

N

NX

i=1

Pik
1

N

NX

i=1

P )

= �2

Neyman(PkP ) = 0

and the equality is attained if and only if P1 = P2 = · · · = PN = P .
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