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Abstract
User-generated text tends to be noisy with
many lexical and orthographic inconsistencies,
making natural language processing (NLP)
tasks more challenging. The challenging na-
ture of noisy text processing is exacerbated for
dialectal content, where in addition to spelling
and lexical differences, dialectal text is char-
acterized with morpho-syntactic and phonetic
variations. These issues increase sparsity in
NLP models and reduce accuracy. We present
a neural morphological tagging and disam-
biguation model for Egyptian Arabic, with
various extensions to handle noisy and incon-
sistent content. Our models achieve about
5% relative error reduction (1.1% absolute im-
provement) for full morphological analysis,
and around 22% relative error reduction (1.8%
absolute improvement) for part-of-speech tag-
ging, over a state-of-the-art baseline.

1 Introduction

There has been a growing interest in noise-robust
NLP tools recently, motivated by the sheer mag-
nitude of user-generated content in social media
platforms. The noisy nature of user-generated
content makes its processing very challenging for
NLP tools. Noisy content is non-canonical in na-
ture, with lexical, orthographic, and phonetic vari-
ations that increase the perplexity and sparsity of
NLP models. Several contributions show consid-
erable drop in performance for a number of tasks,
where simply retraining existing models with so-
cial media data does not provide substantial im-
provement (Gimpel et al., 2011; Ritter et al., 2011;
Habash et al., 2013a).

Morphological disambiguation for noisy con-
tent is further complicated for dialectal content,
with additional morpho-syntactic variations. Mor-
phological disambiguation is also more challeng-
ing for morphologically rich and ambiguous lan-
guages, like Arabic and Dialectal Arabic (DA).

Arabic is morphologically rich, having more
fully inflected words (types) than morphologically
poorer languages. It is also ambiguous, with short
vowels (diacritic marks) often dropped and disam-
biguated in context. These issues result in more
morpho-syntactic variations for DA in written text
compared to other dialectal content, and increase
the number of potential analyses.

We present several morphological disambigua-
tion models for Egyptian Arabic (EGY), based on
previous models for EGY and Modern Standard
Arabic (MSA). We use a bidirectional long short
term memory (Bi-LSTM) architecture and vari-
ous noise reduction techniques, including char-
acter embedding and embedding space mapping.
We also experiment with the width of the embed-
ding window in the pre-trained embeddings. Char-
acter embeddings allow access to subword units,
while the embedding space mapping normalizes
non-canonical forms to canonical neighbors. The
narrow/wide embedding window in the pre-trained
embeddings allows for more of syntactic/semantic
modeling, respectively.

The goal of the various models is to achieve
noise-robust analysis, rather than explicit noise
normalization. We therefore use the normaliza-
tion techniques on the vector-level only, instead
of replacing the raw forms, which allows for less
aggressive lexical normalization. The separation
of raw forms and vector normalization also allows
for independent word and character level normal-
ization, eliminating any propagation of error.

Our system achieves a 5% relative error reduc-
tion (1.1% absolute accuracy boost) over a state-
of-the-art baseline, using a strict metric. Our
noise-robust system also matches the performance
of a version of the system trained and tested on
a manually orthography-normalized copy of the
data. This indicates that the system performs as
well as could be expected without orthographic in-
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consistency. We also present an error analysis of
the system and identify areas of improvement.

The rest of the paper is structured as follows.
We present common challenges to DA processing
in Section 2. This is followed by background and
related work in Section 3. We introduce the ap-
proach and various models in Section 4, and dis-
cuss the experimental setup and results in Section
5. We conclude and provide some directions for
future work in Section 6.

2 Linguistic Issues

Dialectal Arabic, including EGY among other di-
alects, is the primarily spoken language used by
native Arabic speakers in daily exchanges. The
outbreak of social media platforms expanded the
use of DA as a written language. The lack of a
standard orthography (Habash et al., 2012a), com-
bined with the fact that user-generated content in
social media is prone to noise, increase sparsity
and reduce performance.

