
Proceedings of NAACL-HLT 2018, pages 720–730
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Polyglot Semantic Parsing in APIs

Kyle Richardson†, Jonathan Berant‡, Jonas Kuhn†
†Institute for Natural Language Processing, University of Stuttgart, Germany

{kyle,jonas}@ims.uni-stuttgart.de
‡Tel-Aviv University, Israel

joberant@cs.tau.ac.il

Abstract
Traditional approaches to semantic parsing
(SP) work by training individual models for
each available parallel dataset of text-meaning
pairs. In this paper, we explore the idea of
polyglot semantic translation, or learning se-
mantic parsing models that are trained on mul-
tiple datasets and natural languages. In par-
ticular, we focus on translating text to code
signature representations using the software
component datasets of Richardson and Kuhn
(2017a,b). The advantage of such models is
that they can be used for parsing a wide va-
riety of input natural languages and output
programming languages, or mixed input lan-
guages, using a single unified model. To fa-
cilitate modeling of this type, we develop a
novel graph-based decoding framework that
achieves state-of-the-art performance on the
above datasets, and apply this method to two
other benchmark SP tasks.

1 Introduction

Recent work by Richardson and Kuhn (2017a,b);
Miceli Barone and Sennrich (2017) considers the
problem of translating source code documentation
to lower-level code template representations as
part of an effort to model the meaning of such doc-
umentation. Example documentation for a number
of programming languages is shown in Figure 1,
where each docstring description in red describes
a given function (blue) in the library. While cap-
turing the semantics of docstrings is in general
a difficult task, learning the translation from de-
scriptions to formal code representations (e.g., for-
mal representations of functions) is proposed as a
reasonable first step towards learning more gen-
eral natural language understanding models in the
software domain. Under this approach, one can
view a software library, or API, as a kind of par-
allel translation corpus for studying text → code
or code→ text translation.

1. (en, Java) Documentation

*Returns the greater of two long values
public static long max(long a, long b)

2. (en, Python) Documentation
max(self, a, b):

"""Compares two values numerically
and returns the maximum"""

3. (en, Haskell) Documentation
--| "The largest element of a non-empty structure"
maximum :: forall z. Ord a a => t a -> a

4. (de, PHP) Documentation

*gibt den größeren dieser Werte zurück.
max (mixed $value1, mixed $value2)

Figure 1: Example source code documentation.

Richardson and Kuhn (2017b) extracted the
standard library documentation for 10 popular
programming languages across a number of natu-
ral languages to study the problem of text to func-
tion signature translation. Initially, these datasets
were proposed as a resource for studying semantic
parser induction (Mooney, 2007), or for building
models that learn to translate text to formal mean-
ing representations from parallel data. In follow-
up work (Richardson and Kuhn, 2017a), they pro-
posed using the resulting models to do automated
question-answering (QA) and code retrieval on
target APIs, and experimented with an additional
set of software datasets built from 27 open-source
Python projects.

As traditionally done in SP (Zettlemoyer and
Collins, 2012), their approach involves learning
individual models for each parallel dataset or lan-
guage pair, e.g., (en, Java), (de, PHP), and (en,
Haskell). Looking again at Figure 1, we notice
that while programming languages differ in terms
of representation conventions, there is often over-
lap between the functionality implemented and
naming in these different languages (e.g., the max

720

function), and redundancy in the associated lin-
guistic descriptions. In addition, each English
description (Figure 1.1-1.3) describes max dif-
ferently using the synonyms greater, maximum,
largest. In this case, it would seem that training
models on multiple datasets, as opposed to single
language pairs, might make learning more robust,
and help to capture various linguistic alternatives.

With the software QA application in mind, an
additional limitation is that their approach does
not allow one to freely translate a given descrip-
tion to multiple output languages, which would be
useful for comparing how different programming
languages represent the same functionality. The
model also cannot translate between natural lan-
guages and programming languages that are not
observed during training. While software docu-
mentation is easy to find in bulk, if a particular
API is not already documented in a language other
than English (e.g., Haskell in de), it is unlikely
that such a translation will appear without consid-
erable effort by experienced translators. Similarly,
many individual APIs may be too small or poorly
documented to build individual models or QA ap-
plications, and will in some way need to bootstrap
off of more general models or resources.

To deal with these issues, we aim to learn more
general text-to-code translation models that are
trained on multiple datasets simultaneously. Our
ultimate goal is to build polyglot translation mod-
els (cf. Johnson et al. (2016)), or models with
shared representations that can translate any input
text to any output programming language, regard-
less of whether such language pairs were encoun-
tered explicitly during training. Inherent in this
task is the challenge of building an efficient poly-
glot decoder, or a translation mechanism that al-
lows such crossing between input and output lan-
guages. A key challenge is ensuring that such a de-
coder generates well-formed code representations,
which is not guaranteed when one simply applies
standard decoding strategies from SMT and neural
MT (cf. Cheng et al. (2017)). Given our ultimate
interest in API QA, such a decoder must also fa-
cilitate monolingual translation, or being able to
translate to specific output languages as needed.

To solve the decoding problem, we introduce
a new graph-based decoding and representation
framework that reduces to solving shortest path
problems in directed graphs. We investigate
several translation models that work within this

framework, including traditional SMT models and
models based on neural networks, and report state-
of-the-art results on the technical documentation
task of Richardson and Kuhn (2017b,a). To show
the applicability of our approach to more conven-
tional SP tasks, we apply our methods to the Geo-
Query domain (Zelle and Mooney, 1996) and the
Sportscaster corpus (Chen et al., 2010). These
experiments also provide insight into the main
technical documentation task and highlight the
strengths and weaknesses of the various transla-
tion models being investigated.

