
Proceedings of NAACL-HLT 2018, pages 917–928
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Monte Carlo Syntax Marginals for Exploring and Using
Dependency Parses

Katherine A. Keith, Su Lin Blodgett, and Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst
{kkeith,blodgett,brenocon}@cs.umass.edu

Abstract

Dependency parsing research, which has made
significant gains in recent years, typically fo-
cuses on improving the accuracy of single-
tree predictions. However, ambiguity is inher-
ent to natural language syntax, and communi-
cating such ambiguity is important for error
analysis and better-informed downstream ap-
plications. In this work, we propose a tran-
sition sampling algorithm to sample from the
full joint distribution of parse trees defined by
a transition-based parsing model, and demon-
strate the use of the samples in probabilistic
dependency analysis. First, we define the new
task of dependency path prediction, inferring
syntactic substructures over part of a sentence,
and provide the first analysis of performance
on this task. Second, we demonstrate the use-
fulness of our Monte Carlo syntax marginal
method for parser error analysis and calibra-
tion. Finally, we use this method to propa-
gate parse uncertainty to two downstream in-
formation extraction applications: identifying
persons killed by police and semantic role as-
signment.1

1 Introduction

Dependency parsers typically predict a single tree
for a sentence to be used in downstream applica-
tions, and most work on dependency parsers seeks
to improve accuracy of such single-tree predic-
tions. Despite tremendous gains in the last few
decades of parsing research, accuracy is far from
perfect—but perfect accuracy may be impossible
since syntax models by themselves do not incorpo-
rate the discourse, pragmatic, or world knowledge
necessary to resolve many ambiguities.

In fact, although relatively unexamined, sub-
stantial ambiguity already exists within commonly
used discriminative probabilistic parsing models,

1Supporting code available at https://github.com/slanglab/
transition sampler

Figure 1: Example of a sentence with inherent ambigu-
ity. Top: output from a greedy parser. Bottom: edge
marginal probabilities from 100 samples in parenthe-
ses.

which define a parse forest—a probability distri-
bution p(y | x) over possible dependency trees
y ∈ Y(x) for an input sentence x.

For example, the top of Figure 1 shows the pre-
dicted parse y(greedy) from such a parser (Chen
and Manning, 2014), which resolves a preposi-
tional (PP) attachment ambiguity in one manner;
this prediction was selected by a standard greedy
transition-based algorithm (§2.1). However, the
bottom of Figure 1 shows marginal probabilities
of individual (relation, governor, child) edges un-
der this same model. These denote our estimated
probabilities, across all possible parse structures,
that a pair of words are connected with a particu-
lar relation (§2.4). For example, the two different
PP attachment readings both exist within this parse
forest with marginal probabilities

p(nmod(saw2, telescope7) | x) = 0.72 (1)

p(nmod(man4, telescope7) | x) = 0.28, (2)

where (1) implies she used a telescope to see the
man, and (2) implies she saw a man who had a
telescope.

These types of irreducible syntactic ambiguities
exist and should be taken into consideration when
analyzing syntactic information; for instance, one
could transmit multiple samples (Finkel et al.,
2006) or confidence scores (Bunescu, 2008) over

917

ambiguous readings to downstream analysis com-
ponents.

In this work, we introduce a simple transi-
tion sampling algorithm for transition-based de-
pendency parsing (§2.2), which, by yielding ex-
act samples from the full joint distribution over
trees, makes it possible to infer probabilities of
long-distance or other arbitrary structures over the
parse distribution (§2.4). We implement transition
sampling—a very simple change to pre-existing
parsing software—and use it to demonstrate sev-
eral applications of probabilistic dependency anal-
ysis:

• Motivated by how dependency parses are typ-
ically used in feature-based machine learn-
ing, we introduce a new parsing-related
task—dependency path prediction. This task
involves inference over variable length de-
pendency paths, syntactic substructures over
only parts of a sentence.

• To accomplish this task, we define a Monte
Carlo syntax marginal inference method
which exploits information across samples of
the entire parse forest. It achieves higher ac-
curacy predictions than a traditional greedy
parsing algorithm, and allows tradeoffs be-
tween precision and recall (§4).

• We provide a quantitative measure of the
model’s inherent uncertainty in the parse,
whole-tree entropy, and show how it can be
used for error analysis (§3).

• We demonstrate the method’s (surprisingly)
reasonable calibration (§5).

• Finally, we demonstrate the utility of our
method to propagate uncertainty to down-
stream applications. Our method improves
performance for giving probabilistic seman-
tics to a rule-based event extractor to identify
civilians killed by police (§6), as well as se-
mantic role assignment (§7).

2 Monte Carlo dependency analysis

2.1 Overview of transition-based dependency
parsing

We examine the basic form of the Universal De-
pendencies formalism (Nivre et al., 2016), where,
for a sentence x of length N , a possible depen-
dency parse y is a set of (relation, governorToken,

childToken) edges, with a tree constraint that ev-
ery token in the parse has exactly one governor—
that is, for every token w ∈ {1..N}, there is ex-
actly one triple (r, g, w) ∈ y where it participates
as a child. The governor is either one of the ob-
served tokens, or a special ROOT vertex.

