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Abstract
We present a reading comprehension chal-
lenge in which questions can only be answered
by taking into account information from mul-
tiple sentences. We solicit and verify ques-
tions and answers for this challenge through
a 4-step crowdsourcing experiment. Our chal-
lenge dataset contains ∼6k questions for +800
paragraphs across 7 different domains (ele-
mentary school science, news, travel guides,
fiction stories, etc) bringing in linguistic diver-
sity to the texts and to the questions wordings.
On a subset of our dataset, we found human
solvers to achieve an F1-score of 86.4%. We
analyze a range of baselines, including a re-
cent state-of-art reading comprehension sys-
tem, and demonstrate the difficulty of this
challenge, despite a high human performance.
The dataset is the first to study multi-sentence
inference at scale, with an open-ended set of
question types that requires reasoning skills.

1 Introduction

Machine Comprehension of natural language text
is a fundamental challenge in AI and it has re-
ceived significant attention throughout the his-
tory of AI (Greene, 1959; McCarthy, 1976; Re-
iter, 1976; Winograd, 1980). In particular, in
natural language processing (NLP) it has been
studied under various settings, such as multiple-
choice Question-Answering (QA) (Green Jr. et al.,
1961), Reading Comprehension (RC) (Hirschman
et al., 1999), Recognizing Textual Entailment
(RTE) (Dagan et al., 2013) etc. The area
has seen rapidly increasing interest, thanks to
the existence of sizable datasets and standard
benchmarks. CNN/Daily Mail (Hermann et al.,
2015), SQuAD (Rajpurkar et al., 2016) and
NewsQA (Trischler et al., 2016) to name a few,
are some of the datasets that were released re-
cently with the goal of facilitating research in ma-
chine comprehension. Despite all the excitement

fueled by that large data sets and the ability to
directly train statistical learning models, current
QA systems do not have capabilities comparable
to elementary school or younger children (Clark
and Etzioni, 2016). For many of these datasets,
researchers point out that models neither need
to ‘comprehend’ in order to correctly predict an
answer, nor do they learn to ‘reason’ in a way
that generalizes across datasets. For example,
Khashabi et al. (2016) showed that adversarial per-
turbation in candidate answers results in a signifi-
cant drop in performance of a few state-of-art sci-
ence QA systems. Similarly, Jia and Liang (2017)
show that adding an adversarially selected sen-
tence to the instances in the SQuAD datasets dras-
tically reduces the performance of many of the ex-
isting baselines. Chen et al. (2016) show that in the
CNN/Daily Mail datasets, “the required reasoning
and inference level . . . is quite simple” and that a
relatively simple algorithm can get almost close to
the upper-bound. We believe that one key reason
that simple algorithms can deal with the existing
large datasets but, nevertheless, fail at generaliza-
tion, is that the datasets do not actually require a
deep understanding.

We propose to address this shortcoming by de-
veloping a reading comprehension challenge in
which answering each of the questions requires
reasoning over multiple sentences.

There is evidence that answering ‘single-
sentence questions’, i.e. questions that can be an-
swered from a single sentence of the given para-
graph, is easier than answering multi-sentence
questions’, which require multiple sentences to
answer a given question. For example, Richard-
son et al. (2013) released a reading comprehension
dataset that contained both single-sentence and
multi-sentence questions; models proposed for
this task yielded considerably better performance
on the single-sentence questions than on the multi-
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sentence questions (according to Narasimhan and
Barzilay (2015) accuracy of about 83% and 60%
on these two types of questions, respectively).

There could be multiple reasons for this. First,
multi-sentence reasoning seems to be inherently
a difficult task. Research has shown that while
complete-sentence construction emerges as early
as first grade for many children, their ability
to integrate sentences emerges only in fourth
grade (Berninger et al., 2011). Answering multi-
sentence questions might be more challenging
for an automated system because it involves
more than just processing individual sentences but
rather combining linguistic, semantic and back-
ground knowledge across sentences—a computa-
tional challenges in itself. Despite these chal-
lenges, multi-sentence questions can be answered
by humans and hence present an interesting yet
reasonable goal for AI systems (Davis, 2014).