2 Related Work

Our approach builds on the baseline models intro-
duced in Richardson and Kuhn (2017b) (see also
Deng and Chrupała (2014)). Their work is posi-
tioned within the broader SP literature, where tra-
ditionally SMT (Wong and Mooney, 2006a) and
parsing (Zettlemoyer and Collins, 2009) methods
are used to study the problem of translating text
to formal meaning representations, usually center-
ing around QA applications (Berant et al., 2013).
More recently, there has been interest in using neu-
ral network approaches either in place of (Dong
and Lapata, 2016; Kočiský et al., 2016) or in
combination with (Misra and Artzi, 2016; Jia and
Liang, 2016; Cheng et al., 2017) these traditional
models, the latter idea we look at in this paper.

Work in NLP on software documentation has
accelerated in recent years due in large part to the
availability of new data resources through web-
sites such as StackOverflow and Github (cf. Al-
lamanis et al. (2017)). Most of this recent work
focuses on processing large amounts of API data
in bulk (Gu et al., 2016; Miceli Barone and Sen-
nrich, 2017), either for learning longer executable
programs from text (Yin and Neubig, 2017; Rabi-
novich et al., 2017), or solving the inverse prob-
lem of code to text generation (Iyer et al., 2016;
Richardson et al., 2017). In contrast to our work,
these studies do not look explicitly at translating
to target APIs, or at non-English documentation.

The idea of polyglot modeling has gained some
traction in recent years for a variety of problems
(Tsvetkov et al., 2016) and has appeared within
work in SP under the heading of multilingual SP
(Jie and Lu, 2014; Duong et al., 2017). A related
topic is learning from multiple knowledge sources
or domains (Herzig and Berant, 2017), which is
related to our idea of learning from multiple APIs.

721

When building models that can translate between
unobserved language pairs, we use the term zero-
shot translation from Johnson et al. (2016).

3 Baseline Semantic Translator

Problem Formulation Throughout the paper,
we refer to target code representations as API com-
ponents. In all cases, components will consist
of formal representations of functions, or func-
tion signatures (e.g., long max(int a, int
b)), which include a function name (max), a
sequence of arguments (int a, int b), and
other information such as a return value (long)
and namespace (for more details, see Richard-
son (2018)). For a given API dataset D =
{(xi, zi)}ni=1 of size n, the goal is to learn a model
that can generate exactly a correct component se-
quence z = (z1, .., z|z|), within a finite space C of
signatures (i.e., the space of all defined functions),
for each input text sequence x = (x1, ..., x|x|).
This involves learning a probability distribution
p(z | x). As such, one can think of this underlying
problem as a constrained MT task.

In this section, we describe the baseline ap-
proach of Richardson and Kuhn (2017b). Techni-
cally, their approach has two components: a sim-
ple word-based translation model and task specific
decoder, which is used to generate a k-best list of
candidate component representations for a given
input x. They then use a discriminative model to
rerank the translation output using additional non-
world level features. The goal in this section is
to provide the technical details of their translation
approach, which we improve in Section 4.

3.1 Word-based Translation Model

The translation models investigated in Richardson
and Kuhn (2017b) use a noisy-channel formula-
tion where p(z | x) ∝ p(x | z)p(z) via Bayes
rule. By assuming a uniform prior on output com-
ponents, p(z), the model therefore involves esti-
mating p(x | z), which under a word-translation
model is computed using the following formula:
p(x | z) =

∑
a∈A p(x, a | z), where the summa-

tion ranges over the set of all many-to-one word
alignments A from x → z, with |A| equal to
(|z| + 1)|x|. They investigate various types of
sequence-based alignment models (Och and Ney,
2003), and find that the classic IBM Model 1 out-
performs more complex word models. This model
factors in the following way and assumes an inde-

pendent word generation process:

p(x | z) =
1

|A|

|x|∏

j=1

|z|∑

i=0

pt(xj | zi) (1)

where each pt defines a multinomial distribution
over a given component term z for all words x.

The decoding problem for the above transla-
tion model involves finding the most likely out-
put ẑ, which requires solving an arg maxz over
Equation 1. In the general case, this problem is
known to be NP-complete for the models under
consideration (Knight, 1999) largely due to the
large space of possible predictions z. Richardson
and Kuhn (2017b) avoid these issues by exploiting
the finiteness of the target component search space
(an idea we also pursue here and discuss more be-
low), and describe a constrained decoding algo-
rithm that runs in time O(|C| log |C|). While this
works well for small APIs, it becomes less feasi-
ble when dealing with large sets of APIs, as in the
polyglot case, or with more complex semantic lan-
guages typically used in SP (Liang, 2013).

4 Shortest Path Framework

To improve the baseline translation approach used
previously (Section 3.1), we pursue a graph based
approach. Given the formulation above and the
finiteness of our prediction space C, our approach
exploits the fact that we can represent the complete
component search space for any set of APIs as a
directed acyclic finite-state automaton (DAFSA),
such as the one shown graphically in Figure 2. The
underlying graph is constructed by concatenat-
ing all of the component representations for each
API of interest and applying standard finite-state
construction and minimization techniques (Mohri,
1996). Each path in the resulting compact automa-
ton is therefore a well-formed component repre-
sentation.