There exist a wide variety of approaches to ma-
chine learned, discriminative dependency parsing,
which often define a probability distribution p(y |
x) over a domain of formally legal dependency
parse trees y ∈ Y(x). We focus on transition-
based dependency parsers (Nivre, 2003; Kübler
et al., 2009), which (typically) use a stack-based
automaton to process a sentence, incrementally
building a set of edges. Transition-based parsers
are very fast, have runtimes linear in sentence
length, feature high performance (either state-of-
the-art, or nearly so), and are easier to implement
than other modeling paradigms (§2.5).

A probabilistic transition-based parser assumes
the following stochastic process to generate a
parse tree:

• Initialize state S0
• For n = 1, 2, . . .:

(A) an ∼ p(an | Sn−1)
(B) Sn := Update(Sn−1, an)
(C) Break if InEndState(Sn)

Most state transition systems (Bohnet et al., 2016)
use shift and reduce actions to sweep through to-
kens from left to right, pushing and popping them
from a stack to create the edges that populate a
new parse tree y. The action decision probabil-
ity, p(anext | Scurrent), is a softmax distribution
over possible next actions. It can be parameter-
ized by any probabilistic model, such as log-linear
features of the sentence and current state (Zhang
and Nivre, 2011), multilayer perceptrons (Chen
and Manning, 2014), or recurrent neural networks
(Dyer et al., 2015; Kiperwasser and Goldberg,
2016).

To predict a single parse tree on new data, a
common inference method is greedy decoding,
which runs a close variant of the above transi-
tion model as a deterministic automaton, replac-
ing stochastic step (A) with a best-action decision,
an := argmaxan p(an | Sn−1).2 An inferred ac-

2Since greedy parsing does not require probabilistic se-
mantics for the action model—the softmax normalizer does
not need to be evaluated—non-probabilistic training, such as
with hinge loss (SVMs), is a common alternative, including
in some of the cited work.

918

tion sequence a1:n determines the resulting parse
tree (edge set) y; the relationship can be denoted
as y(a1:n).

2.2 Transition sampling
In this work, we propose to analyze the full joint
posterior p(y | x), and use transition sampling,
a very simple forward/ancestral sampling algo-
rithm,3 to draw parse tree samples from that dis-
tribution. To parse a sentence, we run the automa-
ton stochastically, sampling the action probability
in step (A). This yields one action sequence a1:n
from the full joint distribution of action sequences,
and therefore a parse y(a1:n) from the distribution
of parses. We can obtain as many parse samples as
desired by running the transition sampler S times,
yielding a collection (multiset) of parse structures
{y(s) | s ∈ {1..S}}, where each y(s) ∼ p(y | x)
is a full dependency parse tree.4 Runtime to draw
one parse sample is very similar to the greedy al-
gorithm’s runtime. We denote the set of unique
parses in the sample Ỹ(x).

We implement a transition sampler by modi-
fying an implementation of Chen and Manning’s
multilayer perceptron transition-based parser5 and
use it for all subsequent experiments.

2.3 MC-MAP single parse prediction
One minor use of transition sampling is a method
for predicting a single parse, by selecting the most
probable (common) parse tree in the sample,

ŷMC-MAP = argmax
y∈Ỹ

p̃(y | x) (3)

= argmax
y∈Ỹ

c(y)

S
(4)

where p̃(y | x) denotes the Monte Carlo estimate
of a parse’s probability, which is proportional to
how many times it appears in the sample: c(y) ≡∑S

s 1{y = y(s)}. Note that p̃(y | x) correctly
accounts for the case of an ambiguous transition
system where multiple different action sequences
can yield the same tree—i.e., y(a1:n) is not one-to-
one—since the transition sampler can sample the
multiple different paths.

3“Ancestral” refers to a directed Bayes net (e.g. Barber
(2012)) of action decisions, each conditioned on the full his-
tory of previous actions—not ancestors in a parse tree.

4Dyer et al. (2016) use the same algorithm to draw sam-
ples from a transition-based constituency parsing model, as
an importance sampling proposal to support parameter learn-
ing and single-tree inference.

5CoreNLP 3.8.0 with its ‘english UD’ pretrained model.

This “MC-MAP” method is asymptotically
guaranteed to find the model’s most probable parse
(argmaxy p(y | x)) given enough samples.6 By
contrast, greedy decoding and beam search have
no theoretical guarantees. MC-MAP’s disadvan-
tage is that it may require a large number of sam-
ples, depending on the difference between the top
parse’s probability compared to other parses in the
domain.

2.4 Monte Carlo Syntax Marginal (MCSM)
inference for structure queries

Beyond entire tree structures, parse posteriors also
define marginal probabilities of particular events
in them. Let f(y) → {0, 1} be a boolean-valued
structure query function of a parse tree—for ex-
ample, whether the tree contains a particular edge:

f(y) = 1{dobj(kill,Smith) ∈ y}

or more complicated structures, such as a length-2
dependency path:

f(y) = 1{nsubj(kill, cop)∧dobj(kill,Smith) ∈ y}.

More precisely, these queries are typically formu-
lated to check for edges between specific tokens,
and may check tokens’ string forms.

