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Abstract

Most work in relation extraction forms a
prediction by looking at a short span of
text within a single sentence containing a
single entity pair mention. This approach
often does not consider interactions across
mentions, requires redundant computation
for each mention pair, and ignores rela-
tionships expressed across sentence bound-
aries. These problems are exacerbated by
the document- (rather than sentence-) level
annotation common in biological text. In
response, we propose a model which simul-
taneously predicts relationships between all
mention pairs in a document. We form pair-
wise predictions over entire paper abstracts
using an efficient self-attention encoder. All-
pairs mention scores allow us to perform
multi-instance learning by aggregating over
mentions to form entity pair representa-
tions. We further adapt to settings without
mention-level annotation by jointly training
to predict named entities and adding a cor-
pus of weakly labeled data. In experiments
on two Biocreative benchmark datasets, we
achieve state of the art performance on the
Biocreative V Chemical Disease Relation
dataset for models without external KB re-
sources. We also introduce a new dataset
an order of magnitude larger than existing
human-annotated biological information ex-
traction datasets and more accurate than
distantly supervised alternatives.

1 Introduction

With few exceptions (Swampillai and Stevenson,
2011; Quirk and Poon, 2017; Peng et al., 2017),
nearly all work in relation extraction focuses on clas-
sifying a short span of text within a single sentence
containing a single entity pair mention. However,
relationships between entities are often expressed
across sentence boundaries or otherwise require a
larger context to disambiguate. For example, 30%
of relations in the Biocreative V CDR dataset (§3.1)

are expressed across sentence boundaries, such as in
the following excerpt expressing a relationship be-
tween the chemical azathioprine and the disease
fibrosis:

Treatment of psoriasis with azathioprine.
Azathioprine treatment benefited 19 (66%)
out of 29 patients suffering from severe pso-
riasis. Haematological complications were
not troublesome and results of biochemical
liver function tests remained normal. Min-
imal cholestasis was seen in two cases and
portal fibrosis of a reversible degree in eight.
Liver biopsies should be undertaken at regular
intervals if azathioprine therapy is contin-
ued so that structural liver damage may be
detected at an early and reversible stage.

Though the entities’ mentions never occur in the
same sentence, the above example expresses that
the chemical entity azathioprine can cause the side
effect fibrosis. Relation extraction models which
consider only within-sentence relation pairs can-
not extract this fact without knowledge of the
complicated coreference relationship between eight
and azathioprine treatment, which, without features
from a complicated pre-processing pipeline, cannot
be learned by a model which considers entity pairs
in isolation. Making separate predictions for each
mention pair also obstructs multi-instance learning
(Riedel et al., 2010; Surdeanu et al., 2012), a tech-
nique which aggregates entity representations from
mentions in order to improve robustness to noise in
the data. Like the majority of relation extraction
data, most annotation for biological relations is dis-
tantly supervised, and so we could benefit from a
model which is amenable to multi-instance learning.
In addition to this loss of cross-sentence and

cross-mention reasoning capability, traditional men-
tion pair relation extraction models typically intro-
duce computational inefficiencies by independently
extracting features for and scoring every pair of
mentions, even when those mentions occur in the
same sentence and thus could share representations.
In the CDR training set, this requires separately
encoding and classifying each of the 5,318 candi-
date mention pairs independently, versus encoding
each of the 500 abstracts once. Though abstracts
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are longer than e.g. the text between mentions,
many sentences contain multiple mentions, leading
to redundant computation.

However, encoding long sequences in a way which
effectively incorporates long-distance context can be
prohibitively expensive. Long Short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997) are among the most popular token encoders
due to their capacity to learn high-quality repre-
sentations of text, but their ability to leverage the
fastest computing hardware is thwarted due to their
computational dependence on the length of the se-
quence — each token’s representation requires as
input the representation of the previous token, lim-
iting the extent to which computation can be par-
allelized. Convolutional neural networks (CNNs),
in contrast, can be executed entirely in parallel
across the sequence, but the amount of context
incorporated into a single token’s representation
is limited by the depth of the network, and very
deep networks can be difficult to learn (Hochreiter,
1998). These problems are exacerbated by longer
sequences, limiting the extent to which previous
work explored full-abstract relation extraction.

