
Proceedings of NAACL-HLT 2018, pages 238–251
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Content-Based Citation Recommendation

Chandra Bhagavatula
Allen Institute for AI

chandrab@allenai.org

Sergey Feldman
Data Cowboys ∗

sergey@data-cowboys.com

Russell Power
Independent Researcher †

russell.power@gmail.com

Waleed Ammar
Allen Institute for AI

waleeda@allenai.org

Abstract

We present a content-based method for rec-
ommending citations in an academic paper
draft. We embed a given query document into
a vector space, then use its nearest neighbors
as candidates, and rerank the candidates us-
ing a discriminative model trained to distin-
guish between observed and unobserved cita-
tions. Unlike previous work, our method does
not require metadata such as author names
which can be missing, e.g., during the peer
review process. Without using metadata, our
method outperforms the best reported results
on PubMed and DBLP datasets with relative
improvements of over 18% in F1@20 and
over 22% in MRR. We show empirically that,
although adding metadata improves the per-
formance on standard metrics, it favors self-
citations which are less useful in a citation rec-
ommendation setup. We release an online por-
tal for citation recommendation based on our
method,1 and a new dataset OpenCorpus of
7 million research articles to facilitate future
research on this task.

1 Introduction

Due to the rapid growth of the scientific litera-
ture, conducting a comprehensive literature review
has become challenging, despite major advances
in digital libraries and information retrieval sys-
tems. Citation recommendation can help improve
the quality and efficiency of this process by sug-
gesting published scientific documents as likely
citations for a query document, e.g., a paper draft
to be submitted for ACL 2018. Existing citation
recommendation systems rely on various informa-
tion of the query documents such as author names
and publication venue (Ren et al., 2014; Yu et al.,
∗Work done while on contract with AI2
†Work done while at AI2
1 http://labs.semanticscholar.org/
citeomatic/

2012), or a partial list of citations provided by the
author (McNee et al., 2002; Liu et al., 2015; Jia
and Saule, 2017) which may not be available, e.g.,
during the peer review process or in the early stage
of a research project.

Our method uses a neural model to embed all
available documents into a vector space by encod-
ing the textual content of each document. We then
select the nearest neighbors of a query document
as candidates and rerank the candidates using a
second model trained to discriminate between ob-
served and unobserved citations. Unlike previous
work, we can embed new documents in the same
vector space used to identify candidate citations
based on their text content, obviating the need to
re-train the models to include new published pa-
pers. Further, unlike prior work (Yang et al., 2015;
Ren et al., 2014), our model is computationally ef-
ficient and scalable during both training and test
time.

We assess the feasibility of recommending cita-
tions when some metadata for the query document
is missing, and find that we are able to outperform
the best reported results on two datasets while only
using papers’ textual content (i.e. its title and ab-
stract). While adding metadata helps further im-
prove the performance of our method on standard
metrics, we found that it introduces a bias for self-
citation which might not be desirable in a citation
recommendation system. See §5 for details of our
experimental results.

Our main contributions are:
• a content-based method for citation recom-

mendation which remains robust when meta-
data are missing for query documents,
• large improvements over state of the art

results on two citation recommendation
datasets despite omitting the metadata,
• a new dataset of seven million research pa-

pers, addressing some of the limitations in

238

dq

d1 d2 d3

d4 d5 d6 d7

dq

d1

d2 d3d6 d7

d4d5 dq

d1 cites	d4
d1 cites	d5
d3 cites	d7
…

K=4

Phase	1:
candidate	selection

Phase	2:
reranking

NNRank
d2

0.7
reranked

list

cited	in	nearest	neighbors:

dq
NNRank

d6
0.8

dq
NNRank

d3
0.5

dq
NNRank

d4
0.3

dq
NNRank

d7
0.9

d7

d6

d2

d3

d4

to
p	
N
=3
	

re
co
m
m
en

da
tio

ns

query	
document

document	
embeddings

nearest	neighbors	of	dq:

Figure 1: An overview of our Citation Recommendation system. In Phase 1 (NNSelect), we project all docu-
ments in the corpus (7 in this toy example) in addition to the query document dq into a vector space, and use its
(K=4) nearest neighbors: d2, d6, d3, and d4 as candidates. We also add d7 as a candidate because it was cited in
d3. In Phase 2 (NNRank), we score each pair (dq, d2), (dq, d6), (dq, d3), (dq, d4), and (dq, d7) separately to rerank
the candidates and return the top 3 candidates: d7, d6 and d2.

previous datasets used for citation recom-
mendation, and
• a scalable web-based literature review tool

based on this work.2

2 Overview

We formulate citation recommendation as a rank-
ing problem. Given a query document dq and a
large corpus of published documents, the task is
to rank documents which should be referenced in
dq higher than other documents. Following pre-
vious work on citation recommendation, we use
standard metrics (precision, recall, F-measure and
mean reciprocal rank) to evaluate our predictions
against gold references provided by the authors of
query documents.

Since the number of published documents in the
corpus can be large, it is computationally expen-
sive to score each document as a candidate refer-
ence with respect to dq. Instead, we recommend
citations in two phases: (i) a fast, recall-oriented
candidate selection phase, and (ii) a feature rich,
2 https://github.com/allenai/citeomatic

precision-oriented reranking phase. Figure 1 pro-
vides an overview of the two phases using a toy
example.

Phase 1 - Candidate Selection: In this phase,
our goal is to identify a set of candidate references
for dq for further analysis without explicitly iterat-
ing over all documents in the corpus.3 Using a
trained neural network, we first project all pub-
lished documents into a vector space such that a
document tends to be close to its references. Since
the projection of a document is independent of the
query document, the entire corpus needs to be em-
bedded only once and can be reused for subse-
quent queries. Then, we project each query doc-
ument dq to the same vector space and identify its
nearest neighbors as candidate references. See §3
for more details about candidate selection.

3 In order to increase the chances that all references are
present in the list of candidates, the number of candidates
must be significantly larger than the total number of cita-
tions of a document, but also significantly smaller than the
number of documents in the corpus.

239

Phase 2 - Reranking: Phase 1 yields a manage-
able number of candidates making it feasible to
score each candidate di by feeding the pair (dq, di)
into another neural network trained to discriminate
between observed and unobserved citation pairs.
The candidate documents are sorted by their es-
timated probability of being cited in dq, and top
candidates are returned as recommended citations.
See §4 for more details about the reranking model
and inference in the candidate selection phase.

3 Phase 1: Candidate Selection
(NNSelect)

In this phase, we select a pool of candidate cita-
tions for a given query document to be reranked in
the next phase. First, we compute a dense embed-
ding of the query document dq using the document
embedding model (described next), and select K
nearest neighbor documents in the vector space as
candidates.4 Following Strohman et al. (2007), we
also include the outgoing citations of the K near-
est neighbors as candidates.

The output of this phase is a list of candi-
date documents di and their corresponding scores
NNSelect(dq, di), defined as the cosine similar-
ity between dq and di in the document embedding
space.

Document embedding model. We use a
supervised neural model to project any doc-
ument d to a dense embedding based on its
textual content. We use a bag-of-word repre-
sentation of each textual field, e.g., d[title] =
{‘content-based’, ‘citation’, ‘recommendation’},
and compute the feature vector:

fd[title] =
∑

t∈d[title]
w

mag
t

wdir
t

‖wdir
t ‖2

, (1)

where wdir
t is a dense direction embedding and

w
mag
t is a scalar magnitude for word type t.5 We

then normalize the representation of each field and
compute a weighted average of fields to get the
document embedding, ed. In our experiments, we
use the title and abstract fields of a document d:

ed = λtitle fd[title]

‖fd[title]‖2
+ λabstract fd[abstract]

‖fd[abstract]‖2
,

4 We tune K as a hyperparameter of our method.
5 The magnitude-direction representation is based on Sali-

mans and Kingma (2016) and was found to improve re-
sults in preliminary experiments, compared to the standard
“direction-only” word representation.

where λtitle and λabstract are scalar model parame-
ters.