EGY, similar to MSA, is also a morphologi-
cally complex language, having a number of mor-
phological features, e.g., gender, number, per-
son, mood, and attachable clitics. Moreover,
the diacritization-optional orthography for Arabic
(both DA and MSA) results in orthographic am-
biguity, leading to several interpretations of the
same surface forms. Richness of form increases
model sparsity, and ambiguity makes disambigua-
tion harder. One approach to model complexity,
richness, and ambiguity uses morphological an-
alyzers, also known as morphological dictionar-
ies. Morphological analyzers are usually used to
encode all potential word inflections in the lan-
guage. A good morphological dictionary should
return all the possible analyses of a surface word
(ambiguity), and cover all the inflected forms of
a word lemma (richness), covering all related fea-
tures. The best analysis is then chosen through
morphological disambiguation.

The set of morphological features that we model
for EGY morphological disambiguation includes:

• Lexicalized features: lemma, diacritization.

• Non-lexicalized features: aspect, case, gen-
der, person, part-of-speech (POS), number,
mood, state, voice.

• Clitics: enclitics, like pronominal enclitics,
negative particle enclitics; proclitics, like ar-
ticle proclitic, preposition proclitics, con-
junction proclitics, question proclitics.

Despite the similarities, EGY and MSA have
many differences that prevent MSA tools from be-
ing effectively utilized for EGY text. These in-
clude lexical, phonological, and morphological in-
consistencies. Lexical differences can be numer-
ous, beyond simple cognates, like the word ø
 @ 	P@
AzAy1 ‘how’ in EGY corresponds to the word 	J
»
kyf in MSA. There are also many morphological
differences, for example the MSA future proclitic
/sa/+ (spelled +� s+) appears in EGY as either
/ha/+ (+ë) or /Ha/+ (+k). There are also many
phonological variations between EGY and MSA
that have direct implications on orthography as
well. These include the consonant �H /θ/ in MSA,
which can be mapped to either �H /t/ or � /s/ in
EGY. These variations make the written EGY con-
tent more susceptible to noise and inconsistency.
Table 1 shows an EGY sentence example, along
with the set of potential analyses for a given word.

3 Background and Related Work

Explicit handling of noisy content in NLP has re-
cently gained momentum with the increasing use
of social media outlets. Notable contributions for
POS tagging include the ARK tagger (Owoputi
et al., 2013), which is targeted for online conver-
sational text. ARK tagger uses conditional ran-
dom fields with word clusters as features, obtained
via Brown clustering (Brown et al., 1992), along
with various lexical features. Gimpel et al. (2011)
also use conditional random fields for POS tag-
ging, trained on annotated Twitter content. Der-
czynski et al. (2013) use manually curated lists to
map low frequency and out of vocabulary terms to
more frequent terms. Noisy content has also been
addressed for named entity recognition (Liu et al.,
2011; Ritter et al., 2011; Aguilar et al., 2017), and
syntactic parsing (Foster et al., 2011; Petrov and
McDonald, 2012).

Most relevant to our work is the paper by
van der Goot et al. (2017), where they use
Word2vec (Mikolov et al., 2013) to find potential
normalization candidates for non-canonical words
on the lexical level, and rank them using a clas-
sifier. They experiment with various normaliza-
tion and embedding settings, and they find that
both normalization and pre-trained embeddings
are helpful for the task of POS tagging.

1 Arabic transliterations are in the Habash-Soudi-
Buckwalter transliteration scheme (Habash et al., 2007).
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AntA fyn? fy AlmHl brdk ? ? ¼XQK. ÉjÖÏ@ ú

	̄ ? 	á�
 	̄ A�J 	K @

Where are you? Are you at the shop still?
diacritization lemma gloss pos prc3 prc2 prc1 prc0 per asp vox mod gen num stt cas enc0
bi+rad∼+ak rad∼ response noun 0 0 bi_prep 0 na na na na m s c u 2ms:poss
barDak barDak still adv 0 0 0 0 na i na na m s i u 0
bi+rad∼+ik rad∼ response noun 0 0 bi_prep 0 na na na na m s c u 2fs:poss
b+Aarud∼+ak rad∼ return verb 0 0 0 bi_prog 1 i a i m s na na 2ms:dobj
bard+ak bard cold noun 0 0 0 0 na na na na m s c u 2ms:poss

Table 1: An example highlighting the effect of non-standard and ambiguous orthography, along with rich mor-
phology, on EGY morphological disambiguation. The word ½ 	�QK. barDak ‘still’ is provided in the example with
the non-standard (non-CODA compliant) orthography ¼XQK. bardak, which can lead to different morphological
analyses than the one intended in context.