To facilitate efficient full-abstract relation ex-
traction from biological text, we propose Bi-affine
Relation Attention Networks (BRANs), a combi-
nation of network architecture, multi-instance and
multi-task learning designed to extract relations be-
tween entities in biological text without requiring
explicit mention-level annotation. We synthesize
convolutions and self-attention, a modification of
the Transformer encoder introduced by Vaswani
et al. (2017), over sub-word tokens to efficiently
incorporate into token representations rich context
between distant mention pairs across the entire ab-
stract. We score all pairs of mentions in parallel
using a bi-affine operator, and aggregate over men-
tion pairs using a soft approximation of the max
function in order to perform multi-instance learning.
We jointly train the model to predict relations and
entities, further improving robustness to noise and
lack of gold annotation at the mention level.

In extensive experiments on two benchmark bio-
logical relation extraction datasets, we achieve state
of the art performance for a model using no exter-
nal knowledge base resources in experiments on the
Biocreative V CDR dataset, and outperform com-
parable baselines on the Biocreative VI ChemProt
dataset. We also introduce a new dataset which
is an order of magnitude larger than existing gold-
annotated biological relation extraction datasets
while covering a wider range of entity and relation
types and with higher accuracy than distantly su-
pervised datasets of the same size. We provide a
strong baseline on this new dataset, and encourage
its use as a benchmark for future biological relation

extraction systems.1

2 Model

We designed our model to efficiently encode long
contexts spanning multiple sentences while forming
pairwise predictions without the need for mention
pair-specific features. To do this, our model first en-
codes input token embeddings using self-attention.
These embeddings are used to predict both entities
and relations. The relation extraction module con-
verts each token to a head and tail representation.
These representations are used to form mention
pair predictions using a bi-affine operation with re-
spect to learned relation embeddings. Finally, these
mention pair predictions are pooled to form entity
pair predictions, expressing whether each relation
type is expressed by each relation pair.

2.1 Inputs

Our model takes in a sequence of N token em-
beddings in Rd. Because the Transformer has no
innate notion of token position, the model relies
on positional embeddings which are added to the
input token embeddings.2 We learn the position
embedding matrix Pm×d which contains a sepa-
rate d dimensional embedding for each position,
limited to m possible positions. Our final input
representation for token xi is:

xi = si + pi

where si is the token embedding for xi and pi is
the positional embedding for the ith position. If i
exceeds m, we use a randomly initialized vector in
place of pi.
We tokenize the text using byte pair encoding

(BPE) (Gage, 1994; Sennrich et al., 2015). The
BPE algorithm constructs a vocabulary of sub-word
pieces, beginning with single characters. Then, the
algorithm iteratively merges the most frequent co-
occurring tokens into a new token, which is added
to the vocabulary. This procedure continues until
a pre-defined vocabulary size is met.

BPE is well suited for biological data for the fol-
lowing reasons. First, biological entities often have
unique mentions made up of meaningful subcompo-
nents, such as 1,2-dimethylhydrazine. Additionally,
tokenization of chemical entities is challenging, lack-
ing a universally agreed upon algorithm (Krallinger
et al., 2015). As we demonstrate in §3.3.2, the sub-
word representations produced by BPE allow the
model to formulate better predictions, likely due to
better modeling of rare and unknown words.

1Our code and data are publicly available at: https:
//github.com/patverga/bran.

2Though our final model incorporates some convolu-
tions, we retain the position embeddings.
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Figure 1: The relation extraction architecture.
Inputs are contextually encoded using the Trans-
former(Vaswani et al., 2017), made up of B
layers of multi-head attention and convolution
subcomponents. Each transformed token is then
passed through a head and tail MLP to produce
two position-specific representations. A bi-affine
operation is performed between each head and
tail representation with respect to each rela-
tion’s embedding matrix, producing a pair-wise
relation affinity tensor. Finally, the scores for
cells corresponding to the same entity pair are
pooled with a separate LogSumExp operation
for each relation to get a final score. The colored
tokens illustrate calculating the score for a given
pair of entities; the model is only given entity
information when pooling over mentions.