Although f(y) is a deterministic function, since
the parsing model is uncertain of the correct parse,
we find the marginal probability, or expectation,
of a structure query by integrating out the poste-
rior parse distribution—that is, the predicted prob-
ability that the parse has the property in question:

p(f(y) | x) =
∑

y∈Y(x)
f(y) p(y | x) (5)

≈ p̃(f(y) | x) =
∑

y∈Ỹ(x)
f(y)

c(y)

S
. (6)

Eq. 5 is the expectation with regard to the model’s
true probability distribution (p) over parses from
the domain of all possible parse trees Y(x) for a
sentence, while Eq. 6 is a Monte Carlo estimate
of the query’s marginal probability—the fraction
of parse tree samples where the structure query is
true. We use this simple method for all inference

6This holds since the Monte Carlo estimated probability
of any tree converges to its true probability, according to, e.g.,
Hoeffding’s inequality or the central limit theorem. Thus,
with enough samples, the tree with the highest true proba-
bility will have estimated probability higher than any other
tree’s.

919

in this work, though importance sampling (Dyer
et al., 2016), particle filters (Buys and Blunsom,
2015), or diverse k-best lists (Zhang and McDon-
ald, 2014) could support more efficient inference
in future work.

2.5 Probabilistic inference for dependencies:
related work

Our transition sampling method aims to be an
easy-to-implement algorithm for a highly perfor-
mant class of dependency models, that conducts
exact probabilistic inference for arbitrary structure
queries in a reasonable amount of time. A wide
range of alternative methods have been proposed
for dependency inference that cover some, but per-
haps not all, of these goals.

For transition-based parsing, beam search is
a commonly used inference method that tries to
look beyond a single structure. Beam search can
be used to yield an approximate K-best list by
taking resulting structures on the beam, though
there are no theoretical guarantees about the result,
and runtime is no better than the transition sam-
pler.7 Finkel et al. (2006) further discuss trade-
offs between beam search and sampling, and find
they give similar performance when propagating
named entity recognition and PCFG parse infor-
mation to downstream tasks.

Graph-based parsers are the major alternative
modeling paradigm for dependency parsing; in-
stead of a sequence of locally normalized deci-
sions, they directly parameterize an entire tree’s
globally normalized probability. Parse samples
could be drawn from a graph-based model via
Markov chain Monte Carlo (Zhang et al., 2014),
which is asymptotically correct, but may require a
large amount of time to obtain non-autocorrelated
parses. A range of methods address inference for
specific queries in graph-based models—for ex-
ample, edge marginals for edge-factored models
via the matrix-tree theorem (Koo et al., 2007), or
approximate marginals with loopy belief propa-
gation (Smith and Eisner, 2008).8 By contrast,
our method is guaranteed to give correct marginal

7Loosely, if it takes N transitions to complete a parse,
and B possible actions at each transition must be evaluated,
our method evaluates KNB actions to obtain K trees. Beam
search evaluates a similar number of actions when using a K-
sized beam, but also requires non-parallelizable management
of the beam’s priority queue.

8These papers infer marginals to support parameter learn-
ing, but we are not aware of previous work that directly ana-
lyzes or uses dependency parse marginals.

inferences for arbitrary, potentially long-distance,
queries.

Given the strong performance of graph-based
parsers in the single-structure prediction setting
(e.g. Zeman et al. (2017); Dozat et al. (2017)),
it may be worthwhile to further explore proba-
bilistic inference for these models. For example,
Niculae et al. (2018) present an inference algo-
rithm for a graph-based parsing model that infers
a weighted, sparse set of highly-probable parse
trees, and they illustrate that it can infer syntactic
ambiguities similar to Figure 1.

Dynamic programming for dependency parsing,
as far as we are aware, has only been pursued for
single-structure prediction (e.g. Huang and Sagae
(2010)), but in principle could be generalized to
calculate local structure query marginals via an
inside-outside algorithm, or to sample entire struc-
tures through an inside-outside sampler (Eisner,
2016), which Finkel et al. (2006) use to propagate
parse uncertainty for downstream analysis.

3 Exploratory error analysis via
whole-tree entropy calculations

In this section we directly explore the model’s in-
trinsic uncertainty, while §5 conducts a quantita-
tive analysis of model uncertainty compared to
gold standard structures. Parse samples are able
to both pass on parse uncertainty and yield useful
insights that typical error analysis approaches can-
not. For a sentence x, we can calculate the whole-
tree entropy, the model’s uncertainty of whole-tree
parse frequencies in the samples:

H(p) = −
∑

y∈Y(x)
p(y | x) log p(y | x)

≈ H(p̃) = −
∑

y∈Ỹ(x)

c(y)

S
log

c(y)

S
. (7)

Since this entropy estimate is only based on an S-
sample approximation of p, it is upper bounded at
log(S) in the case of a uniform MC distribution.
Another intuitive measure of uncertainty is sim-
ply the number of unique parses, that is, the cardi-
nality of the MC distribution’s domain (|Ỹ|); this
quantity is not informative for the true distribution
p, but in the MC distribution it is intuitively upper
bounded by S.9

9Shannon entropy, domain support cardinality, and top
probability (maxy∈Ỹ p̃(y)), which we show in Table 1, are
all instances of the more general Renyi entropy (Smith and
Eisner, 2007).