Using an idea from Johnson et al. (2016), we
add to each component representation an artificial
token that identifies the output programming lan-
guage or library. For example, the two edges from
the initial state 0 in Figure 2 are labeled as 2C
and 2Clojure, which identify the C and Clojure
programming languages respectively. All paths
starting from the right of these edges are there-
fore valid paths in each respective programming
language. The paths starting from the initial state
0, in contrast, correspond to all valid component
representations in all languages.

722

0.00

s0

∞5

s5

∞1

s1

∞6

s6

∞2

s2

∞3

s3

∞7

s7

∞4

s4

∞9

s9

∞10

s10

∞11

s11

∞8

s8
2C

2Clojure

numeric

algo

math

math
ceil

atan2

atan2

ceil

x

x

arg

y

Figure 2: A DAFSA representation for a portion of the component sequence search space C that includes math
functions in C and Clojure, and an example path/translation (in bold): 2C numeric math ceil arg.

Decoding reduces to the problem of finding a
path for a given text input x. For example, given
the input the ceiling of a number, we would want
to find the paths corresponding to the component
translations numeric math ceil arg (in C)
and algo math ceil x (in Clojure) in the
graph shown in Figure 2. Using the trick above,
our setup facilitates both monolingual decoding,
i.e., generating components specific to a particular
output language (e.g., the C language via the path
shown in bold), and polyglot decoding, i.e., gener-
ating any output language by starting at the initial
state 0 (e.g., C and Clojure).

We formulate the decoding problem using a
variant of the well-known single source shortest
path (SSSP) algorithm for directed acyclic graphs
(DAGs) (Johnson (1977)). This involves a graph
G = (V,E) (nodes V and labeled edges E, see
graph in Figure 2), and taking an off-line topo-
logical sort of the graph’s vertices. Using a data
structure d ∈ R|V | (initialized as ∞|V |, as shown
in Figure 2), the standard SSSP algorithm (which
is the forward update variant of the Viterbi algo-
rithm (Huang, 2008)) works by searching forward
through the graph in sorted order and finding for
each node v an incoming labeled edge u, with la-
bel z, that solves the following recurrence:

d(v) = min
(u,z):(u,v,z)∈E

{
d(u) + w(u, v, z)

}
(2)

where d(u) is shortest path score from a unique
source node b to the incoming node u (computed
recursively) andw(u, v, z) is the weight of the par-
ticular labeled edge. The weight of the resulting
shortest path is commonly taken to be the sum
of the path edge weights as given by w, and the
output translation is the sequence of labels associ-
ated with each edge. This algorithm runs in linear
time over the size of the graph’s adjacency matrix
(Adj) and can be extended to find k SSSPs. In
the standard case, a weighting function w is pro-

Algorithm 1 Lexical Shortest Path Search
Input: Input x of size n, DAG G = (V,E), lexical transla-

tion function pt, source node b with initial score o.
Output: Shortest component path
1: d[V [G]]←∞, π[V [G]]← Nil, d[b]← o
2: s[V [G], n]← 0.0 . Shortest path sums at each node
3: for each vertex u ≥ b ∈ V [G] in sorted order do
4: for each vertex and label (v, z) ∈ Adj[u] do
5: score← −log

[∏n
i pt(xi | z) + s[u, i]

]
6: if d[v] > score then
7: d[v]← score, π[v]← u
8: for i in 1, .., n do . Update scores
9: s[v, i]← pt(xi | z) + s[u, i]

10: return FINDPATH(π, |V |, b)

vided by assuming a static weighted graph. In our
translation context, we replace w with a transla-
tion model, which is used to dynamically generate
edge weights during the SSSP search for each in-
put x by scoring the translation between x and each
edge label z encountered.

Given this general framework, many differ-
ent translation models can be used for scoring.
In what follows, we describe two types of de-
coders based on lexical translation (or unigram)
and neural sequence models. Technically, each
decoding algorithm involves modifying the stan-
dard SSSP search procedure by adding an addi-
tional data structure s to each node (see Figure 2),
which is used to store information about transla-
tions (e.g., running lexical translation scores, RNN
state information) associated with particular short-
est paths. By using these two very different mod-
els, we can get insight into the challenges asso-
ciated with the technical documentation transla-
tion task. As we show in Section 6, each model
achieves varying levels of success when subjected
to a wider range of SP tasks, which reveals differ-
ences between our task and other SP tasks.

4.1 Lexical Translation Shortest Path

In our first model, we use the lexical translation
model and probability function pt in Equation 1 as

723

the weighting function, which can be learned ef-
ficiently off-line using the EM algorithm. When
attempting to use the SSSP procedure to compute
this equation for a given source input x, we im-
mediately have the problem that such a compu-
tation requires a complete component representa-
tion z (Knight and Al-Onaizan, 1998). We use an
approximation1 that involves ignoring the normal-
izer |A| and exploiting the word independence as-
sumption of the model, which allows us to incre-
mentally compute translation scores for individ-
ual source words given output translations corre-
sponding to shortest paths during the SSSP search.

The full decoding algorithm in shown in Algo-
rithm 1, where the red highlights the adjustments
made to the standard SSSP search as presented in
Cormen et al. (2009). The main modification in-
volves adding a data structure s ∈ R|V | × |x| (ini-
tialized as 0.0|V |×|x| at line 2) that stores a running
sum of source word scores given the best trans-
lations at each node, which can be used for com-
puting the inner sum in Equation 1. For example,
given an input utterance ceiling function, s6 in Fig-
ure 2 contains the independent translation scores
for words ceiling and function given the edge la-
bel numeric and pt. Later on in the search, these
scores are used to compute s7, which will provide
translation scores for each word given the edge se-
quence numeric math. Taking the product over any
given sj (as done in line 7 to get score) will give
the probability of the shortest path translation at
the particular point j. Here, the transformation
into − log space is used to find the minimum in-
coming path. Standardly, the data structure π can
be used to retrieve the shortest path back to the
source node b (done via the FINDPATH method).