2.2 Transformer

We base our token encoder on the Transformer
self-attention model (Vaswani et al., 2017). The

Transformer is made up of B blocks. Each Trans-
former block, which we denote Transformerk, has
its own set of parameters and is made up of two
subcomponents: multi-head attention and a series
of convolutions3. The output for token i of block k,
b
(k)
i , is connected to its input b(k−1)i with a resid-
ual connection (He et al., 2016). Starting with
b
(0)
i = xi:

b
(k)
i = b

(k−1)
i +Transformerk(b

(k−1)
i )

2.2.1 Multi-head Attention
Multi-head attention applies self-attention multiple
times over the same inputs using separately nor-
malized parameters (attention heads) and combines
the results, as an alternative to applying one pass
of attention with more parameters. The intuition
behind this modeling decision is that dividing the
attention into multiple heads make it easier for the
model to learn to attend to different types of rele-
vant information with each head. The self-attention
updates input b(k−1)i by performing a weighted sum
over all tokens in the sequence, weighted by their
importance for modeling token i.

Each input is projected to a key k, value v, and
query q, using separate affine transformations with
ReLU activations (Glorot et al., 2011). Here, k,
v, and q are each in R d

H where H is the number
of heads. The attention weights aijh for head h
between tokens i and j are computed using scaled
dot-product attention:

aijh = σ

(
qTihkjh√

d

)

oih =
∑

j

vjh � aijh

with � denoting element-wise multiplication and σ
indicating a softmax along the jth dimension. The
scaled attention is meant to aid optimization by
flattening the softmax and better distributing the
gradients (Vaswani et al., 2017).
The outputs of the individual attention heads

are concatenated, denoted [·; ·], into oi. All layers
in the network use residual connections between
the output of the multi-headed attention and its in-
put. Layer normalization (Ba et al., 2016), denoted
LN(·), is then applied to the output.

oi = [o1; ...; oh]

mi = LN(b
(k−1)
i + oi)

2.2.2 Convolutions
The second part of our Transformer block is a stack
of convolutional layers. The sub-network used in

3The original Transformer uses feed-forward con-
nections, i.e. width-1 convolutions, whereas we use
convolutions with width > 1.
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Vaswani et al. (2017) uses two width-1 convolu-
tions. We add a third middle layer with kernel
width 5, which we found to perform better. Many
relations are expressed concisely by the immediate
local context, e.g. Michele’s husband Barack, or
labetalol-induced hypotension. Adding this explicit
n-gram modeling is meant to ease the burden on
the model to learn to attend to local features. We
use Cw(·) to denote a convolutional operator with
kernel width w. Then the convolutional portion of
the transformer block is given by:

t
(0)
i = ReLU(C1(mi))

t
(1)
i = ReLU(C5(t

(0)
i ))

t
(2)
i = C1(t

(1)
i )

Where the dimensions of t(0)i and t
(1)
i are in R4d

and that of t(2)i is in Rd.

2.3 Bi-affine Pairwise Scores
We project each contextually encoded token b(B)

i

through two separate MLPs to generate two new
versions of each token corresponding to whether
it will serve as the first (head) or second (tail)
argument of a relation:

eheadi =W
(1)
head(ReLU(W

(0)
headb

(B)
i ))

etaili =W
(1)
tail(ReLU(W

(0)
tailb

(B)
i ))

We use a bi-affine operator to calculate anN×L×N
tensor A of pairwise affinity scores, scoring each
(head, relation, tail) triple:

Ailj = (eheadi L)etailj

where L is a d×L× d tensor, a learned embedding
matrix for each of the L relations. In subsequent
sections we will assume we have transposed the
dimensions of A as d× d× L for ease of indexing.

2.4 Entity Level Prediction
Our data is weakly labeled in that there are labels
at the entity level but not the mention level, making
the problem a form of strong-distant supervision
(Mintz et al., 2009). In distant supervision, edges
in a knowledge graph are heuristically applied to
sentences in an auxiliary unstructured text corpus
— often applying the edge label to all sentences
containing the subject and object of the relation.
Because this process is imprecise and introduces
noise into the training data, methods like multi-
instance learning were introduced (Riedel et al.,
2010; Surdeanu et al., 2012). In multi-instance
learning, rather than looking at each distantly la-
beled mention pair in isolation, the model is trained
over the aggregate of these mentions and a single
update is made. More recently, the weighting func-
tion of the instances has been expressed as neural

network attention (Verga and McCallum, 2016; Lin
et al., 2016; Yaghoobzadeh et al., 2017).
We aggregate over all representations for each

mention pair in order to produce per-relation
scores for each entity pair. For each entity pair
(phead, ptail), let Phead denote the set of indices of
mentions of the entity phead, and let P tail denote
the indices of mentions of the entity ptail. Then
we use the LogSumExp function to aggregate the
relation scores from A across all pairs of mentions
of phead and ptail:

scores(phead, ptail) = log
∑

i∈Phead

j∈P tail

exp(Aij)

The LogSumExp scoring function is a smooth ap-
proximation to the max function and has the bene-
fits of aggregating information from multiple predic-
tions and propagating dense gradients as opposed
to the sparse gradient updates of the max (Das
et al., 2017).