In this work, we propose a multi-sentence QA
challenge in which questions can be answered
only using information from multiple sentences.
Specifically, we present MultiRC (Multi-Sentence
Reading Comprehension)1—a dataset of short
paragraphs and multi-sentence questions that can
be answered from the content of the paragraph.
Each question is associated with several choices
for answer-options, out of which one or more cor-
rectly answer the question. Figure 1 shows two
examples from our dataset. Each instance consists
of a multi-sentence paragraph, a question, and
answer-options. All instances were constructed
such that it is not possible to answer a question
correctly without gathering information from mul-
tiple sentences. Due to space constraints, the fig-
ure shows only the relevant sentences from the
original paragraph. The entire corpus consists of
871 paragraphs and about ∼ 6k multi-sentence
questions.

The goal of this dataset is to encourage the re-
search community to explore approaches that can
do more than sophisticated lexical-level matching.
To accomplish this, we designed the dataset with
three key challenges in mind. (i) The number of
correct answer-options for each question is not
pre-specified. This removes the over-reliance of
current approaches on answer-options and forces
them to decide on the correctness of each can-
didate answer independently of others. In other
words, unlike previous work, the task here is not

1http://cogcomp.org/multirc/

S3: Hearing noises in the garage, Mary Murdock finds a
bleeding man, mangled and impaled on her jeep’s bumper.
S5: Panicked, she hits him with a golf club.
S10: Later the news reveals the missing man is kindergarten
teacher, Timothy Emser.
S12: It transpires that Rick, her boyfriend, gets involved in
the cover up and goes to retrieve incriminatory evidence off
the corpse, but is killed, replaced in Emser’s grave.
S13: It becomes clear Emser survived.
S15: He stalks Mary many ways.
Who is stalking Mary?
A)* Timothy D) Rick
B) Timothy’s girlfriend E) Murdock
C)* The man she hit F) Her Boyfriend
S1: Most young mammals, including humans, play.
S2: Play is how they learn the skills that they will need as
adults.
S6: Big cats also play.
S8: At the same time, they also practice their hunting skills.
S11: Human children learn by playing as well.
S12: For example, playing games and sports can help them
learn to follow rules.
S13: They also learn to work together.
What do human children learn by playing games and sports?
A)* They learn to follow rules and work together
B) hunting skills
C)* skills that they will need as adult

Figure 1: Examples from our MultiRCcorpus. Each ex-
ample shows relevant excerpts from a paragraph; multi-
sentence question that can be answered by combin-
ing information from multiple sentences of the para-
graph; and corresponding answer-options. The correct
answer(s) is indicated by a *. Note that there can be
multiple correct answers per question.

to simply identify the best answer-option, but to
evaluate the correctness of each answer-option in-
dividually. For example, the first question in Fig-
ure 1 can be answered by combining information
from sentences 3, 5, 10, 13 and 15. It requires
not only understanding that the stalker’s name is
Timothy but also that he is the man who Mary had
hit. (ii) The correct answer(s) is not required to
be a span in the text. For example, the correct an-
swer, A, of the second question in Figure 1 is not
present in the paragraph verbatim. It is instead a
combination of two spans from 2 sentences: 12
and 13. Such answer-options force models to pro-
cess and understand not only the paragraph and
the question but also the answer-options. (iii) The
paragraphs in our dataset have diverse provenance
by being extracted from 7 different domains such
as news, fiction, historical text etc., and hence are
expected to be more diverse in their contents as
compared to single-domain datasets. We also ex-
pect this to lead to diversity in the types of ques-
tions that can be constructed from the passage.

Overall, we introduce a reading comprehension
dataset that significantly differs from most other
datasets available today in the following ways:
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• ∼6k high-quality multiple-choice RC ques-
tions that are generated (and manually
verified via crowdsourcing) to require inte-
grating information from multiple sentences.

• The questions are not constrained to have a
single correct answer, generalizing existing
paradigms for representing answer-options.

• Our dataset is constructed using 7 different
sources, allowing more diversity in content,
style, and possible question types.