4.2 Neural Shortest Path

Our second set of models use neural networks to
compute the weighting function in Equation 2. We
use an encoder-decoder model with global atten-
tion (Bahdanau et al., 2014; Luong et al., 2015),
which has the following two components:

Encoder Model The first is an encoder net-
work, which uses a bi-directional recurrent neural
network architecture with LSTM units (Hochre-
iter and Schmidhuber, 1997) to compute a se-
quence of forward annotations or hidden states
(
−→
h 1, ...,

−→
h |x|) and a sequence of backward hid-

1Details about the approx. are provided as supp. material.

den states (
←−
h , ...,

←−
h |x|) for the input sequence

(x1, ..., x|x|). Standardly, each word is then rep-
resented as the concatenation of its forward and
backward states: hj = [

−→
h j ,
←−
h j].

Decoder Model The second component is a de-
coder network, which directly computes the con-
ditional distribution p(z | x) as follows:

p(z | x) =

|z|∑

i=1

log pΘ(zi | z<i, x) (3)

pΘ(zi | z<i, x) ∼ softmax(f(Θ, z<i, x)) (4)

where f is a non-linear function that encodes in-
formation about the sequence z<i and the input
x given the model parameters Θ. We can think
of this model as an ordinary recurrent language
model that is additionally conditioned on the input
x using information from our encoder. We imple-
ment the function f in the following way:

f(Θ, z<i, x) = Woηi + bo (5)

ηi = MLP(ci, gi) (6)

gi = LSTMdec(gi−1,Eout
zi−1

, ci) (7)

where MLP is a multi-layer perceptron model with
a single hidden layer, Eout ∈ R|Σdec|×e is a ran-
domly initialized embedding matrix, gi is the de-
coder’s hidden state at step i, and ci is a context-
vector that encodes information about the input x
and the encoder annotations. Each context vec-
tor ci in turn is a weighted sum of each annota-
tion hj against an attention vector αi,j , or ci =∑|x|

j=1 αi,jhj , which is jointly learned using an ad-
ditional single layered multi-layer perceptron de-
fined in the following way:

αi,j ∝ exp(ei,j); ei,j = MLP(gi−1, hj) (8)

Lexical Bias and Copying In contrast to stan-
dard MT tasks, we are dealing with a relatively
low-resource setting where the sparseness of the
target vocabulary is an issue. For this reason, we
experimented with integrating lexical translation
scores using a biasing technique from Arthur et al.
(2016). Their method is based on the following
computation for each token zi:

biasi =

pt′(z1 | x1) . . . pt′(z1 | x|x|)
...

. . .
...

pt′(z|Σdec| | x1) . . . pt′(z|Σdec| | x|x|)

αi,1

...
αi,|x|

724

Algorithm 2 Neural Shortest Path Search
Input: Input x, DAG G, neural parameters Θ and non-linear

function f , beam size l, source node b with init. score o.
Output: Shortest component path
1: d[V [G]]←∞, d[b]← o, π[V [G]]← Nil
2: s[V [G]]← Nil . Path state information
3: s[b]← InitState() . Initialize source state
4: for each vertex u ≥ b ∈ V [G] in sorted order do
5: if isinf(d[u]) then continue
6: p← s[u] . Current state at node u, or z<i

7: L1
[l] ← arg max

(v1,...,vk)∈Adj[u]

softmax(f(Θ, p, x))

8: for each vertex and label (v, z) ∈ L do
9: score← − log pΘ(z | p, x) + d[u]

10: if d[v] > score then
11: d[v]← score, π[v]← u
12: s[v]← UpdateState(p, z)

13: return FINDPATH(π, |V |, b)

The first matrix uses the inverse (pt′) of the lex-
ical translation function pt already introduced to
compute the probability of each word in the target
vocabulary Σdec (the columns) with each word in
the input x (the rows), which is then weighted by
the attention vector from Equation 8. biasi is then
used to modify Equation 5 in the following way:

fbias(Θ, z<i, x) = Woηi + bo+

log(biasi + ε)

where ε is a hyper-parameter that helps to preserve
numerical stability and biases more heavily on the
lexical model when set lower.

We also experiment with the copying mecha-
nism from Jia and Liang (2016), which works by
allowing the decoder to choose from a set of latent
actions, aj , that includes writing target words ac-
cording to Equation 5, as done standardly, or copy-
ing source words from x, or copy[xi] according
to the attention scores in Equation 8. A distribu-
tion is then computed over these actions using a
softmax function and particular actions are cho-
sen accordingly during training and decoding.

Decoding and Learning The full decoding pro-
cedure is shown in Algorithm 2, where the differ-
ences with the standard SSSP are again shown in
red. We change the data structure s to contain the
decoder’s RNN state at each node. We also mod-
ify the scoring (line 7, which uses Equation 4) to
consider only the top l edges or translations at that
point, as opposed to imposing a full search. When
l is set to 1, for example, the procedure does a
greedy search through the graph, whereas when l
is large the procedure is closer to a full search.