2.5 Named Entity Recognition

In addition to pairwise relation predictions, we
use the Transformer output b(B)

i to make entity
type predictions. We feed b(B)

i as input to a linear
classifier which predicts the entity label for each
token with per-class scores ci:

ci =W (3)b
(B)
i

We augment the entity type labels with the BIO
encoding to denote entity spans. We apply tags
to the byte-pair tokenization by treating each sub-
word within a mention span as an additional token
with a corresponding B- or I- label.

2.6 Training

We train both the NER and relation extraction com-
ponents of our network to perform multi-class clas-
sification using maximum likelihood, where NER
classes yi or relation classes ri are conditionally
independent given deep features produced by our
model with probabilities given by the softmax func-
tion. In the case of NER, features are given by the
per-token output of the transformer:

1

N

N∑

i=1

logP (yi | b(B)
i )

In the case of relation extraction, the features for
each entity pair are given by the LogSumExp over
pairwise scores described in § 2.4. For E entity
pairs, the relation ri is given by:

1

E

E∑

i=1

logP (ri | scores(phead, ptail))
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We train the NER and relation objectives jointly,
sharing all embeddings and Transformer parame-
ters. To trade off the two objectives, we penalize
the named entity updates with a hyperparameter
λ.

3 Results
We evaluate our model on three datasets: The
Biocreative V Chemical Disease Relation bench-
mark (CDR), which models relations between
chemicals and diseases (§3.1); the Biocreative VI
ChemProt benchmark (CPR), which models rela-
tions between chemicals and proteins (§3.2); and a
new, large and accurate dataset we describe in §3.3
based on the human curation in the Chemical Toxi-
cology Database (CTD), which models relationships
between chemicals, proteins and genes.
The CDR dataset is annotated at the level of

paper abstracts, requiring consideration of long-
range, cross sentence relationships, thus evaluation
on this dataset demonstrates that our model is
capable of such reasoning. We also evaluate our
model’s performance in the more traditional setting
which does not require cross-sentence modeling by
performing experiments on the CPR dataset, for
which all annotations are between two entity men-
tions in a single sentence. Finally, we present a
new dataset constructed using strong-distant su-
pervision (§2.4), with annotations at the document
level. This dataset is significantly larger than the
others, contains more relation types, and requires
reasoning across sentences.

3.1 Chemical Disease Relations Dataset
The Biocreative V chemical disease relation extrac-
tion (CDR) dataset4 (Li et al., 2016a; Wei et al.,
2016) was derived from the Comparative Toxicoge-
nomics Database (CTD), which curates interactions
between genes, chemicals, and diseases (Davis et al.,
2008). CTD annotations are only at the document
level and do not contain mention annotations. The
CDR dataset is a subset of these original annota-
tions, supplemented with human annotated, entity
linked mention annotations. The relation annota-
tions in this dataset are also at the document level
only.

3.1.1 Data Preprocessing
The CDR dataset is concerned with extracting
only chemically-induced disease relationships (drug-
related side effects and adverse reactions) concern-
ing the most specific entity in the document. For
example tobacco causes cancer could be marked as
false if the document contained the more specific
lung cancer. This can cause true relations to be
labeled as false, harming evaluation performance.
To address this we follow (Gu et al., 2016, 2017)

4http://www.biocreative.org/

and filter hypernyms according to the hierarchy
in the MESH controlled vocabulary5. All entity
pairs within the same abstract that do not have an
annotated relation are assigned the NULL label.
In addition to the gold CDR data, Peng et al.

(2016) add 15,448 PubMed abstracts annotated in
the CTD dataset. We consider this same set of
abstracts as additional training data (which we
subsequently denote +Data). Since this data does
not contain entity annotations, we take the anno-
tations from Pubtator (Wei et al., 2013), a state
of the art biological named entity tagger and en-
tity linker. See §A.1 for additional data processing
details. In our experiments we only evaluate our
relation extraction performance and all models (in-
cluding baselines) use gold entity annotations for
predictions.
The byte pair vocabulary is generated over the

training dataset — we use a budget of 2500 tokens
when training on the gold CDR data, and a larger
budget of 10,000 tokens when including extra data
described above Additional implementation details
are included in Appendix A.