The issue of noisy text processing is exacer-
bated for dialectal content. Most contributions fo-
cus on spelling/lexical variations, whereas dialec-
tal content is further characterized with morpho-
syntactic and phonetic variations that make au-
tomatic processing more challenging (Jørgensen
et al., 2015). In addition to the issues of morpho-
logical complexity, ambiguity, and lack of stan-
dard orthography for MSA and DA. There has
been several contributions covering various NLP
tasks including morphological analysis, disam-
biguation, POS tagging, tokenization, lemmatiza-
tion and diacritization, addressing both MSA and
DA (Al-Sabbagh and Girju, 2010; Mohamed et al.,
2012; Habash et al., 2012b, 2013a; Abdelali et al.,
2016; Khalifa et al., 2016b). Notable contributions
for both MSA and EGY include MADAMIRA
(Pasha et al., 2014), a morphological disambigua-
tion tool that uses morphological analyzers to han-
dle complexity and ambiguity. MADAMIRA can
automatically correct common spelling errors as
a side effect of disambiguation, but does not in-
clude explicit processing steps for noisy content.
A neural version of MADAMIRA for MSA is pre-
sented by Zalmout and Habash (2017), who use
Bi-LSTMs and morphological tag embeddings.
Their system shows significant improvement over
MADAMIRA, but does not use any explicit char-
acter embeddings nor noise reduction techniques.

To address the lack of standardized orthography
for DA, Habash et al. (2012a) proposed CODA,
a Conventional Orthography for Dialectal Ara-
bic. CODA presents a detailed description of or-
thographic guidelines, mainly for the purpose of
developing DA computational models, applied to
EGY, and later extended to several other Arabic
dialects (Zribi et al., 2014; Saadane and Habash,
2015; Turki et al., 2016; Khalifa et al., 2016a;
Jarrar et al., 2016; Habash et al., 2018). CODA-

treated DA content should be less sparse and less
noisy. Eskander et al. (2013) presented a tool to
normalize raw texts into a CODA compliant ver-
sion using the K-nearest neighbor algorithm. Scal-
ing this tool to other dialects, however, is challeng-
ing due to the lack of training data.

Our morphological tagging architecture is sim-
ilar to the work of Inoue et al. (2017) and Zal-
mout and Habash (2017), but we further experi-
ment with CNN-based character embeddings, and
pre-train the word embeddings. The architec-
ture is also similar to the work of Heigold et al.
(2017) and Plank et al. (2016) in terms of the char-
acter embeddings, both LSTM and CNN-based
systems. Our architecture, however, uses neural
language models for modeling lemmas and dia-
critized forms, and utilizes the word-level embed-
dings in various configurations to combat noise, as
explained throughout the rest of the paper.

4 Approach

We present a morphological disambiguation
model for EGY. We use an LSTM-based archi-
tecture for morphological tagging and language
modeling for the various morphological features
in EGY. We also experiment with several embed-
ding models for words and characters, and present
several approaches for noise-robust modeling on
the raw form and vector levels.

We present the overall tagging and disambigua-
tion architecture, in addition to the character em-
bedding model, in 4.1. We then present the noise
handling approaches in 4.2 and 4.3.

4.1 Morphological Tagging and
Disambiguation Architecture

We use a similar disambiguation approach as in
previous contributions for MSA and EGY (Habash
and Rambow, 2005; Habash et al., 2009, 2013b).
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The morphological disambiguation task is in-
tended to choose the correct morphological anal-
ysis from the set of potential analyses, obtained
from the morphological analyzer. The analyzer
provides a set of morphological features for each
given word. These features can be grouped into
non-lexical features, where a tagger is used to
predict the relevant morphological tag, handled
through morphological feature tagging, and lex-
ical features that need a language model (Roth
et al., 2008), handled through lexicalized feature
language models. The inflectional, clitic, and part-
of-speech features are handled with a tagger, while
the lexical features are handled with a language
model.