In general terms, the decoder described above

works like an ordinary neural decoder with the
difference that each decision (i.e., new target-side
word translation) is constrained (in line 7) by the
transitions allowed in the underlying graph in or-
der to ensure wellformedness of each component
output. Standardly, we optimize these models us-
ing stochastic gradient descent with the objective
of finding parameters Θ̂ that minimize the negative
conditional log-likelihood of the training dataset.

4.3 Monolingual vs. Polyglot Decoding

Our framework facilitates both monolingual and
polyglot decoding. In the first case, the decoder
requires a graph associated with the output seman-
tic language (more details in next section) and a
trained translation model. The latter case requires
taking the union of all datasets and graphs (with
artificial identifier tokens) for a collection of tar-
get datasets and training a single model over this
global dataset. In this setting, we can then de-
code to a particular language using the language
identifiers or decode without specifying the output
language. The main focus in this paper is investi-
gating polyglot decoding, and in particular the ef-
fect of training models on multiple datasets when
translating to individuals APIs or SP datasets.

When evaluating our models and building QA
applications, it is important to be able to generate
the k best translations. This can easily be done in
our framework by applying standard k SSSP algo-
rithms (Brander and Sinclair, 1995). We use an
implementation of the algorithm of Yen (1971),
which works on top of the SSSP algorithms in-
troduced above by iteratively finding deviating or
branching paths from an initial SSSP (more details
provided in supplementary materials).

5 Experiments

We experimented with two main types of re-
sources: 45 API documentation datasets and two
multilingual benchmark SP datasets. In the for-
mer case, our main objective is to test whether
training polyglot models (shown as polyglot in Ta-
bles 1-2) on multiple datasets leads to an improve-
ment when compared to training individual mono-
lingual models (shown as monolingual in Tables
1-2). Experiments involving the latter datasets are
meant to test the applicability of our general graph
and polyglot method to related SP tasks, and are
also used for comparison against our main techni-
cal documentation task.

725

Figure 3: Test Acc@1 for the best monolingual models (in yellow/left) compared with the best lexical polyglot
model (green/right) across all 45 technical documentation datasets.

5.1 Datasets
Technical API Docs The first dataset includes
the Stdlib and Py27 datasets of Richardson and
Kuhn (2017b,a), which are publicly available via
Richardson (2017). Stdlib consists of short de-
scription and function signature pairs for 10 pro-
gramming languages in 7 languages, and Py27
contains the same type of data for 27 popular
Python projects in English mined from Github. We
also built new datasets from the Japanese transla-
tion of the Python 2.7 standard library, as well as
the Lua stdlib documentation in a mixture of Rus-
sian, Portuguese, German, Spanish and English.

Taken together, these resources consist of
79,885 training pairs, and we experiment with
training models on Stdlib and Py27 separately as
well as together (shown as + more in Table 1).
We use a BPE subword encoding (Sennrich et al.,
2015) of both input and output words to make the
representations more similar and transliterated all
datasets (excluding Japanese datasets) to an 8-bit
latin encoding. Graphs were built by concate-
nating all function representations into a single
word list and compiling this list into a minimized
DAFSA. For our global polyglot dataset, this re-
sulted in a graph with 218,505 nodes, 313,288
edges, and 112,107 paths or component represen-
tations over an output vocabulary of 9,324 words.

Mixed GeoQuery and Sportscaster We run ex-
periments on the GeoQuery 880 corpus using the
splits from Andreas et al. (2013), which includes
geography queries for English, Greek, Thai, and
German paired with formal database queries, as
well as a seed lexicon or NP list for each language.
In addition to training models on each individual
dataset, we also learn polyglot models trained on
all datasets concatenated together. We also created
a new mixed language test set that was built by re-

placing NPs in 803 test examples with one or more
NPs from a different language using the NP lists
mentioned above (see examples in Figure 4). The
goal in the last case is to test our model’s ability to
handle mixed language input. We also ran mono-
lingual experiments on the English Sportscaster
corpus, which contains human generated soccer
commentary paired with symbolic meaning repre-
sentation produced by a simulation of four games.

For GeoQuery graph construction, we built a
single graph for all languages by extracting gen-
eral rule templates from all representations in the
dataset, and exploited additional information and
patterns using the Geobase database and the se-
mantic grammars used in (Wong and Mooney,
2006b). This resulted in a graph with 2,419 nodes,
4,936 edges and 39,482 paths over an output vo-
cabulary of 164. For Sportscaster, we directly
translated the semantic grammar provided in Chen
and Mooney (2008) to a DAFSA, which resulted in
a graph with 98 nodes, 86 edges and 830 paths.

5.2 Experimental Setup
For the technical datasets, the goal is to see if our
model generates correct signature representations
from unobserved descriptions using exact match.
We follow exactly the experimental setup and data
splits from Richardson and Kuhn (2017b), and
measure the accuracy at 1 (Acc@1), accuracy in
top 10 (Acc@10), and MRR.

For the GeoQuery and Sportscaster experi-
ments, the goal is to see if our models can gen-
erate correct meaning representations for unseen
input. For GeoQuery, we follow Andreas et al.
(2013) in evaluating extrinsically by checking that
each representation evaluates to the same answer
as the gold representation when executed against
the Geobase database. For Sportscaster, we evalu-
ate by exact match to a gold representation.