Data split Docs Pos Neg
Train 500 1,038 4,280
Development 500 1,012 4,136
Test 500 1,066 4,270
CTD 15,448 26,657 146,057

Table 1: Data statistics for the CDR Dataset and
additional data from CTD. Shows the total num-
ber of abstracts, positive examples, and negative
examples for each of the data set splits.

3.1.2 Baselines
We compare against the previous best reported
results on this dataset not using knowledge base
features.6 Each of the baselines are ensemble meth-
ods for within- and cross-sentence relations that
make use of additional linguistic features (syntactic
parse and part-of-speech). Gu et al. (2017) en-
code mention pairs using a CNN while Zhou et al.
(2016a) use an LSTM. Both make cross-sentence
predictions with featurized classifiers.

3.1.3 Results
In Table 2 we show results outperforming the base-
lines despite using no linguistic features. We show
performance averaged over 20 runs with 20 random
seeds as well as an ensemble of their averaged pre-
dictions. We see a further boost in performance
by adding weakly labeled data. Table 3 shows the

5https://www.nlm.nih.gov/mesh/download/
2017MeshTree.txt

6The highest reported score is from (Peng et al.,
2016), but they use explicit lookups into the CTD
knowledge base for the existence of the test entity pair.
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Model P R F1
Gu et al. (2016) 62.0 55.1 58.3
Zhou et al. (2016a) 55.6 68.4 61.3
Gu et al. (2017) 55.7 68.1 61.3
BRAN 55.6 70.8 62.1 ± 0.8
+ Data 64.0 69.2 66.2 ± 0.8
BRAN(ensemble) 63.3 67.1 65.1
+ Data 65.4 71.8 68.4

Table 2: Precision, recall, and F1 results on the
Biocreative V CDR Dataset.

Model P R F1
BRAN (Full) 55.6 70.8 62.1 ± 0.8
– CNN only 43.9 65.5 52.4 ± 1.3
– no width-5 48.2 67.2 55.7 ± 0.9
– no NER 49.9 63.8 55.5 ± 1.8

Table 3: Results on the Biocreative V CDR Dataset
showing precision, recall, and F1 for various model
ablations.

effects of ablating pieces of our model. ‘CNN only’
removes the multi-head attention component from
the transformer block, ‘no width-5’ replaces the
width-5 convolution of the feed-forward component
of the transformer with a width-1 convolution and
‘no NER’ removes the named entity recognition
multi-task objective (§2.5).

3.2 Chemical Protein Relations Dataset

To assess our model’s performance in settings where
cross-sentence relationships are not explicitly evalu-
ated, we perform experiments on the Biocreative VI
ChemProt dataset (CDR) (Krallinger et al., 2017).
This dataset is concerned with classifying into six
relation types between chemicals and proteins, with
nearly all annotated relationships occurring within
the same sentence.

3.2.1 Baselines
We compare our models against those competing in
the official Biocreative VI competition (Liu et al.,
2017). We compare to the top performing team
whose model is directly comparable with ours — i.e.
used a single (non-ensemble) model trained only on
the training data (many teams use the development
set as additional training data). The baseline mod-
els are standard state of the art relation extraction
models: CNNs and Gated RNNs with attention.
Each of these baselines uses mention-specific fea-
tures encoding relative position of each token to
the two target entities being classified, whereas our
model aggregates over all mention pairs in each sen-
tence. It is also worth noting that these models use
a large vocabulary of pre-trained word embeddings,
giving their models the advantage of far more model
parameters, as well as additional information from

Model P R F1
CNN† 50.7 43.0 46.5
GRU+Attention† 53.0 46.3 49.5
BRAN 48.0 54.1 50.8 ± .01

Table 4: Precision, recall, and F1 results on the
Biocreative VI Chem-Prot Dataset. † denotes re-
sults from Liu et al. (2017)

unsupervised pre-training.

3.2.2 Results
In Table 4 we see that even though our model
forms all predictions simultaneously between all
pairs of entities within the sentence, we are able
to outperform state of the art models classifying
each mention pair independently. The scores shown
are averaged across 10 runs with 10 random seeds.
Interestingly, our model appears to have higher
recall and lower precision, while the baseline models
are both precision-biased, with lower recall. This
suggests that combining these styles of model could
lead to further gains on this task.