920

Sentence Domain Size Top 3 Freq. Entropy

In Ramadi , there was a big demonstration . 3 [98, 1, 1] 0.112
US troops there clashed with guerrillas in a fight that left one Iraqi dead . 40 [33, 11, 6] 2.865
The sheikh in wheel - chair has been attacked with a F - 16 - launched bomb . 98 [2, 2, 1] 4.577

Table 1: Example sentences from the UD development set and summaries of their Monte Carlo parse distributions.
Domain Size gives |Ỹ100|, the number of unique parse structures in 100 samples. Top 3 Freq. gives the frequencies
of the 3 most probable structures in Ỹ100. Entropy is calculated according to Eq. 7; its upper bound is log(100) =
4.605.

Figure 2: Length of sentences (in number of tokens in
UD development set) against entropy (100 samples per
sentence).

We run our dependency sampler on the 2002
sentences in the Universal Dependencies 1.3 En-
glish Treebank development set, generating 100
samples per sentence; Table 1 shows example sen-
tences along with |Ỹ| and entropy statistics for
each sentence. We find that in general, as sentence
length increases, so does the entropy of the parse
distribution (Fig. 2). Moreover, we find that en-
tropy is a useful diagnostic tool. For example, 7%
of sentences in the UD development corpus with
fewer than 15 tokens and H(p̃) ≥ 2 exhibit un-
certainty around the role of ‘-’ (compare Sciences
- principally biology and thought-provoking), and
another 7% of such sentences exhibit uncertainty
around ‘s’ (potentially representing a plural or a
possessive).

4 Monte Carlo Syntax Marginals for
partial dependency parsing

Here we examine the utility of marginal inference
for predicting parts of dependency parses, using
the UD 1.3 Treebank’s English development set to
evaluate.10

10UD 1.3 is the UD version that this parsing model
is most similar to: https://mailman.stanford.edu/pipermail/

4.1 Greedy decoding

Using its off-the-shelf pretrained model with
greedy decoding, the CoreNLP parser achieves
80.8% labeled attachment score (LAS). LAS is
equivalent to both the precision and recall of pre-
dicting (rel,gov,child) triples in the parse tree.11

4.2 Minimum Bayes risk (MBR) decoding

A simple way to use marginal probabilities for
parse prediction is to select, for each token, the
governor and relation that has the highest marginal
probability. This method gives a minimum Bayes
risk (MBR) prediction of the parse, minimizing
the model’s expected LAS with regards to lo-
cal uncertainty; similar MBR methods have been
shown to improve accuracy in tagging and con-
stituent parsing (e.g. Goodman (1996); Petrov and
Klein (2007)). This method yields 81.4% LAS,
outperforming greedy parsing, though it may yield
a graph that is not a tree.

4.3 Syntax marginal inference for
dependency paths

An alternative view on dependency parsing is to
consider what structures are needed for down-
stream applications. One commonly used parse
substructure is the dependency path between two
words, which is widely used in unsupervised lex-
ical semantics (Lin and Pantel, 2001), distantly
supervised lexical semantics (Snow et al., 2005),
relation learning (Riedel et al., 2013), and super-
vised semantic role labeling (Hacioglu, 2004; Das
et al., 2014), as well as applications in economics
(Ghose et al., 2007), political science (O’Connor
et al., 2013), biology (Fundel et al., 2006), and the
humanities (Bamman et al., 2013, 2014).

parser-user/2017-November/003460.html
11LAS is typically defined as proportion of tokens whose

governor (and relation on that governor-child edge) are cor-
rectly predicted; this is equivalent to precision and recall of
edges if all observed tokens are evaluated. If, say, punctu-
ation is excluded from evaluation, this equivalence does not
hold; in this work we always use all tokens for simplicity.

921

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on
●

d=1

●

d=2

●

d=3

●

d=4

●

d=5

●

d=6

●

d=7

Path Greedy Marginal MC-MAP
Len. F1 Max F1 Thresh. F1

1 © 0.808 � 0.824 0.45 0.807
2 © 0.663 � 0.694 0.44 0.660
3 © 0.506 � 0.550 0.34 0.501
4 © 0.370 � 0.420 0.28 0.363
5 © 0.268 � 0.314 0.25 0.262
6 © 0.192 � 0.241 0.25 0.188
7 © 0.134 � 0.182 0.17 0.131

N Conf≥0.9 H Conf≥0.1

Figure 3: Precision-recall analysis against gold UD 1.3 English dev (§4.1) set for all dependency paths of lengths
1 to 7. Left: Each path length is a different color (1 in top-right, 7 in bottom-left), with greedy performance (©) as
well as the marginal path predictions’ PR curve, with points at confidence thresholds 0.9 (N), 0.1 (H), and where
F1 is highest (�). Right: F1 for each method, as well as the confidence threshold for the marginal PR curve’s
max-F1 point. For path length 1, Greedy and MC-MAP F1 are the same as labeled attachment score (LAS).

In this work, we consider a dependency
path to be a set of edges from the depen-
dency parse; for example, a length-2 path p =
{nsubj(3, 1), dobj(3, 4)} connects tokens 1 and 4.
Let Pd(y) be the set of all length-d paths from
a parse tree y.12 Figure 3’s “Greedy” table col-
umn displays the F-scores for the precision and
recall of retrieving Pd(y(gold)) from the prediction
Pd(y(greedy)) for a series of different path lengths.
P1 gives individual edges, and thus is the same
as LAS (80.8%). Longer length paths see a rapid
decrease in performance; even length-2 paths are
retrieved with only ≈ 66% precision and recall.13

We are not aware of prior work that evaluates de-
pendency parsing beyond single edge or whole
sentence accuracy.