726

Method Acc@1 Acc@10 MRR

st
dl

ib
mono. RK Trans + rerank 29.9 69.2 43.1

Lexical SP 33.2 70.7 45.9
poly. Lexical SP + more 33.1 69.7 45.5

Neural SP + bias 12.1 34.3 19.5
Neural SP + copy bias 13.9 36.5 21.5

py
27

mono. RK Trans + rerank 32.4 73.5 46.5
Lexical SP 41.3 77.7 54.1

poly. Lexical SP + more 40.5 76.7 53.1
Neural SP + bias 8.7 25.5 14.2
Neural SP + copy bias 9.0 26.9 15.1

Table 1: Test results on the Stdlib and Py27 tasks
averaged over all datasets and compared against the
best monolingual results from Richardson and Kuhn
(2017b,a), or RK

5.3 Implementation and Model Details
We use the Foma finite-state toolkit of Hulden
(2009) to construct all graphs used in our exper-
iments. We also use the Cython version of Dynet
(Neubig et al., 2017) to implement all the neural
models (see supp. materials for more details).

In the results tables, we refer to the lexical and
neural models introduced in Section 4 as Lexi-
cal Shortest Path and Neural Shortest Path, where
models that use copying (+ copy) and lexical bias-
ing (+ bias) are marked accordingly. We also ex-
perimented with adding a discriminative reranker
to our lexical models (+ rerank), using the ap-
proach from Richardson and Kuhn (2017b), which
uses additional lexical (e.g., word match and align-
ment) features and other phrase-level and syntax
features. The goal here is to see if these additional
(mostly non-word level) features help improve on
the baseline lexical models.

6 Results and Discussion

Technical Documentation Results Table 1
shows the results for Stdlib and Py27. In
the monolingual case, we compare against the
best performing models in Richardson and Kuhn
(2017b,a). As summarized in Figure 3, our ex-
periments show that training polyglot models on
multiple datasets can lead to large improvements
over training individual models, especially on the
Py27 datasets where using a polyglot model re-
sulted in a nearly 9% average increase in accuracy
@1. In both cases, however, the best perform-
ing lexical models are those trained only on the
datasets they are evaluated on, as opposed to train-
ing on all datasets (i.e., + more). This is surprising
given that training on all datasets doubles the size
of the training data, and shows that adding more
data does not necessarily boost performance when
the additional data is from another distribution.

Method Acc@1 Acc@10
UBL (Kwiatkowski et al., 2010) 74.2 –
TreeTrans (Jones et al., 2012) 76.8 –
nHT (Susanto and Lu, 2017) 83.3 –

St
an

da
rd

G
eo

qu
er

y

m
on

ol
in

gu
al

Lexical Shortest Path 68.6 92.4
Lexical Shortest Path + rerank 74.2 94.1
Neural Shortest Path 73.5 91.1
Neural Shortest Path + bias 78.0 92.8
Neural Shortest Path + copy bias 77.8 92.1

po
ly

gl
ot

Lexical Shortest Path 67.3 92.9
Lexical Shortest Path + rerank 75.2 94.7
Neural Shortest Path 78.0 91.4
Neural Shortest Path + bias 78.9 91.7
Neural Shortest Path + copy bias 79.6 91.9

M
ix

ed

po
ly

. Best Monolingual Model 4.2 18.2
Lexical Shortest Path + rerank 71.1 94.3
Neural Shortest Path + copy bias 75.2 90.0

m
on

o.

PCFG (Börschinger et al., 2011) 74.2 –
wo-PCFG (Börschinger et al., 2011) 86.0 –

Sp
or

ts
ca

st
er

Lexical Shortest Path 40.3 86.8
Lexical Shortest Path + rerank 70.3 90.2
Neural Shortest Path 81.9 94.8
Neural Shortest Path + bias 83.4 93.9
Neural Shortest Path + copy bias 83.3 90.5

Table 2: Test results for the standard (above) and mixed
(middle) GeoQuery tasks averaged over all languages,
and results for the English Sportscaster task (below).

The neural models are strongly outperformed
by all other models both in the monolingual and
polyglot case (only the latter results shown), even
when lexical biasing is applied. While surpris-
ing, this is consistent with other studies on low-
resource neural MT (Zoph et al., 2016; Östling and
Tiedemann, 2017), where datasets of comparable
size to ours (e.g., 1 million tokens or less) typi-
cally fail against classical SMT models. This re-
sult has also been found in relation to neural AMR
semantic parsing, where similar issues of sparsity
are encountered (Peng et al., 2017). Even by dou-
bling the amount of training data by training on all
datasets (results not shown), this did not improve
the accuracy, suggesting that much more data is
needed (more discussion below).

Beyond increases in accuracy, our polyglot
models support zero-shot translation as shown
in Figure 4, which can be used for translat-
ing between unobserved language pairs (e.g.,
(es,Clojure), (ru,Haskell) as shown in 1-2),
or for finding related functionality across differ-
ent software projects (as shown in 3). These re-
sults were obtained by running our decoder model
without specifying the output language. We note,
however, that the decoder can be constrained to
selectively translate to any specific programming
language or project (e.g., in a QA setting). Future
work will further investigate the decoder’s poly-
glot capabilities, which is currently hard to evalu-
ate since we do not have an annotated set of func-
tion equivalences between different APIs.

727

1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Function Translation: public string Throwable::getMessage (void)

Language: Java Function Translation: public String lang.getMessage(void)
Language: Clojure Function Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Function Translation: string PDF utf32 to utf16 (...)

Language: Ruby Function Translation: String#toutf16 => string
Language: Haskell Function Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Function Translation: matrices.matrix.base.pinv solve(B, ...)