3.3 New CTD Dataset
3.3.1 Data
Existing biological relation extraction datasets in-
cluding both CDR (§3.1) and CPR (§3.2) are rela-
tively small, typically consisting of hundreds or a
few thousand annotated examples. Distant supervi-
sion datasets apply document-independent, entity-
level annotations to all sentences leading to a large
proportion of incorrect labels. Evaluations on this
data involve either very small (a few hundred) gold
annotated examples or cross validation to predict
the noisy, distantly applied labels (Mallory et al.,
2015; Quirk and Poon, 2017; Peng et al., 2017).

We address these issues by constructing a new
dataset using strong-distant supervision containing
document-level annotations. The Comparative Tox-
icogenomics Database (CTD) curates interactions
between genes, chemicals, and diseases. Each rela-
tion in the CTD is associated with a disambiguated
entity pair and a PubMed article where the relation
was observed.

To construct this dataset, we collect the abstracts
for each of the PubMed articles with at least one
curated relation in the CTD database. As in §3.1,
we use PubTator to automatically tag and disam-
biguate the entities in each of these abstracts. If
both entities in the relation are found in the ab-
stract, we take the (abstract, relation) pair as a
positive example. The evidence for the curated re-
lation could occur anywhere in the full text article,
not just the abstract. Abstracts with no recovered
relations are discarded. All other entity pairs with
valid types and without an annotated relation that
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Types Docs Pos Neg
Total 68,400 166,474 1198,493
Chemical/Disease 64,139 93,940 571,932
Chemical/Gene 34,883 63,463 360,100
Gene/Disease 32,286 9,071 266,461

Table 5: Data statistics for the new CTD dataset.

occur in the remaining abstracts are considered neg-
ative examples and assigned the NULL label. We
additionally remove abstracts containing greater
than 500 tokens7. This limit removed about 10% of
the total data including numerous extremely long
abstracts. The average token length of the remain-
ing data was 2̃30 tokens. With this procedure, we
are able to collect 166,474 positive examples over
13 relation types, with more detailed statistics of
the dataset listed in Table 5.
We consider relations between chemical-disease,

chemical-gene, and gene-disease entity pairs down-
loaded from CTD8. We remove inferred relations
(those without an associated PubMed ID) and con-
sider only human curated relationships. Some
chemical-gene entity pairs were associated with
multiple relation types in the same document. We
consider each of these relation types as a separate
positive example.
The chemical-gene relation data contains over

100 types organized in a shallow hierarchy. Many
of these types are extremely infrequent, so we map
all relations to the highest parent in the hierar-
chy, resulting in 13 relation types. Most of these
chemical-gene relations have an increase and de-
crease version such as increase_expression and de-
crease_expression. In some cases, there is also an
affects relation (affects_expression) which is used
when the directionality is unknown. If the affects
version is more common, we map decrease and in-
crease to affects. If affects is less common, we drop
the affects examples and keep the increase and de-
crease examples as distinct relations, resulting in
the final set of 10 chemical-gene relation types.

3.3.2 Results
In Table 7 we list precision, recall and F1 achieved
by our model on the CTD dataset, both overall and
by relation type. Our model predicts each of the
relation types effectively, with higher performance
on relations with more support.

In Table 8 we see that our sub-word BPE model
out-performs the model using the Genia tokenizer
(Kulick et al., 2012) even though our vocabulary
size is one-fifth as large. We see a 1.7 F1 point
boost in predicting Pubtator NER labels for BPE.
This could be explained by the increased out-of-

7We include scripts to generate the unfiltered set of
data as well to encourage future research

8http://ctdbase.org/downloads/

Train Dev Test
Total 120k 15k 15k
Chemical/Disease
marker/mechanism 41,562 5,126 5,167
therapeutic 24,151 2,929 3,059
Gene/Disease
marker/mechanism 5,930 825 819
therapeutic 560 77 75
Chemical/Gene
increase_expression 15,851 1,958 2,137
increase_MP 5,986 740 638
decrease_expression 5,870 698 783
increase_activity 4,154 467 497
affects_response 3,834 475 508
decrease_activity 3,124 396 434
affects_transport 3,009 333 361
increase_reaction 2,881 367 353
decrease_reaction 2,221 247 269
decrease_MP 798 100 120