We define dependency path prediction as the
task of predicting a set of dependency paths for
a sentence; the paths do not necessarily have to
come from the same tree, nor even be consistent
with a single syntactic analysis. We approach
this task with our Monte Carlo syntax marginal
method, by predicting paths from the transition
sampling parser. Here we treat each possible path

12Path construction may traverse both up and down di-
rected edges; we represent a path as an edge set to evaluate its
existence in a parse. A path may not include the same vertex
twice. The set of all paths for a parse includes all paths from
all pairs of vertexes (observed tokens and ROOT).

13For length 1 paths, precision and recall are identical; this
does not hold for longer paths, though precision and recall
from a single parse prediction are similar.

as a structure query (§2.4) and return all paths
whose marginal probabilities are at least threshold
t. Varying t trades off precision and recall.

We apply this method to 100 samples per sen-
tence in the UD treebank. When we take all
length-1 paths that appear in every single sample
(i.e., estimated marginal probability 1.0), preci-
sion greatly increases to 0.969, while recall drops
to 0.317 (the top-left point on Figure 3’s teal
length-1 curve.) We can also accommodate appli-
cations which may prefer to have a higher recall:
predicting all paths with at least 0.01 probability
results in 0.936 recall (the bottom-right point on
the curve in Figure 3).14

This marginal path prediction method domi-
nates the greedy parser: for length-1 paths, there
are points on the marginal decoder’s PR curve that
achieve both higher precision and recall than the
greedy decoder, giving F1 of 82.4% when accept-
ing all edges with marginal probability at least
0.45. Furthermore, these advantages are more
prominent for longer dependency paths. For ex-
ample, for length-3 paths, the greedy parser only
achieves 50.6% F1, while the marginal parser im-

14 The 6.4% of gold-standard edges with predicted 0 prob-
ability often correspond to inconsistencies in the formalism
standards between the model and UD; for example, 0.7% of
the gold edges are ‘name’ relations among words in a name,
which the model instead analyzes as ‘compound’. Inspecting
gold edges’ marginal probabilities helps error analysis, since
when one views a single predicted parse, it is not always clear
whether observed errors are systematic, or a fluke for that one
instance.

922

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted prob.

E
m

pi
ric

al
 g

ol
d−

st
an

da
rd

 p
ro

b. length 1
length 2
length 3
length 7

●●●
●

●
●

●

●

●

●
●

●●●
●●●●

●●●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●●
●●●●

●●
●●●●●

●
●●

●
● ●

●

●
●

●
●

●

●
●

●

●●●●
●●●

● ●
●

●

Figure 4: Calibration curves for marginal predictions
for several path lengths. Predictions below the y = x
line indicate overconfidence. Points denote the aver-
age predicted probability versus empirical (gold) prob-
ability among predicted paths within each dynamically
allocated bin.

proves a bit to 55.0% F1; strikingly, it is possible
to select high-confidence paths to get much higher
90.1% precision (at recall 11.6%, with confidence
threshold t = 0.95). Figure 3 also shows the pre-
cision/recall points on each curve for thresholds
t = 0.9 and t = 0.1.

We also evaluated the MC-MAP single-parse
prediction method (§2.3), which slightly, but con-
sistently, underperforms the greedy decoder at
all dependency lengths. More work is required
to understand whether this is is an inference or
modeling problem: for example, we may not
have enough samples to reliably predict a high-
probability parse; or, as some previous work finds
in the context of beam search, the label bias
phenomenon in this type of locally-normalized
transition-based parser may cause it to assign
higher probability to non-greedy analyses that
in fact have lower linguistic quality (Zhang and
Nivre, 2012; Andor et al., 2016).

5 Calibration

The precision-recall analysis shows that the pre-
dicted marginal probabilities are meaningful in a
ranking sense, but we can also ask whether they
are meaningful in a sense of calibration: predic-
tions are calibrated if, among all structures with
predicted probability q ± ε, they exist in the gold
parses with probability q. That is, predictions with

confidence q have precision q.15 If probabilities
are calibrated, that implies expectations with re-
gard to their distribution are unbiased, and may
also justify intuitive interpretations of probabili-
ties in exploratory analysis (§3). Calibration may
also have implications for joint inference, EM, and
active learning methods that use confidence scores
and confidence-based expectations.

We apply Nguyen and O’Connor (2015)’s adap-
tive binning method to analyze the calibration of
structure queries from an NLP system, by taking
the domain of all seen length-d paths from the
100 samples’ parse distribution for the treebank,
grouping by ranges of predicted probabilities to
have at least 5000 paths per bin, to ensure stability
of the local precision estimate.16

We find that probabilities are reasonably well
calibrated, if slightly overconfident—Figure 4
shows the average predicted probability per bin,
compared to how often these paths appear in the
gold standard (local precision). For example, for
edges (length-1 paths), predictions near 60% con-
fidence (the average among predictions in range
[0.42, 0.78]) correspond to edges that are actually
in the gold standard tree only 52.8% of the time.
The middle confidence range has worse calibra-
tion error, and longer paths perform worse. Still,
this level of calibration seems remarkably good,
considering there was no attempt to re-calibrate
predictions (Kuleshov and Liang, 2015) or to use a
model that specifically parameterizes the energy of
dependency paths (Smith and Eisner, 2008; Mar-
tins et al., 2010)—these predictions are simply a
side effect of the overall joint model for incremen-
tal dependency parsing.