4.1.1 Morphological Feature Tagging
Overall Architecture We use Bi-LSTM-based
taggers for the morphological feature tagging
tasks. Given a sentence of length L words
{w1, w2, ..., wL}, every word wi is converted into
vector vi:

vi = [vwi ; vci ; vti ]

composed of the word embedding vector vwi ,
word-level characters embedding vector vci , and
the candidate morphological tag embedding vec-
tor vti . This separation of word and character em-
bedding vectors enables further noise handling on
the word embedding level alone, with the charac-
ter embeddings learnt from the raw forms without
any modification. We pre-train the word embed-
dings using Word2vec (Mikolov et al., 2013).

We use two LSTM layers to model the rele-
vant context for both directions of the target word,
where the input is represented by the vi vectors
mentioned above:

−→̂
h i = g(vi,

−→
h i−1)

←−̂
h i = g(vi,

←−
h i+1)

where hi is the context vector from the LSTM
for each direction. We join both sides, apply a
non-linearity function, and softmax to get a proba-
bility distribution. Figure 1 shows the architecture.

Character Embedding We use convolutional
neural networks (CNN) and LSTM-based archi-
tectures for the character embedding vectors vci ,
both applied to the character sequence within each
word separately. LSTM-based architectures have
been shown to outperform CNN-based character
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Figure 1: The overall tagging architecture, with the in-
put vector as the concatenation of the word, characters,
and candidate tag embeddings.

embedding in POS tagging (Heigold et al., 2017),
but we experiment with both architectures to re-
port their performance in noisy EGY content. We
use various filter widths and max pooling for the
CNN system, with the output fed to a dense con-
nection layer. The resulting vector is used as the
character embedding vector for the given word.
For the LSTM-based architecture we use the last
state vector as the embedding representation of the
word’s characters. Both architectures are outlined
at figure 2.

LSTMLSTM

Character Lookup Table

Convolution Layers
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LSTMLSTMMax Pooling

Concatenation

Dense Layer
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Figure 2: CNN-based (left) and LSTM-based (right) ar-
chitectures for word-level character embedding. Simi-
lar to the architecture by Heigold et al. (2017).

Morphological Tag Embedding The morpho-
logical features vector vti embeds the candidate
tags for each feature. The tags include the collec-
tion of morphological features. We use the mor-
phological analyzer to obtain all possible tag val-
ues of the word to be analyzed. We use a lookup
table to map the tags to their trainable vector rep-
resentation, then sum all the resulting vectors to
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get vti , since these tags are alternatives and do not
constitute a sequence of any sort. Figure 3 outlines
the tag embedding model.

Candidate Tag Lookup Table
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Figure 3: Candidate tag embedding, through summing
the vectors of the individual tags.

Embedding the morphological tags using the
analyzer does not constitute a hard constraint in
the system, and the vti vector can be discarded or
substituted with less resource-demanding options
for other languages or dialects.

4.1.2 Lexicalized Feature Language Models
We use LSTM-based neural language models
(Enarvi and Kurimo, 2016) for the lexical fea-
tures (lemma and diacritization). Lemmas and di-
acritized forms are lexical and cannot be modeled
directly using a classifier (Habash and Rambow,
2007), since the target space is big (around 13K
for lemmas, and 33K for the diacritized forms,
in Train). We therefore use a language model
to choose among the candidate lemmas and dia-
critized forms obtained from the analyzer. We en-
code the runtime dataset in the HTK Standard Lat-
tice Format (SLF), with a word mesh representa-
tion for the various options of each word.

4.2 Embedding Window Width
Several contributions show that the window size
(i.e. amount of context) in word embeddings af-
fects the type of linguistic information that gets
modeled. Goldberg (2016) and Trask et al. (2015)
explain that larger windows tend to create more se-
mantic and topical embeddings, whereas smaller
windows capture syntactic similarities. Tu et al.
(2017) also find that a window of one (one word
before the target word and one word after) is opti-
mal for syntactic tasks.

We experiment with both wide and narrow win-
dow embeddings, and evaluate their effects on
tagging accuracy. These experiments show the
role of topical or semantic vs syntactic embed-
dings in the morphological disambiguation model.