• We show a significant performance gap be-
tween current solvers and human perfor-
mance, indicating an opportunity for devel-
oping sophistical reasoning systems.

2 Relevant Work

Automated reasoning is arguably one of the ma-
jor problems in contemporary AI research. Brach-
man et al. (2005) suggest challenges for devel-
oping AI program that can pass the SAT ex-
ams. In similar spirit Clark and Etzioni (2016)
advocate elementary-school tests as a new test
for AI. Davis (2014) proposes hand-construction
of multiple-choice challenge sets that are easy
for children but difficult for computers. Despite
Davis’ claim on simplicity of his target questions,
it is not clear how easy it is to generate such
questions, as he doesn’t provide any reasonably-
sized dataset matching his proposal. Weston
et al. (2015) present a relatively small dataset of
10 reasoning categories, and propose to build a
system that uses a world model and a linguistic
model. The fundamental limitation of the dataset
is that it is generated according to a restricted set
of reasoning categories, which possibly limits the
complexity and diversity of questions.

Some other recent datasets proposed for ma-
chine comprehension also pay attention to type
of questions and reasoning required. For exam-
ple, RACE (Lai et al., 2017) attempts to incor-
porate different types of reasoning phenomena,
and MCTest (Richardson et al., 2013) attempted
to contain at least 50% multi-sentence reason-
ing questions. However, since the crowdsourced
workers who created the dataset were only encour-
aged, and not required, to write such questions, it
is not clear how many of these questions actually
require multi-sentence reasoning (see Sec. 3.5).
Similarly, only about 25% of question in the
RACE dataset require multi-sentence reasoning
as reported in their paper. Remedia (Hirschman

et al., 1999) also contains 5 different types of ques-
tions (based on question words) but is a much
smaller dataset. Other datasets which do not delib-
erately attempt to include multi-sentence reason-
ing, like SQuAD (Rajpurkar et al., 2016) and the
CNN/Daily Mail dataset (Hermann et al., 2015),
suffer from even lower percentage of such ques-
tions (12% and 2% respectively (Lai et al., 2017)).
There are several other corpora which do not
guarantee specific reasoning types, including MS
MARCO (Nguyen et al., 2016), WikiQA (Yang
et al., 2015), and TriviaQA (Joshi et al., 2017).

The complexity of reasoning required for a
reading comprehension dataset would depend on
several factors such as the source of questions or
paragraphs; the way they are generated; and the
order in which they are generated (i.e. questions
from paragraphs, or the reverse). Specifically,
paragraphs’ source could influence the complex-
ity and diversity of the language of the paragraphs
and questions, and hence the required level of rea-
soning capabilities. Unlike most current datasets
which rely on only one or two sources for their
paragraphs (e.g. CNN/Daily Mail and SQuAD
rely only on news and Wikipedia articles respec-
tively) our dataset uses 7 different domains.

Another factor that distinguishes our dataset
from previously proposed corpora is the way an-
swers are represented. Several datasets represent
answers as multiple-choices with a single correct
answer. While multiple-choice questions are easy
to grade, coming up with non-trivial correct and
incorrect answers can be challenging. Also, as-
suming exactly one correct answer (e.g., as in
MCTest and RACE) inadvertently changes the
task from choosing the correct answer to choos-
ing the most likely answer. Other datasets (e.g
MS-MARCO and SQuAD) represent answers as
a contiguous substring within the passage. This
assumption of the answer being a span of the para-
graph, limits the questions to those whose answer
is contained verbatim in the paragraph. Unfor-
tunately, it rules out more complicated questions
whose answers are only implied by the text and
hence require a deeper understanding. Because
of these limitations, we designed our dataset to
use multiple-choice representations, but without
specifying the number of correct answers for each
question.
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3 Construction of MultiRC

In this section we describe our principles and
methodology of dataset collection. This includes
automatically collecting paragraphs, composing
questions and answer-options through crowd-
sourcing platform, and manually curating the col-
lected data. We also summarize a pilot study that
helped us design this process, and end with a sum-
mary of statistics of the collected corpus.