6 Probabilistic rule-based IE: classifying
police fatalities

Supervised learning typically gives the most ac-
curate information extraction or semantic parsing
systems, but for many applications where train-

15This is a local precision, as opposed to the more usual tail
probability of measuring precision of all predictions higher
than some t—the integral of local precision. For example,
Figure 3’s length-1 t = 0.9 precision of 0.942 (4) is the av-
erage y value of several rightmost bins in Figure 4. This con-
trast corresponds to Efron (2010)’s dichotomy of local versus
global false discovery rates.

16This does not include gold-standard paths with zero pre-
dicted probability. As Nguyen and O’Connor found for se-
quence tagging and coreference, we find the prediction distri-
bution is heavily skewed to near 0 and 1, necessitating adap-
tive bins, instead of fixed-width bins, for calibration analysis
(Niculescu-Mizil and Caruana, 2005; Bennett, 2000).

923

ing data is scarce, Chiticariu et al. (2013) argue
that rule-based systems are useful and widespread
in practice, despite their neglect in contemporary
NLP research. Syntactic dependencies are a use-
ful abstraction with which to write rule-based ex-
tractors, but they can be brittle due to errors in the
parser. We propose to integrate over parse sam-
ples to infer a marginal probability of a rule match,
increasing robustness and allowing for precision-
recall tradeoffs.

6.1 Police killings victim extraction

We examine the task of extracting the list of names
of persons killed by police from a test set of
web news articles in Sept–Dec 2016. We use the
dataset released by Keith et al. (2017), consisting
of 24,550 named entities e ∈ E and sentences from
noisy web news text extractions (that can be diffi-
cult to parse), each of which contains at least one
e (on average, 2.8 sentences/name) as well as key-
words for both police and killing/shooting. The
task is to classify whether a given name is a person
who was killed by police, given 258 gold-standard
names that have been verified by journalists.

6.2 Dependency rule exractor

Keith et al. present a baseline rule-based method
that uses Li and Ji (2014)’s off-the-shelf RPI-
JIE ACE event parser to extract (event type,
agent, patient) tuples from sentences, and assigns
fJIE(xi, e) = 1 iff the event type was a killing,
the agent’s span included a police keyword, and
the patient was the candidate entity e. An entity
is classified as a victim if at least one sentence is
classified as true, resulting in a 0.17 F1 score (as
reported in previous work).17

We define a similar syntactic dependency rule
system using a dependency parse as input: our ex-
tractor f(x, e, y) returns 1 iff the sentence has a
killing keyword k,18 which both

1. has an agent token a (defined as, governed by
nsubj or nmod) which is a police keyword, or
a has a (amod or compound) modifier that is
a police keyword; and,

2. has a patient token p (defined as, governed by
nsubjpass or dobj) contained in the candidate
name e’s span.

17This measures recall of the entire gold-standard victim
database, though the corpus only includes 57% of the victims.

18Police and killing/shooting keywords are from Keith
et al.’s publicly released software.

0.0 0.1 0.2 0.3 0.4 0.5
Entity-level recall

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ity
-l

ev
el

pr
ec

is
io

n

10-sample
100-sample
1-sample
greedy

Method F1

RPI-JIE 0.170
Greedy 0.215
1 samp. 0.212
10 samp. 0.219
100 samp. 0.222

Figure 5: Left: Rule-based entity precision and re-
call for police fatality victims, with greedy parsing and
Monte Carlo inference. Right: F1 scores for RPI-JIE,
Greedy, and 1-sample methods, and maximum F1 on
PR curve for probabilistic (multiple sample) inference.

Applying this f(x, e, y) classifier to greedy parser
output, it performs better than the RPI-JIE-based
rules (Figure 5, right), perhaps because it is better
customized for the particular task.

Treating f as a structure query, we then use our
Monte Carlo marginal inference (§2) method to
calculate the probability of a rule match for each
sentence—that is, the fraction of parse samples
where f(x, e, y(s)) is true—and infer the entity’s
probability with the noisy-or formula (Craven and
Kumlien, 1999; Keith et al., 2017). This gives soft
classifications for entities.

6.3 Results

The Monte Carlo method achieves slightly higher
F1 scores once there are at least 10 samples
(Fig. 5, right). More interestingly, the soft entity-
level classifications also allow for precision-recall
tradeoffs (Fig. 5, left), which could be used to
prioritize the time of human reviewers updating
the victim database (filter to higher precision), or
help ensure victims are not missed (with higher
recall). We found the sampling method retrieved
several true-positive entities where only a single
sentence had a non-zero rule prediction at proba-
bility 0.01—that is, the rule was only matched in
one of 100 sampled parses. Since current prac-
titioners are already manually reviewing millions
of news articles to create police fatality victim
databases, the ability to filter to high recall—even
with low precision—may be useful to help ensure
victims are not missed.