We then experiment with embedding vector ex-
tension, by combining both wide and narrow em-
beddings through concatenation. This technique
is expected to handle noisy and unstandardized
spellings, since spelling variants are not just se-
mantically related, but must share the same syn-
tactic valency.

Figure 4 shows the updated architecture, with
the narrow window embedding vnarrowwi

concate-
nated to the vi vector, along with the existing wide
window embedding vwide

wi
.

4.3 Embedding Space Mapping
The embedding space mapping approach is based
on the hypothesis that non-standard words are
likely to have similar contexts as their canonical
equivalents. We define the canonical equivalent
here as the most frequent semantically and syn-
tactically equivalent word to the target word. We
use this definition since the operation is unsuper-
vised, and for the lack of a standard canonical
forms. Variants of this approach have been used
in several spelling error correction tasks (Sridhar,
2015). Dasigi and Diab (2011) also use a simi-
lar approach to identify variants in DA. We use
the Word2vec framework (Mikolov et al., 2013) in
the Gensim implementation (Řehůřek and Sojka,
2010) to generate the embedding spaces. We use
these embeddings to learn and score normalization
candidates based on their cosine distance as a se-
mantic score, and edit distance as a lexical score.
In this scope, we first learn a weighted distance
function for the individual insertion, deletion, and
substitution operations, then use these weights to
score the candidates.

Edit Distance Weights The spelling variants are
first identified based on narrow window and wide
window embeddings, to capture both semantic and
syntactic based relationships. For each word in
each embedding space we get the nearest N neigh-
bors, and intersect them with the N nearest neigh-
bors of the word in the other embedding space. We
get these neighbors to obtain the weights first, and
then use them again for the actual normalization
in the next step. We discard candidates that have
an edit distance above two, and obtain the individ-
ual edit operation weights through their normal-
ized frequencies in the remaining candidates.

Word Mapping We use the learnt edit dis-
tance weights to score the normalization candi-
dates mentioned above from the wide and nar-
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Figure 4: The tagging architecture with the extended (wide and narrow) window embeddings.

row window embedding spaces, and further prune
them based on their weighted edit distance. We
select the candidate with the highest frequency in
the text as the canonical equivalent.

Low Frequency Words Word2vec has a mini-
mum count threshold for the words to be embed-
ded. This value is tunable based on the used cor-
pus. For the words below this threshold Word2vec
does not guarantee a good vector representation,
and discards them in the embedding model, so
we can not use this normalization approach in this
case. Instead, we use the weighted edit distances
to score and map these words to more frequent
cognates, on the character level only.2

Normalized Embeddings The pipeline so far
results in a more consistent version of the text,
which we use to learn the final embeddings upon.
These embeddings are used as the pre-trained em-
beddings in the tagging architecture. This results
in normalization at the embedding space level
only, where the raw forms are still unmodified.
The raw forms can be used for character-level
noise reduction later in the tagging pipeline.

5 Experiments

5.1 Data
We use the "ARZ" (Maamouri et al., 2012) manu-
ally annotated EGY Arabic corpus, from the Lin-
guistic Data Consortium (LDC), parts 1, 2, 3, 4
and 5. The corpus is based on the POS guidelines

2 Instead of searching through the entire word space for
each word to be normalized, which is computationally ex-
pensive, we pruned the search space by only looking at words
sharing at least two consonants (in the same order) with it.

used by the LDC for Egyptian Arabic, and con-
sists of about 160K words (excluding numbers and
punctuations, 175K overall). The set of analyses
for a given raw word includes the correct CODA
orthography, in addition to the full morphological
and POS annotations.

We use the splits suggested by Diab et al.
(2013), comprised of a training set (Train) of about
134K words, a development set (Dev) of 20K
words, and a blind testing set (Blind Test) of 21K
words. The Dev set is used during the system de-
velopment to assess design choices. The Blind
Test set is used at the end to present the results.

The morphological analyzer we use in this pa-
per is similar to the one used by Habash et al.
(2013b). It is based on the SAMA (Graff et al.,
2009), CALIMA (Habash et al., 2012b), and
ADAM (Salloum and Habash, 2014) databases.
EGY content, as in DA in general, contains many
MSA cognates. The decision therefore to use all
three analyzers was to maximize the recall of the
overall analyzer.