3.1 Principles of design

Questions and answers in our dataset are designed
based on the following key principles:

Multi-sentenceness. Questions in our challenge
require models to use information from multiple
sentences of a paragraph. This is ensured through
explicit validation. We exclude any question that
can be answered based on a single sentence from
a paragraph.

Open-endedness. Our dataset is not restricted to
questions whose answer can be found verbatim in
a paragraph. Instead, we provide a set of hand-
crafted answer-options for each question. Notably,
they can represent information that is not explic-
itly stated in the text but is only inferable from
it (e.g. implied counts, sentiments, and relation-
ships).

Answers to be judged independently. The
total number of answer options per question
is variable in our data and we explicitly allow
multiple correct and incorrect answer options
(e.g. 2 correct and 1 incorrect options). As a
consequence, correct answers cannot be guessed
solely by a process of elimination or by simply
choosing the best candidates out of the given
options.

Through these principles, we encourage users to
explicitly model the semantics of text beyond indi-
vidual words and sentences, to incorporate extra-
linguistic reasoning mechanisms, and to handle
answer options independently of one another.

Variability. We encourage variability on differ-
ent levels. Our dataset is based on paragraphs from
multiple domains, leading to linguistically diverse
questions and answers. Also, we do not impose
any restrictions on the questions, to encourage dif-
ferent forms of reasoning.

3.2 Sources of documents

The paragraphs used in our dataset are extracted
from various sources. Here is the complete list of
the text types and sources used in our dataset, and
the number of paragraphs extracted from each cat-
egory (indicated in square brackets on the right):

1. News: [121]
• CNN (Hermann et al., 2015)
• WSJ (Ide et al., 2008)
• NYT (Ide et al., 2008)

2. Wikipedia articles [92]
3. Articles on society, law and justice (Ide and

Suderman, 2006) [91]
4. Articles on history and anthropology (Ide

et al., 2008) [65]
5. Elementary school science textbooks 2 [153]
6. 9/11 reports (Ide and Suderman, 2006) [72]
7. Fiction: [277]

• Stories from the Gutenberg project
• Children stories from MCTest (Richard-

son et al., 2013)
• Movie plots from CMU Movie Sum-

mary corpus (Bamman et al., 2013)

From each of the above-mentioned sources we
extracted paragraphs that had enough content. To
ensure this we followed a 3-step process. In the
first step we selected top few sentences from para-
graphs such that they contained 1k-1.5k charac-
ters. To ensure coherence, all sentences were con-
tiguous and extracted from the same paragraph.
In this process we also discarded paragraphs that
seemed to deviate too much from third person nar-
rative style. For example, while processing Guten-
berg corpus we considered files that had at least
5k lines because we found that most of them were
short poetic texts. In the second step, we an-
notated (Khashabi et al., 2018b) the paragraphs
and automatically filtered texts using conditions
such as the average number of words per sen-
tence; number of named entities; number of dis-
course connectives in the paragraph. These were
designed by the authors of this paper after review-
ing a small sample of paragraphs. A complete set
of conditions is listed in Table 1. Finally in the
last step, we manually verified each paragraph and
filtered out the ones that had formatting issues or
other concerns that seemed to compromise their
usability.

2https://www.ck12.org
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Condition bound

Number of sentences ≥ 6 & ≤ 18
Number of NER(CoNLL) mentions ≥ 2
Avg. number of NER(CoNLL) mentions ≥ 0.2
Number of NER(Ontonotes) mentions ≥ 4
Avg. number of NER(Ontonotes) mentions ≥ 0.25
Avg. number of words per sentence ≥ 5
Number of coreference mentions ≥ 3
Avg. number of coreference mentions ≥ 0.1
Number of coreference relations ≥ 3
Avg. number of coreference relations ≥ 0.08
Number of coreference chains ≥ 2
Avg. number of coreference chains ≥ 0.1
Number of discourse markers ≥ 2

Table 1: Bounds used to select paragraphs for
dataset creation.

3.3 Pipeline of question extraction

In this section, we delineate details of the process
for collecting questions and answers. Figure 2
gives a high-level idea of the process. The first two
steps deal with creating multi-sentence questions,
followed by two steps for construction of candi-
date answers. Interested readers can find more de-
tails on set-ups of each step in Appendix I.