6.4 Supervised learning

Sampling also slightly improves supervised learn-
ing for this problem. We modify Keith et al.’s
logistic regression model based on a dependency

924

path feature vector f(xi, y), instead creating fea-
ture vectors that average over multiple parse sam-
ples (Ep̃(y)[f(xi, y)]) at both train and test time.
With the greedy parser, the model results in 0.229
F1; using 100 samples slightly improves perfor-
mance to 0.234 F1.

7 Semantic role assignment

Semantic role labeling (SRL), the task to predict
argument structures (Gildea and Jurafsky, 2002),
is tightly tied to syntax, and previous work has
found it beneficial to conduct it with joint infer-
ence with constituency parsing, such as with top-k
parse trees (Toutanova et al., 2008) or parse tree
samples (Finkel et al., 2006). Since §4 shows
that Monte Carlo marginalization improves de-
pendency edge prediction, we hypothesize depen-
dency sampling could improve SRL as well.

SRL includes both identifying argument spans,
and assigning spans to specific semantic role la-
bels (argument types). We focus on just the second
task of semantic role assignment: assuming argu-
ment spans are given, to predict the labels. We
experiment with English OntoNotes v5.0 annota-
tions (Weischedel et al., 2013) according to the
CoNLL 2012 test split (Pradhan et al., 2013). We
focus only on predicting among the five core argu-
ments (Arg0 through Arg4) and ignore spans with
gold-standard adjunct or reference labels. We fit
a separate model for each predicate19 among the
2,160 predicates that occur at least once in both
the training and test sets (115,811 and 12,216 sen-
tences respectively).

Our semantic model of label zt ∈ {A0..A4}
for argument head token t and predicate token p,
psem(zt | p, y), is simply the conditional probabil-
ity of the label, conditioned on y’s edge between
t and p if one exists.20 (If they are not directly
connected, the model instead conditions on a ‘no
edge’ feature.) Probabilities are maximum likeli-
hood estimates from the training data’s (predicate,
argument label, path) counts, from either greedy

19That is, for each unique (lemma, framesetID) pair, such
as (view, view-02).

20The dataset’s argument spans must be reconciled with
predicted parse structures to define the argument head t; 90%
of spans are consistent with the greedy parser in that all the
span’s tokens have the same highest ancestor contained with
the span, which we define as the argument head. For incon-
sistent cases, we select the largest subtree (that is, highest
within-span ancestor common to the largest number of the
span’s tokens). It would be interesting to modify the sampler
to restrict to parses that are consistent with the span, as a form
of rejection sampling.

Method Accuracy

Baseline (most common) 0.393
Greedy 0.496
MCSM method, 100-samples 0.529

Table 2: Semantic role assignment accuracy on English
OntoNotes v5.0. The baseline is for each unique pred-
icate, predict the argument that was seen the most at
training time.

parses, or averaged among parse samples. To pre-
dict at test time, the greedy parsing model simply
uses p(zt | p, y(greedy)). The Monte Carlo model,
by contrast, treats it as a directed joint model and
marginalizes over syntactic analyses:

pMC(zt | p, x) =
∑

y∈Ỹ(x)
psem(zt | p, y) p̃syn(y | x).

The baseline accuracy of predicting the predicate’s
most common training-time argument label yields
0.393 accuracy, and the greedy parser performs at
0.496. The Monte Carlo method (with 100 sam-
ples) improves accuracy to 0.529 (Table 2). De-
pendency samples’ usefulness in this limited case
suggests they may help systems that use depen-
dency parses more broadly for SRL (Hacioglu,
2004; Das et al., 2014).

8 Conclusion

In this work, we introduce a straightforward al-
gorithm for sampling from the full joint distri-
bution of a transition-based dependency parser.
We explore using these parse samples to dis-
cover both parsing error and structural ambigu-
ities. Moreover, we find that our Monte Carlo
syntax marginal method not only dominates the
greedy method for dependency path prediction
(especially for longer paths), but also allows for
control of precision-recall tradeoffs. Propagat-
ing dependency uncertainty can potentially help a
wide variety of semantic analysis and information
extraction tasks.

Acknowledgments

The authors would like to thank Rajarshi Das,
Daniel Cohen, Abe Handler, Graham Neubig,
Emma Strubell, and the anonymous reviewers for
their helpful comments.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav

925

Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of ACL.

David Bamman, Brendan O’Connor, and Noah A.
Smith. 2013. Learning latent personas of film char-
acters. In Proceedings of ACL.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of ACL.

David Barber. 2012. Bayesian Reasoning and Machine
Learning. Cambridge University Press.

Paul N. Bennett. 2000. Assessing the calibration of
naive Bayes’ posterior estimates. Technical report,
Carnegie Mellon University.

Bernd Bohnet, Ryan McDonald, Emily Pitler, and
Ji Ma. 2016. Generalized transition-based depen-
dency parsing via control parameters. In Pro-
ceedings of ACL. http://www.aclweb.org/anthology/
P16-1015.

Razvan Bunescu. 2008. Learning with probabilistic
features for improved pipeline models. In Proceed-
ings of EMNLP. http://www.aclweb.org/anthology/
D08-1070.