Project: sklearn Function Translation: utils.pinvh(a, cond=None,rcond=None,...)
Project: stats Function Translation: tools.pinv2(a,cond=None,rcond=None)

4. Mixed GeoQuery (de/gr) Input: Wie hoch liegt der höchstgelegene punkt inΑλαμπάμα?
Logical Form Translation: answer(elevation 1(highest(place(loc 2(stateid(’alabama’))))))

Figure 4: Examples of zero-shot translation when running in polyglot mode (1-3, function representations shown
in a conventionalized format), and mixed language parsing (4).

Semantic Parsing Results SP results are sum-
marized in Table 2. In contrast, the neural mod-
els, especially those with biasing and copying,
strongly outperform all other models and are com-
petitive with related work. In the GeoQuery case,
we compare against two classic grammar-based
models, UBL and TreeTrans, as well as a fea-
ture rich, neural hybrid tree model (nHT). We also
see that the polyglot Geo achieves the best per-
formance, demonstrating that training on multi-
ple datasets helps in this domain as well. In the
Sportscaster case we compare against two PCFG
learning approaches, where the second model (wo-
PCFG) involves a grammar with complex word-
order constraints.

The advantage of training a polyglot model is
shown on the results related to mixed language
parsing (i.e., the middle set of results). Here we
compared against the best performing monolin-
gual English model (Best Mono. Model), which
does not have a way to deal with multilingual NPs.
We also find the neural model to be more robust
than the lexical models with reranking.

While the lexical models overall perform poorly
on both tasks, the weakness of this model is par-
ticularly acute in the Sportscaster case. We found
that mistakes are largely related to the ordering of
arguments, which these lexical (unigram) models
are blind to. That these models still perform rea-
sonably well on the Geo task shows that such or-
dering issues are less of a factor in this domain.

Discussion Having results across related SP
tasks allows us to reflect on the nature of the main
technical documentation task. Consistent with re-
cent findings (Dong and Lapata, 2016), we show
that relatively simple neural sequence models are
competitive with, and in some cases outperform,
traditional grammar-based SP methods on bench-

mark SP tasks. However, this result is not ob-
served in our technical documentation task, in part
because this problem is much harder for neural
learners given the sparseness of the target data and
lack of redundancy. For this reason, we believe our
datasets provide new challenges for neural-based
SP, and serve as a cautionary tale about the scal-
ability and applicability of commonly used neural
models to lower-resource SP problems.

In general, we believe that focusing on polyglot
and mixed language decoding is not only of inter-
est to applications (e.g, mixed language API QA)
but also allows for new forms of SP evaluation that
are more revealing than only translation accuracy.
When comparing the accuracy of the best mono-
lingual Geo model and the worst performing neu-
ral polyglot model, one could mistakingly think
that these models have equal abilities, though the
polyglot model is much more robust and general.
Moving forward, we hope that our work helps to
motivate more diverse evaluations of this type.

7 Conclusion

We look at learning from multiple API libraries
and datasets in the context of learning to translate
text to code representations and other SP tasks. To
support polyglot modeling of this type, we devel-
oped a novel graph based decoding method and
experimented with various SMT and neural MT
models that work in this framework. We report a
mixture of positive results specific to each task and
set of models, some of which reveal interesting
limitations of different approaches to SP. We also
introduced new API and mixed language datasets
to facilitate further work on polyglot SP.

Acknowledgements

This work was supported by the German Research
Foundation (DFG) in project D2 of SFB 732.

728

References
Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,

and Charles Sutton. 2017. A Survey of Machine
Learning for Big Code and Naturalness. arXiv
preprint arXiv:1709.06182 .

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic parsing as machine translation. In
in Proceedings of ACL-2013. pages 47–52.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating Discrete Translation Lexicons
into Neural Machine Translation. arXiv preprint
arXiv:1606.02006 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473 .

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic Parsing on Freebase
from Question-Answer Pairs. In in Proceedings of
EMNLP-2013. pages 1533–1544.

Benjamin Börschinger, Bevan K. Jones, and Mark
Johnson. 2011. Reducing grounded learning tasks to
grammatical inference. In Proceedings of EMNLP-
2011. pages 1416–1425.

AW Brander and MC Sinclair. 1995. A Comparative
Study of k-Shortest Path Algorithms. In In Proc. of
11th UK Performance Engineering Workshop.

David L. Chen, Joohyun Kim, and Raymond J.
Mooney. 2010. Training a Multilingual
Sportscaster: Using Perceptual Context to Learn
Language. Journal of Artificial Intelligence
Research 37:397–435.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to Sportscast: A Test of Grounded Language
Acquisition. In Proceedings of ICML-2008. pages
128–135.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017. Learning Structured Natu-
ral Language Representations for Semantic Parsing.
arXiv preprint arXiv:1704.08387 .

T Cormen, C Leiserson, R Rivest, and C Stein. 2009.
Introduction to Algorithms. MIT Press.

Huijing Deng and Grzegorz Chrupała. 2014. Semantic
Approaches to Software Component Retrieval with
English Queries. In Proceedings of LREC-14. pages
441–450.

Li Dong and Mirella Lapata. 2016. Language to Log-
ical Form with Neural Attention. arXiv preprint
arXiv:1601.01280 .

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2017. Mul-
tilingual Semantic Parsing and Code-Switching.
CoNLL 2017 page 379.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep API Learning. arXiv
preprint arXiv:1605.08535 .