Step 1: Generating questions. The goal of
the first step of our pipeline is to collect multi-
sentence questions. We show each paragraph to
5 turkers and ask them to write 3-5 questions such
that: (1) the question is answerable from the pas-
sage, and (2) only those questions are allowed
whose answer cannot be determined from a sin-
gle sentence. We clarify this point by providing
example paragraphs and questions. In order to en-
courage turkers to write meaningful questions that
fit our criteria, we additionally ask them for a cor-
rect answer and for the sentence indices required
to answer the question. To ensure the grammati-
cal quality of the questions collected in this step,
we limit the turkers to the countries with English
as their major language. After the acquisition of
questions in this step, we filter out questions which
required less than 2 or more than 4 sentences to be
answered; we also run them through an automatic
spell-checker3 and manually correct questions re-
garding typos and unusual wordings.

Step 2: Verifying multi-sentenceness of ques-
tions. In a second step, we verify that each ques-
tion can only be answered using more than one
sentence. For each question collected in the pre-
vious step, we create question-sentence pairs by
pairing it with each of the sentences necessary for

3Grammarly: www.grammarly.com

answering it as indicated in the previous step. For
a given question-sentence pair, we then ask turk-
ers to annotate if they could answer the question
from the sentence it is paired with (binary anno-
tation). The underlying idea of this step is that
a multi-sentence question would not be answer-
able from a single sentence, hence turkers should
not be able to give a correct answer for any of
the question-sentence pair. Accordingly, we de-
termine a question as requiring multiple sentences
only if the correct answer cannot be guessed from
any single question-sentence pair. We collected at
least 3 annotations per pair, and to avoid sharing of
information across sentences, no two pairs shown
to a turker came from the same paragraph. We ag-
gregate the above annotations for each question-
answer pair and retain only those questions for
which no pair was judged as answerable by a ma-
jority of turkers.

Step 3: Generating answer-options. In this
step, we collect answer-options that will be shown
with each question. Specifically, for each verified
question from the previous steps, we ask 3 turkers
to write as many correct and incorrect answer op-
tions as they can think of. In order to not curb cre-
ativity, we do not place a restriction on the number
of options they have to write. We explicitly ask
turkers to design difficult and non-trivial incorrect
answer-options (e.g. if the question is about a per-
son, a non-trivial incorrect answer-option would
be other people mentioned in the paragraph).

After this step, we perform a light clean up
of the candidate answers by manually correct-
ing minor errors (such as typos), completing in-
complete sentences and rephrasing any ambiguous
sentences. We further make sure there is not much
repetition in the answer-options, to prevent poten-
tial exploitation of correlation between some can-
didate answers in order to find the correct answer.
For example, we drop obviously duplicate answer-
options (i.e. identical options after lower-casing,
lemmatization, and removing stop-words).

Step 4: Verifying quality of the dataset. This
step serves as the final quality check for both ques-
tions and the answer-options generated in the pre-
vious steps. We show each paragraph, its ques-
tions, and the corresponding answer-options to 3
turkers, and ask them to indicate if they find any
errors (grammatical or otherwise), in the questions
and/or answer-options. We then manually review,
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Step 1: 
generating 
multi-sentence questions 
given paragraphs 

Step 2: 
Verifying 
multi-sentenceness 

Step 3: 
Generating 
candidate answers 

Step 4: 
Judging quality of 
questions & candidates 

Figure 2: Pipeline of our dataset construction.

and correct if needed, all erroneous questions and
answer-options. This ensures that we have mean-
ingful questions and answer-options. In this step,
we also want to verify that the correct (or incor-
rect) options obtained from Step 3 were indeed
correct (or incorrect). For this, we additionally ask
the annotators to select all correct answer-options
for the question. If their annotations did not agree
with the ones we had after Step 3 (e.g. if they
unanimously selected an ‘incorrect’ option as the
answer), we manually reviewed and corrected (if
needed) the annotation.

3.4 Pilot experiments

The 4-step process described above was a result of
detailed analysis and substantial refinement after
two small pilot studies.