Jan Buys and Phil Blunsom. 2015. A bayesian
model for generative transition-based dependency
parsing. In Proceedings of the Third International
Conference on Dependency Linguistics (Depling
2015). Uppsala, Sweden. http://www.aclweb.org/
anthology/W15-2108.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP. http://www.
aclweb.org/anthology/D14-1082.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In Proceedings of EMNLP. http://www.aclweb.org/
anthology/D13-1079.

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting informa-
tion from text sources. In ISMB. pages 77–86.

Dipanjan Das, Desai Chen, Andre F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguistics
.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies pages
20–30.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL. http://www.
aclweb.org/anthology/P15-1033.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of NAACL. http:
//www.aclweb.org/anthology/N16-1024.

Bradley Efron. 2010. Large-Scale Inference: Empiri-
cal Bayes Methods for Estimation, Testing, and Pre-
diction. Cambridge University Press, 1st edition.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Struc-
tured Prediction for NLP. Association for Compu-
tational Linguistics, Austin, TX, pages 1–17. http:
//aclweb.org/anthology/W16-5901.

Jenny Rose Finkel, Christopher D. Manning, and An-
drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate Bayesian inference for linguis-
tic annotation pipelines. In Proceedings of EMNLP.

Katrin Fundel, Robert Küffner, and Ralf Zimmer. 2006.
Relex—relation extraction using dependency parse
trees. Bioinformatics 23(3):365–371.

Anindya Ghose, Panagiotis Ipeirotis, and Arun Sun-
dararajan. 2007. Opinion mining using economet-
rics: A case study on reputation systems. In Pro-
ceedings of ACL. Prague, Czech Republic. http:
//www.aclweb.org/anthology/P07-1053.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational linguis-
tics 28(3):245–288.

Joshua Goodman. 1996. Parsing algorithms and met-
rics. In Proceedings of ACL. https://doi.org/10.
3115/981863.981887.

Kadri Hacioglu. 2004. Semantic role labeling using
dependency trees. In Proceedings of the 20th inter-
national conference on Computational Linguistics.
Association for Computational Linguistics.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics. Associa-
tion for Computational Linguistics, Uppsala, Swe-
den, pages 1077–1086. http://www.aclweb.org/
anthology/P10-1110.

Katherine Keith, Abram Handler, Michael Pinkham,
Cara Magliozzi, Joshua McDuffie, and Brendan
O’Connor. 2017. Identifying civilians killed by po-
lice with distantly supervised entity-event extrac-
tion. In Proceedings of EMNLP.

926

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of ACL .

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction mod-
els via the matrix-tree theorem. In Proceedings of
EMNLP. http://www.aclweb.org/anthology/D/D07/
D07-1015.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis Lectures on
Human Language Technologies .

Volodymyr Kuleshov and Percy S. Liang. 2015. Cali-
brated structured prediction. In Advances in Neural
Information Processing Systems.

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings of
ACL. pages 402–412.

Dekang Lin and Patrick Pantel. 2001. DIRT – discov-
ery of inference rules from text. In Proceedings of
KDD.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of EMNLP. http://www.aclweb.org/
anthology/D10-1004.

Khanh Nguyen and Brendan O’Connor. 2015. Pos-
terior calibration and exploratory analysis for natu-
ral language processing models. In Proceedings of
EMNLP. http://aclweb.org/anthology/D15-1182.

Vlad Niculae, André FT Martins, Mathieu Blondel,
and Claire Cardie. 2018. SparseMAP: Differen-
tiable sparse structured inference. arXiv preprint
arXiv:1802.04223 .

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Proceedings of ICML.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of LREC.

Brendan O’Connor, Brandon Stewart, and Noah A.
Smith. 2013. Learning to extract international rela-
tions from political context. In Proceedings of ACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of NAACL
HLT 2007.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In CoNLL.
pages 143–152.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of NAACL. Atlanta, Georgia. http://www.
aclweb.org/anthology/N13-1008.

David Smith and Jason Eisner. 2008. Depen-
dency parsing by belief propagation. In Proceed-
ings of EMNLP. http://www.aclweb.org/anthology/
D08-1016.

David A. Smith and Jason Eisner. 2007. Bootstrapping
feature-rich dependency parsers with entropic pri-
ors. In Proceedings of EMNLP. http://www.aclweb.
org/anthology/D/D07/D07-1070.

Rion Snow, Dan. Jurafsky, and Andrew Y. Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics 34(2):161–
191.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
LDC2013T19. Linguistic Data Consortium,
Philadelphia, PA .

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilin-
gual parsing from raw text to universal dependen-
cies. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Association for Computational

927

Linguistics, Vancouver, Canada, pages 1–19. http:
//www.aclweb.org/anthology/K17-3001.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of ACL. http://www.aclweb.
org/anthology/P14-2107.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014. Greed is good if randomized: New
inference for dependency parsing. In Proceedings
of EMNLP. Doha, Qatar. http://www.aclweb.org/
anthology/D14-1109.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features.
In Proceedings of ACL. http://www.aclweb.org/
anthology/P11-2033.

Yue Zhang and Joakim Nivre. 2012. Analyzing
the effect of global learning and beam-search on
transition-based dependency parsing. In Proceed-
ings of COLING. http://www.aclweb.org/anthology/
C12-2136.

928