We also use an in-house EGY monolingual cor-
pus of about 410 million words, collected from on-
line commentaries of blogs and social media plat-
forms, to pre-train the word embeddings.

To better assess the notions of noise and am-
biguity in the EGY dataset, we compare it to
the Penn Arabic Treebank (PATB parts 1, 2 and
3) (Maamouri et al., 2004), which is commonly
used for morphological disambiguation systems in
MSA. MSA is also morphologically rich with high
ambiguity levels, so it should provide a suitable
reference for EGY. We sample an MSA data of
size similar to the EGY dataset size, to be able to
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draw comparable comparison. Table 2 provides
some statistics regarding both datasets. The aver-
age number of unique types per lemma (different
types mapped to the same lemma encountered in
the corpus) is relatively higher for the raw EGY
content compared to MSA, at 2.7 vs 2.4. The av-
erage for the CODA-based EGY, however, is sim-
ilar to MSA. This indicates that the normalized
version of EGY has a similar sparsity as that for
MSA, which is inherently less noisy. The differ-
ence in the ratio between raw and CODA EGY is
a good indicator of the noise and inconsistency in
the EGY dataset.

EGY Raw EGY CODA MSA
Tokens 133,751 133,751 133,763

Inflected types 32,927 30,272 22,022
Lemmas 13,242 13,242 9,522

Avg types/lemma 2.7 2.4 2.4

Table 2: Dataset statistics showing tokens, types, and
lemmas count in EGY and an MSA subset. Both from
the Train set. The average inflections per lemma is cal-
culated by counting the average unique types that map
to the same lemma.

Regarding ambiguity, we calculated the aver-
age number of different analyses from the mor-
phological analyzer for a given word in EGY at
about 24 analyses per word (about 15 MSA, 6.5
DA, and 2.5 "no-analysis" analyses3), whereas for
MSA it is around 12. This reflects the severe am-
biguity of the EGY dataset compared with MSA
in this context. Both noise and ambiguity issues
make morphological tagging and disambiguation
systems for EGY a very challenging task.

5.2 Experimental Setup
For the Bi-LSTM tagging architecture we use two
hidden layers of size 800. Each layer is com-
posed of two LSTM layers for each direction, and
a dropout wrapper with keep probability of 0.8,
and peephole connections. We use Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.002, and cross-entropy cost function. We use
Tensorflow as the development environment.

The LSTM character embedding architecture
uses two LSTM layers of size 100, and embedding
size 50. The CNN architecture also uses embed-
ding size 50, with filter widths ranging from one
to six and max pooling strides of 50.

3 The morphological analyzer has a backoff mode of "no-
analysis" that provides a "proper noun" analysis to all word.
The "proper noun" analysis can sometimes be cliticized, so
some words might have multiple backoff analyses.

As for the neural language models for lemmati-
zation and diacritization, we use two hidden layers
of size 400 for lemmatization, and 600 for diacriti-
zation. We also use an input layer of size 300.
We use Adam optimizer (Kingma and Ba, 2014)
as the optimization algorithm, with learning rate
of 0.002. We use TheanoLM (Enarvi and Kurimo,
2016) to develop the models.

The pre-trained word embeddings are of size
250, for both narrow and wide window embed-
dings. The wide window is set to five, whereas
the narrow window is set to two (we experimented
with a window of one but it performed slightly
lower than a window of two). The number of near-
est neighbors in the embedding space mapping ex-
periment is 10 neighbors.

Metrics We use the following evaluation met-
rics for all systems:

• POS Accuracy (POS): The accuracy over the
POS tag set comprised of 36 tags (Habash
et al., 2013b).

• Morph Tags Accuracy (Morph Tags): The
analysis and disambiguation accuracy over
the 14 morphological features we work with,
excluding lemmas and diacritized forms.

• Lemmatization Accuracy (Lemma): The ac-
curacy of the lemma form of the words.

• Diacritization Accuracy (Diac): The accu-
racy of the diacritized form of the words.

• Full Analysis Accuracy (Full): The evalua-
tion accuracy over the entire analysis, includ-
ing the morphological features, lemma, and
diacritized form.