In the first pilot study, we ran a set of 10 para-
graphs extracted from the CMU Movie Summary
Corpus through our pipeline. Our then pipeline
looked considerably different from the one de-
scribed above. We found the steps that required
turkers to write questions and answer-options to
often have grammatical errors, possibly because a
large majority of turkers were non-native speakers
of English. This probslem was more prominent in
questions than in answer-options. Because of this,
we decided to limit the task to native speakers.
Also, based on the results of this pilot, we over-
hauled the instructions of these steps by including
examples of grammatically correct—but undesir-
able (not multi-sentence)—questions and answer-
options, in addition to several minor changes.

Thereafter, we decided to perform a manual val-
idation of the verification steps (current Steps 2
and 4). For this, we (the authors of this paper)
performed additional annotations ourselves on the
data shown to turkers, and compared our results
with those provided by the turkers. We found that
in the verification of answer-options, our annota-
tions were in high agreement (98%) with those ob-
tained from mechanical turk. However, that was
not the case for the verification of multi-sentence
questions. We made several further changes to the
first two steps. Among other things, we clarified
in the instructions that turkers should not use their

background knowledge when writing and verify-
ing questions, and also included negative exam-
ples of such questions. Additionally, when turkers
judged a question to be answerable using a sin-
gle sentence, we decided to encourage (but not re-
quire) them to guess the answer to the question.
This improved our results considerably, possibly
because it forced annotators to think more care-
fully about what the answer might be, and whether
they actually knew the answer or they just thought
that they knew it (possibly because of background
knowledge or because the sentence contained a lot
of information relevant to the question). Guessed
answers in this step were only used to verify the
validity of multi-sentence questions. They were
not used in the dataset or subsequent steps.

After revision, we ran a second pilot study in
which we processed a set of 50 paragraphs through
our updated pipeline. This second pilot confirmed
that our revisions were helpful, but thanks to its
larger size, also allowed us to identify a couple of
borderline cases for which additional clarifications
were required. Based on the results of the second
pilot, we made some additional minor changes and
then decided to apply the pipeline for creating the
final dataset.

3.5 Verifying multi-sentenceness

While collecting our dataset, we found that, even
though Step 1 instructed turkers to write multi-
sentence questions, not all generated questions in-
deed required multi-sentence reasoning. This hap-
pened even after clarifications and revisions to the
corresponding instructions, and we attribute it to
honest mistakes. Therefore, we designed the sub-
sequent verification step (Step 2).

There are other datasets which aim to in-
clude multi-sentence reasoning questions, espe-
cially MCTest. Using our verification step,
we systematically verify their multi-sentenceness.
For this, we conducted a small pilot study on about
60 multi-sentence questions from MCTest. As for
our own verification, we created question-sentence
pairs for each question and asked annotators to
judge whether they can answer a question from the
single sentence shown. Because we did not know
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which sentences contain information relevant to a
question, we created question-sentence pairs us-
ing all sentences from a paragraph. After aggre-
gation of turker annotations, we found that about
half of the questions annotated as multi-sentence
could be answered from a single sentence of the
paragraph. This study, though performed on a sub-
set of the data, underscores the necessity of rigor-
ous verification step for multi-sentence reasoning
when studying this phenomenon.

3.6 Statistics on the dataset

We now provide a brief summary of MultiRC.
Overall, it contains roughly ∼ 6k multi-sentence
questions collected for about +800 paragraphs.4

The median number of correct and total answer
options for each question is 2 and 5, respectively.
Additional statistics are given in Table 2.

In Step 1, we also asked annotators to identify
sentences required to answer a given question. We
found that answering each question required 2.4
sentences on average. Also, required sentences are
often not contiguous, and the average distance be-
tween sentences is 2.4. Next, we analyze the types
of questions in our dataset. Figure 4 shows the
count of first word(s) for our questions. We can
see that while the popular question words (What,
Who, etc.) are very common, there is a wide va-
riety in the first word(s) indicating a diversity in
question types. About 28% of our questions re-
quire binary decisions (true/false or yes/no).