Table 6: Data statistics for the new CTD dataset
broken down by relation type. The first column lists
relation types separated by the types of the entities.
Columns 2–4 show the number of positive examples
of that relation type. MP stands for metabolic
processing.

vocabulary (OOV) rate for named entities. Word
training data has 3.01 percent OOV rate for tokens
with an entity. The byte pair-encoded data has an
OOV rate of 2.48 percent. Note that in both the
word-tokenized and byte pair-tokenized data, we
replace tokens that occur less than five times with
a learned UNK token.
Figure 2 depicts the model’s performance on re-

lation extraction as a function of distance between
entities. For example, the blue bar depicts perfor-
mance when removing all entity pair candidates
(positive and negative) whose closest mentions are
more than 11 tokens apart. We consider remov-
ing entity pair candidates with distances of 11, 25,
50, 100 and 500 (the maximum document length).
The average sentence length is 22 tokens. We see
that the model is not simply relying on short range
relationships, but is leveraging information about
distant entity pairs, with accuracy increasing as the
maximum distance considered increases. Note that
all results are taken from the same model trained
on the full unfiltered training set.

4 Related work
Relation extraction is a heavily studied area in the
NLP community. Most work focuses on news and
web data (Doddington et al., 2004; Riedel et al.,
2010; Hendrickx et al., 2009).9 Recent neural net-

9And TAC KBP: https://tac.nist.gov
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P R F1
Total
Micro F1 44.8 50.2 47.3
Macro F1 34.0 29.8 31.7
Chemical/Disease
marker/mechanism 46.2 57.9 51.3
therapeutic 55.7 67.1 60.8
Gene/Disease
marker/mechanism 42.2 44.4 43.0
therapeutic 52.6 10.1 15.8
Chemical/Gene
increases_expression 39.7 48.0 43.3
increases_MP 26.3 35.5 29.9
decreases_expression 34.4 32.9 33.4
increases_activity 24.5 24.7 24.4
affects_response 40.9 35.5 37.4
decreases_activity 30.8 19.4 23.5
affects_transport 28.7 23.8 25.8
increases_reaction 12.8 5.6 7.4
decreases_reaction 12.3 5.7 7.4
decreases_MP 28.9 7.0 11.0

Table 7: BRAN precision, recall and F1 results for
the full CTD dataset by relation type. The model
is optimized for micro F1 score across all types.

Model P R F1
Relation extraction
Words 44.9 48.8 46.7 ± 0.39
BPE 44.8 50.2 47.3 ± 0.19
NER
Words 91.0 90.7 90.9 ± 0.13
BPE 91.5 93.6 92.6 ± 0.12

Table 8: Precision, recall, and F1 results for CTD
named entity recognition and relation extraction,
comparing BPE to word-level tokenization.

work approaches to relation extraction have focused
on CNNs (dos Santos et al., 2015; Zeng et al., 2015)
or LSTMs (Miwa and Bansal, 2016; Verga et al.,
2016a; Zhou et al., 2016b) and replacing stage-wise
information extraction pipelines with a single end-
to-end model (Miwa and Bansal, 2016; Ammar
et al., 2017; Li et al., 2017). These models all
consider mention pairs separately.

There is also a considerable body of work specifi-
cally geared towards supervised biological relation
extraction including protein-protein (Pyysalo et al.,
2007; Poon et al., 2014; Mallory et al., 2015), drug-
drug (Segura-Bedmar et al., 2013), and chemical-
disease (Gurulingappa et al., 2012; Li et al., 2016a)
interactions, and more complex events (Kim et al.,
2008; Riedel et al., 2011). Our work focuses on mod-
eling relations between chemicals, diseases, genes
and proteins, where available annotation is often
at the document- or abstract-level, rather than the

chem_gene chem_disease gene_disease all
Dataset
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Figure 2: Performance on the CTD dataset when
restricting candidate entity pairs by distance. The
x-axis shows the coarse-grained relation type. The
y-axis shows F1 score. Different colors denote max-
imum distance cutoffs.