5.3 Results

Table 3 shows the results of all systems for Dev,
and Table 4 shows the results for the Blind Test set.
We use the MADAMIRA results as the baseline.

Narrow embeddings seem to consistently out-
perform wide embeddings across all experiments.
Regarding character embeddings, using both CNN
and LSTM-based character embeddings improve
the overall performance for both wide and nar-
row word embeddings, but LSTMs show consis-
tent improvement over CNNs, which is in line with
the conclusions of Heigold et al. (2017).

Embedding extension, through combining the
wide and narrow window word embeddings, with
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Model Lemma Diac POS Morph Tags Full
MADAMIRA EGY (Baseline) 86.4 82.4 91.7 86.7 76.2
Bi-LSTM wide window embeddings 87.3 82.6 92.2 88.0 76.5

+ CNN character embeddings 87.3 82.5 92.6 88.2 76.6
+ LSTM character embeddings 87.4 82.5 92.6 88.3 76.7

+ Embedding space mapping 87.5 82.8 92.6 88.6 76.9
Bi-LSTM narrow window embeddings 87.5 82.9 92.3 88.0 76.7

+ CNN character embeddings 87.5 82.9 92.6 88.6 76.9
+ LSTM character embeddings 87.6 82.9 92.9 88.8 77.0

+ Embedding space mapping 87.4 82.8 92.7 88.7 76.9
Bi-LSTM wide+narrow embeddings and LSTM character embeddings 87.6 83.0 92.8 88.8 77.1

+ Embedding space mapping (Best System) 87.7 83.2 92.9 88.9 77.4
Relative error reduction of best result compared to baseline 9.6% 4.5% 14.5% 16.5 % 5.0%

Table 3: Results of the various systems over the Dev dataset, with MADAMIRA EGY (Pasha et al., 2014) as a
state-of-the-art baseline.

Model Lemma Diac POS Morph Tags Full
MADAMIRA EGY (Baseline) 87.3 83.3 91.8 86.9 77.3
Bi-LSTM wide window embeddings 87.5 83.1 92.6 87.9 77.4

+ CNN character embeddings 87.7 83.3 92.9 88.1 77.5
+ LSTM character embeddings 87.8 83.3 93.1 88.2 77.6

+ Embedding space mapping 87.8 83.5 93.4 88.9 78.0
Bi-LSTM narrow window embeddings 87.6 83.4 92.7 88.2 77.6

+ CNN character embeddings 87.8 83.6 93.3 88.8 78.0
+ LSTM character embeddings 88.0 83.6 93.5 89.1 78.2

+ Embedding space mapping 87.8 83.6 93.2 88.8 78.1
Bi-LSTM wide+narrow embeddings and LSTM character embeddings 87.9 83.5 93.1 88.6 78.0

+ Embedding space mapping (Best System) 88.1 83.8 93.6 89.2 78.4
Relative error reduction of best result compared to baseline 6.3% 3.0% 21.9% 17.6 % 4.9%

Table 4: Results of the various systems over the Blind Test dataset.

the LSTM-based character embeddings, signifi-
cantly enhances the performance beyond the char-
acter embeddings alone for the wide embeddings.
This is not the case though for narrow window
embeddings. This highlights the significance of
narrow embeddings for syntactic and morphologi-
cal modeling, since the extension approach merely
adds narrow window embedding capability to the
wide window embeddings.

We observe the same pattern for the embed-
ding space mapping approach for noise reduction
against the narrow window embeddings. How-
ever, combining the extension with the embedding
space mapping methods, along with the LSTM-
based character embeddings, results in the best
performing system. Both approaches seem to
complement each other, as the accuracy exceeds
any of the methods alone.

The result of the narrow window embeddings is
particularly interesting, as it shows that to achieve
a relatively good noise-robust morphological dis-
ambiguation accuracy, using narrow window em-
beddings should go a long way. Using more so-
phisticated, and computationally expensive, noise

handling approaches, like embedding extension
with embedding space mapping, should achieve
even better results.

5.4 System Analysis

Oracle Conventional Orthography Experiment
The availability of the manually annotated CODA
equivalent of the EGY dataset allows for a deeper
analysis of the noise effects on morphological dis-
ambiguation. We trained and tested the system
using the CODA version of the data, as an ora-
cle experiment of noise-reduced content. CODA-
based content is not guaranteed to be noise-free,
or be optimal for such syntactic and morphologi-
cal tasks, but it should provide a good reference in
terms of orthography-normalized content.