We randomly selected 60 multi-sentence ques-
tions from our corpus and asked two indepen-
dent annotators to label them with the type of
reasoning phenomenon required to answer them.5

During this process, the annotators were shown
a list of common reasoning phenomena (shown
below), and they had to identify one or more
of the phenomena relevant to a given question.
The list of phenomena shown to the annotators
included the following categories: mathematical
and logical reasoning, spatio-temporal reasoning,
list/enumeration, coreference resolution (includ-
ing implicit references, abstract pronouns, event
coreference, etc.), causal relations, paraphrases
and contrasts (including lexical relations such as
synonyms, antonyms), commonsense knowledge,

4We will also release the 3.7k questions that did not pass
Step 2. Though not multi-sentence questions, they could be a
valuable resource on their own.

5The annotations were adjudicated by two authors of this
paper.

and ‘other’. The categories were selected after a
manual inspection of a subset of questions by two
of the authors. The annotation process revealed
that answering questions in our corpus requires a
broad variety of reasoning phenomena. The left
plot in Figure 3 provides detailed results.

The figure shows that a large fraction of ques-
tions require coreference resolution, and a more
careful inspection revealed that there were dif-
ferent types of coreference phenomena at play
here. To investigate these further, we conducted
a follow-up experiment in which manually anno-
tated all questions that required coreference res-
olution into finer categories. Specifically, each
question was shown to two annotators who were
asked to select one or more of the following cate-
gories: entity coreference (between two entities),
event coreference (between two events), set inclu-
sion coreference (one item is part of or included
in the other) and ‘other’. Figure 3 (right) shows
the results of this experiment. We can see that,
as expected, entity coreference is the most com-
mon type of coreference resolution needed in our
corpus. However, a significant number of ques-
tions also require other types of coreference res-
olution. We provide some examples of questions
along with the required reasoning phenomena in
Appendix II.

Parameter Value
# of paragraphs 871
# of questions 9,872
# of multi-sentence questions 5,825
avg # of candidates (per question) 5.44
avg # of correct answers (per question) 2.58
avg paragraph length (in sentences) 14.3 (4.1)
avg paragraph length (in tokens) 263.1 (92.4)
avg question length (in tokens) 10.9 (4.8)
avg answer length (in tokens) 4.7 (5.5)
% of yes/no/true/false questions 27.57%
avg # of sent. used for questions 2.37 (0.63)
avg distance between the sent.’s used 2.4 (2.58)
% of correct answers verbatim in paragraph 34.96%
% of incorrect answers verbatim in paragraph 25.84%

Table 2: Various statistics of our dataset. Figures
in parentheses represent standard deviation.

4 Analysis

In this section, we provide a quantitative analysis
of several baselines for our challenge.

Evaluation Metrics. We define precision and
recall for a question q as: Pre(q) = |A(q)∩Â(q)|

|Â(q)|

and Rec(q) = |A(q)∩Â(q)|
|A(q)| , where A(q) and Â(q)

are the sets of correct and selected answer-options.

258



Figure 3: Distribution of (left) general phenomena; (right) variations of the “coreference” phenomena.

Figure 4: Most frequent first chunks of the questions
(counts in log scale).

We define (macro-average) F1m as the harmonic
mean of average-precision avgq∈Q(Pre(q)) and
average-recall avgq∈Q(Rec(q)) with Q as the set
of all questions.

Since by design, each answer-option can be
judged independently, we consider another met-
ric, F1a, evaluating binary decisions on all the
answer-options in the dataset. We define F1a to be
the harmonic mean of Pre(Q) and Rec(Q), with

Pre(Q) = |A(Q)∩Â(Q)|
|Â(Q)| ; A(Q) =

⋃
q∈QA(q); and

similar definitions for Â(Q) and Rec(Q).

4.1 Baselines

Human. Human performance provides us with
an estimate of the best achievable results on
datasets. Using mechanical turk, we ask 4 peo-
ple (limited to native speakers) to solve our data.
We evaluate score of each label by averaging the
decision of the individuals.