sentence level.
Some previous work exists on cross-sentence

relation extraction. Swampillai and Stevenson
(2011) and Quirk and Poon (2017) consider featur-
ized classifiers over cross-sentence syntactic parses.
Most similar to our work is that of Peng et al.
(2017), which uses a variant of an LSTM to encode
document-level syntactic parse trees. Our work
differs in three key ways. First, we operate over
raw tokens negating the need for part-of-speech
or syntactic parse features which can lead to cas-
cading errors. We also use a feed-forward neural
architecture which encodes long sequences far more
efficiently compared to the graph LSTM network of
Peng et al. (2017). Finally, our model considers all
mention pairs simultaneously rather than a single
mention pair at a time.
We employ a bi-affine function to form pairwise

predictions between mentions. Such models have
also been used for knowledge graph link prediction
(Nickel et al., 2011; Li et al., 2016b), with variations
such as restricting the bilinear relation matrix to
be diagonal (Yang et al., 2015) or diagonal and
complex (Trouillon et al., 2016). Our model is
similar to recent approaches to graph-based depen-
dency parsing, where bilinear parameters are used
to score head-dependent compatibility (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017).

5 Conclusion

We present a bi-affine relation attention network
that simultaneously scores all mention pairs within
a document. Our model performs well on three
datasets, including two standard benchmark biolog-
ical relation extraction datasets and a new, large
and high-quality dataset introduced in this work.
Our model out-performs the previous state of the
art on the Biocreative V CDR dataset despite us-
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ing no additional linguistic resources or mention
pair-specific features.
Our current model predicts only into a fixed

schema of relations given by the data. However,
this could be ameliorated by integrating our model
into open relation extraction architectures such
as Universal Schema (Riedel et al., 2013; Verga
et al., 2016b). Our model also lends itself to other
pairwise scoring tasks such as hypernym prediction,
co-reference resolution, and entity resolution. We
will investigate these directions in future work.
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A Implementation Details

The model is implemented in Tensorflow (Abadi
et al., 2015) and trained on a single TitanX gpu.
The number of transformer block repeats is B = 2 .
We optimize the model using Adam (Kingma and
Ba, 2015) with best parameters chosen for ε, β1,
β2 chosen from the development set. The learning
rate is set to 0.0005 and batch size 32. In all of our
experiments we set the number of attention heads
to h = 4.

We clip the gradients to norm 10 and apply noise
to the gradients (Neelakantan et al., 2015). We
tune the decision threshold for each relation type
separately and perform early stopping on the devel-
opment set. We apply dropout (Srivastava et al.,
2014) to the input layer randomly replacing words
with a special UNK token with keep probability .85.
We additionally apply dropout to the input T (word
embedding + position embedding), interior layers,
and final state. At each step, we randomly sample
a positive or negative (NULL class) minibatch with
probability 0.5.

A.1 Chemical Disease Relations Dataset

Token embeddings are pre-trained using skipgram
(Mikolov et al., 2013) over a random subset of 10%
of all PubMed abstracts with window size 10 and
20 negative samples. We merge the train and devel-
opment sets and randomly take 850 abstracts for
training and 150 for early stopping. Our reported
results are averaged over 10 runs and using different
splits. All baselines train on both the train and
development set. Models took between 4 and 8
hours to train.
ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradi-

ent noise η = .1. Dropout was applied to the word
embeddings with keep probability 0.85, internal lay-
ers with 0.95 and final bilinear projection with 0.35
for the standard CRD dataset experiments. When
adding the additional weakly labeled data: word
embeddings with keep probability 0.95, internal
layers with 0.95 and final bilinear projection with
0.5.

A.2 Chemical Protein Relations Dataset

We construct our byte-pair encoding vocabulary
using a budget of 7500. The dataset contains an-
notations for a larger set of relation types than are
used in evaluation. We train on only the relation
types in the evaluation set and set the remaining
types to the Null relation. The embedding dimen-
sion is set to 200 and all embeddings are randomly
initialized. ε was set to 1e-8, β1 to .1, and β2 to 0.9.
Gradient noise η = 1.0. Dropout was applied to the
word embeddings with keep probability 0.5, internal
layers with 1.0 and final bilinear projection with
0.85 for the standard CRD dataset experiments.

A.3 Full CTD Dataset
We tune separate decision boundaries for each re-
lation type on the development set. For each pre-
diction, the relation type with the maximum prob-
ability is assigned. If the probability is below the
relation specific threshold, the prediction is set to
NULL. We use embedding dimension 128 with all
embeddings randomly initialized. Our byte pair
encoding vocabulary is constructed with a budget
of 50,000. Models took 1 to 2 days to train.
ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradi-

ent noise η = .1.Dropout was applied to the word
embeddings with keep probability 0.95, internal
layers with 0.95 and final bilinear projection with
0.5

884