We train the model on the CODA-EGY train-
ing, and test it with the CODA-EGY Dev set. We
use the same word pre-training dataset as before.
We use LSTM-based character embeddings, and
experiment with both wide and narrow embedding
window. Table 5 shows the results for the CODA
based modeling for Dev. The results are very sim-
ilar to the best performing model in our earlier ex-
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Model Lemma Diac POS Morph Tags Full
Bi-LSTM wide window embeddings 87.4 82.5 92.6 88.3 76.7
Bi-LSTM narrow window embeddings 87.6 82.9 92.9 88.8 77.0
Bi-LSTM wide+narrow window embeddings+embeddings space mapping 87.7 83.2 92.9 88.9 77.4
(Oracle Experiment) CODA narrow window embeddings 87.9 83.3 93.0 89.1 77.4
(Oracle Experiment) CODA wide window embeddings 87.7 83.1 92.8 88.8 77.2

Table 5: Results of training and testing the system using the CODA-based Dev data, compared to the results of our
system (taken from Table 3). All systems use LSTM-based character embeddings.

periments. These results indicate that our model is
very close to the upper performance limit in terms
of noise and inconsistency, and achieves noise-
robust tagging and disambiguation.

The results for wide and narrow window con-
texts are also consistent with our earlier experi-
ments, with narrow windowed contexts perform-
ing better across all evaluation metrics.

Manual Error Analysis

POS analysis We first analyze the overall error
distribution in the POS tagging results. The most
common POS error type is mistagging a nominal
tag (Noun, Adjective, etc) with a different nominal
tag, at 74% of the errors. Nominals include many
very frequent tags, such as nouns and adjectives.
The next most common error category is mistag-
ging particles with other particles, at around 15%.
Mistagging nominals with verbs is at around 4%.
Several other low frequency errors cover the re-
maining 7%. To better understand the nature of
the errors we manually checked a sample of 100
POS tagging errors. Almost 48% of them are gold
errors, out of which our system gets 74% correct.

Lemma analysis We also manually checked a
sample of 100 lemmatization errors. We observe
that 30% of them are gold errors, 23% are the re-
sult of a wrong POS tag, 15% are acceptable MSA
lemmas, 12% are due to minor and normally ac-
ceptable spelling issues, mainly the Hamza letter
(glottal stops), and 6% are due to inconsistent dia-
critization. The MSA-related errors are due to the
many MSA cognates in DA content. So provid-
ing an MSA-based analysis instead of an equiva-
lent DA analysis can be acceptable for the purpose
of this analysis. Hamza spelling variations, espe-
cially at the beginning of the word, are common in
both DA and MSA written content.

Diacritization analysis We checked a sample of
100 diacritization errors. We observed more er-
rors attributed to error propagation, as wrong POS

tags and lemmas lead to many diacritization er-
rors. The percentage of gold errors is only 17%,
whereas MSA-cognate related errors are about
32%, POS related errors cover 13%, Hamza er-
rors 11%, lemmatization errors include 7%, and
the rest are mostly due to wrong case, gender, per-
son tags, and other unidentified issues.

6 Conclusion and Future Work

We presented several neural morphological disam-
biguation models for EGY, and used several ap-
proaches for noise-robust processing. Our system
outperforms a state-of-the-art system for EGY. We
observed that character embeddings, combined
with pre-trained word embeddings, provide a sig-
nificant performance boost over the baseline. We
showed that LSTM-based character embeddings
outperform CNN-based models for EGY. We also
showed that narrow window embeddings signifi-
cantly outperform wide window embeddings for
tagging. We also experimented with a normal-
ization model on the word-level vectors, map-
ping non-canonical words to canonical neighbors
through embedding space mapping. The results
showed an additional improvement over the nar-
row window embeddings.

Future directions include exploring additional
deep learning architectures for morphological
modeling and disambiguation, especially joint and
multitasking architectures. We also plan to ex-
plore knowledge transfer and adaptation models
for more dialects with limited resources.
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