Jonathan Herzig and Jonathan Berant. 2017. Neural
Semantic Parsing over Multiple Knowledge-Bases.
arXiv preprint arXiv:1702.01569 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural computation 9(8).

Liang Huang. 2008. Advanced Dynamic Programming
in Semiring and Hypergraph Frameworks. In Pro-
ceedings of COLING-2008 (tutorial notes).

Mans Hulden. 2009. Foma: a Finite-State Compiler
and Library. In Proceedings of EACL.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing Source Code
using a Neural Attention Model. In Proceedings of
ACL.

Robin Jia and Percy Liang. 2016. Data Recombina-
tion for Neural Semantic Parsing. arXiv preprint
arXiv:1606.03622 .

Zhanming Jie and Wei Lu. 2014. Multilingual Seman-
tic Parsing: Parsing Multiple Languages into Se-
mantic Representations. In COLING. pages 1291–
1301.

Donald B Johnson. 1977. Efficient Algorithms for
Shortest Paths in Sparse Networks. Journal of the
ACM (JACM) 24(1):1–13.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s Multilingual Neural Machine
Translation System: Enabling Zero-Shot Transla-
tion. arXiv preprint arXiv:1611.04558 .

Bevan Keeley Jones, Mark Johnson, and Sharon Gold-
water. 2012. Semantic Parsing with Bayesian Tree
Transducers. In Proceedings of ACL-2012. pages
488–496.

Kevin Knight. 1999. Decoding Complexity in Word-
Replacement Translation Models. Computational
linguistics 25(4):607–615.

Kevin Knight and Yaser Al-Onaizan. 1998. Translation
with Finite-state Devices. In Proceedings of AMTA.

Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic Parsing with
Semi-Supervised Sequential Autoencoders. In Pro-
ceedings of EMNLP-16. pages 1078–1087.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing Probabilis-
tic CCG Grammars from Logical Form with Higher-
order Unification. In Proceedings of EMNLP-2010.
pages 1223–1233.

729

Percy Liang. 2013. Lambda Dependency-Based
Compositional Semantics. arXiv preprint
arXiv:1309.4408 .

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective Approaches to Attention-
Based Neural Machine Translation. arXiv preprint
arXiv:1508.04025 .

Antonio Valerio Miceli Barone and Rico Sennrich.
2017. A Parallel Corpus of Python Functions and
Documentation Strings for Automated Code Doc-
umentation and Code Generation. arXiv preprint
arXiv:1707.02275 .

Dipendra Kumar Misra and Yoav Artzi. 2016. Neural
Shift-Reduce CCG Semantic Parsing. In EMNLP.
pages 1775–1786.

Mehryar Mohri. 1996. On Some Applications of
Finite-State Automata Theory to Natural Lan-
guage Processing. Natural Language Engineering
2(1):61–80.

Raymond Mooney. 2007. Learning for Semantic Pars-
ing. In Proceedings of CICLING.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 https://github.
com/clab/dynet.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational linguistics 29(1):19–51.

Robert Östling and Jörg Tiedemann. 2017. Neural
Machine Translation for Low-resource Languages.
arXiv preprint arXiv:1708.05729 .

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the Data Sparsity Is-
sue in Neural AMR Parsing. Proceedings of ACL
.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract Syntax Networks for Code Gener-
ation and Semantic Parsing. In Proceedings of ACL.

Kyle Richardson. 2017. Code-Datasets. https://
github.com/yakazimir/Code-Datasets.

Kyle Richardson. 2018. A Language for Func-
tion Signature Representations. arXiv preprint
arXiv:1804.00987 .

Kyle Richardson and Jonas Kuhn. 2017a. Function As-
sistant: A Tool for NL Querying of APIs. In Pro-
ceedings of EMNLP.

Kyle Richardson and Jonas Kuhn. 2017b. Learning
Semantic Correspondences in Technical Documen-
tation. In Proceedings of ACL.

Kyle Richardson, Sina Zarrieß, and Jonas Kuhn. 2017.
The Code2Text Challenge: Text Generation in
Source Code Libraries. In Proceedings of INLG.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural Machine Translation of Rare
Words with Subword Units. arXiv preprint
arXiv:1508.07909 .

Raymond Hendy Susanto and Wei Lu. 2017. Semantic
Parsing with Neural Hybrid Trees. In AAAI. pages
3309–3315.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris
Dyer. 2016. Polyglot Neural Language Models: A
Case Study in Cross-Lingual Phonetic Represen-
tation Learning. arXiv preprint arXiv:1605.03832
.

Yuk Wah Wong and Raymond J. Mooney. 2006a.
Learning for semantic parsing with statistical ma-
chine translation. In Proceedings of HLT-NAACL-
2006. pages 439–446.

Yuk Wah Wong and Raymond J Mooney. 2006b.
Learning for Semantic Parsing with Statistical Ma-
chine Translation. In Proceedings of NACL.

Jin Y Yen. 1971. Finding the k Shortest Loopless Paths
in a Network. Management Science 17(11):712–
716.

Pengcheng Yin and Graham Neubig. 2017. A Syntac-
tic Neural Model for General-Purpose Code Gener-
ation. In Proceedings of ACL.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to Parse Database Queries using Inductive Logic
Programming. In Proceedings of AAAI-1996. pages
1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of ACL-2009.
pages 976–984.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Gram-
mars. arXiv preprint arXiv:1207.1420 .

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer Learning for Low-resource
Neural Machine Translation. Proceedings of ACL .

730