Random. To get an estimate on the lower-bound
we consider a random baseline, where each an-
swer option is selected as correct with a probabil-
ity of 50% (an unbiased coin toss). The numbers

reported for this baseline represent the expected
outcome (statistical expectation).

IR (information retrieval baseline). This base-
line selects answer-options that best match sen-
tences in a text corpus (Clark et al., 2016). Specifi-
cally, for each question q and answer option ai, the
IR solver sends q + ai as a query to a search en-
gine (we use Lucene) on a corpus, and returns the
search engine’s score for the top retrieved sentence
s, where s must have at least one non-stopword
overlap with q, and at least one with ai.

We create two versions of this system. In the
first variation IR(paragraphs) we create a corpus
of sentences extracted from all the paragraphs in
the dataset. In the second variation, IR(web) in
addition to the knowledge of the paragraphs, we
use extensive external knowledge extracted from
the web (Wikipedia, science textbooks and study
guidelines, and other webpages), with 5 × 1010

tokens (280GB of plain text).

SurfaceLR (logistic regression baseline). As
a simple baseline that makes use of our small
training set, we reimplemented and trained a lo-
gistic regression model using word-based over-
lap features. As described in (Merkhofer et al.,
2018), this baseline takes into account the lengths
of a text, question and each answer candidate,
as well as indicator features regarding the (co-
)occurrences of any words in them.

SemanticILP (semi-structured baseline). This
state-of-the-art solver, originally proposed for sci-
ence questions and biology tests, uses a semi-
structured representation to formalize the scor-
ing problem as a subgraph optimization prob-
lem over multiple layers of semantic abstrac-
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Dev Test

F1m F1a F1m F1a

Random 44.3 43.8 47.1 47.6
IR(paragraphs) 64.3 60.0 54.8 53.9
SurfaceLR 66.1 63.7 66.7 63.5
Human 86.4 83.8 84.3 81.8

Table 3: Performance comparison for different
baselines tested on a subset of our dataset (in per-
centage). There is a significant gap between the
human performance and current statistical meth-
ods.

tions (Khashabi et al., 2018a). Since the solver
is designed for multiple-choice with single-correct
answer, we adapt it to our setting by running it for
each answer-option. Specifically for each answer-
option, we create a single-candidate question, and
retrieve a real-valued score from the solver.

BiDAF (neural network baseline). As a neural
baseline, we apply this solver by Seo et al. (2017),
which was originally proposed for SQuAD but
has been shown to generalize well to another do-
main (Min et al., 2017). Since BiDAF was de-
signed for cloze style questions, we apply it to
our multiple-choice setting following the proce-
dure by Kembhavi et al. (2017): Specifically, we
score each answer-option by computing the sim-
ilarity value of it’s output span with each of the
candidate answers, computed by phrasal similar-
ity tool of Wieting et al. (2015).

4.2 Results

To get a sense of our dataset’s hardness, we eval-
uate both human performance and multiple com-
putational baselines. Each baseline scores an
answer-option with a real-valued score, which
we threshold to decide whether an answer option
is selected or not, where the threshold is tuned
on the development set. Table 3 shows perfor-
mance results for different baselines. The signif-
icantly high human performance shows that hu-
mans do not have much difficulties in answering
the questions. Similar observations can be made
in Figure 5 where we plot avgq∈Q(Pre(q)) vs.
avgq∈Q(Rec(q)), for different threshold values.

5 Conclusion

In this paper we have presented MultiRC, a read-
ing comprehension dataset in which questions re-
quire reasoning over multiple sentences to be an-

Figure 5: PR curve for each of the baselines. There is
a considerable gap with the baselines and human.

swered. Our dataset contains ∼ 6k questions ex-
tracted from about +800 paragraphs. For each
question, it contains multiple answer-options out
of which one or more can be correct. The para-
graphs (and questions) originate from different do-
mains and hence are amenable to a wide variety
and complexity of required reasoning phenomena.
We found human performance on this corpus to be
about 88% while state-of-the-art machine compre-
hension models do not exceed a F1-score of 60%.
We hope that this significant difference in perfor-
mance will encourage the community to work to-
wards more sophisticated reasoning systems.
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