Training. We learn the parameters of the doc-
ument embedding model (i.e., λ∗, wmag

∗ ,wdir
∗) us-

ing a training set T of triplets 〈dq, d+, d−〉 where
dq is a query document, d+ is a document cited
in dq, and d− is a document not cited in dq. The
model is trained to predict a high cosine similarity
for the pair (dq, d

+) and a low cosine similarity for
the pair (dq, d

−) using the per-instance triplet loss
(Wang et al., 2014):

loss = max
(
α+ s(dq, d

−)− s(dq, d+), 0
)
, (2)

where s(di, dj) is defined as the cosine similarity
between document embeddings cos-sim(edi , edj).
We tune the margin α as a hyperparameter of the
model (see Appendix B for more details). Next,
we describe how negative examples are selected.

Selecting negative examples. Defining positive
examples is straight-forward; we use any (dq, d

+)
pair where a document dq in the training set cites
d+. However, a careful choice of negative training
examples is critical for model performance. We
use three types of negative examples:

1. Random: any document not cited by dq.
2. Negative nearest neighbors: documents

that are close to dq in the embedding space,
but are not cited in it.6

3. Citation-of-citation: documents referenced
in positive citations of dq, but are not cited
directly in dq.

Negative examples belong to at least one of
these types that serve different, and complemen-
tary purposes. Selecting a paper from the cor-
pus at random as a negative example typically re-
sults in easy negative examples. Selecting near-
est neighbor documents in the embedding space
used for candidate selection enables the re-ranking
phase (described in §4) to fix some of the mistakes
made in the candidate selection step. Finally, us-
ing citations-of-citations as negative examples is
based on the assumption that the authors would
have included them as positive examples if they
were relevant for the query paper. In Appendix
§A, we describe the number of negative examples
of each type used for training. Next, we describe
how to rerank the candidate documents.
6 Since the set of approximate neighbors depend on model pa-

rameters, we recompute a map from each query document
to its K nearest neighbors before each epoch while training
the document embedding model.

240

elu

sigmoid

elu

fd[keyphrases]

query fd[keyphrases]

candidate

fd[abstract] fd[authors] fd[venue]

concat

abstract intersection

di[in-citations]

NNSelect(dq,di)

output is a vector

output is a scalar

output type

fd[title]

fd[title]

cos-sim

title intersection

fd[abstract] fd[authors] fd[venue]

cos-simcos-simcos-sim cos-sim

Figure 2: NNRank architecture. For each of the textual and categorical fields, we compute the cosine similarity
between the embedding for dq and the corresponding embedding for di. Then, we concatenate the cosine similarity
scores, the numeric features and the summed weights of the intersection words, followed by two dense layers with
ELU non-linearities The output layer is a dense layer with sigmoid non-linearity, which estimates the probability
that dq cites di.

4 Phase 2: Reranking Candidates
(NNRank)

In this phase, we train another model which takes
as input a pair of documents (dq, di) and estimates
the probability that di should be cited in dq.

Input features. A key point of this work is to
assess the feasibility of recommending citations
without using metadata, but we describe all fea-
tures here for completeness and defer this discus-
sion to §5. For each document, we compute dense
feature vectors fd[field] as defined in Eq. 1 for the
following fields: title, abstract, authors, venue and
keyphrases (if available). For the title and abstract,
we identify the subset of word types which appear
in both documents (intersection), and compute the
sum of their scalar weights as an additional fea-
ture, e.g.,

∑
t∈∩title w

∩
t . We also use log number

of times the candidate document di has been cited
in the corpus, i.e., log(di[in-citations]). Finally, we
use the cosine similarity between dq and di in the
embedding space, i.e., cos-sim(edq , edi).

Model architecture. We illustrate the
NNRank model architecture in Figure 2.

The output layer is defined as:

s(di, dj) = FeedForward(h), (3)

h =
[
gtitle;gabstract;gauthors;gvenue;

gkeyphrases; cos-sim(edq , edi);
∑

t∈∩title
w∩t ;

∑
t∈∩abstract

w∩t ;

di[in-citations]
]
,

gfield = cos-sim(fdq [field], fdi[field]),

where ‘FeedForward’ is a three layer feed-forward
neural network with two exponential linear unit
layers (Clevert et al., 2015) and one sigmoid layer.
’;’ indicates concatenation.

Training. The parameters of the NNRankmodel
are w

mag
∗ ,wdir

∗ , w
∩
∗ and parameters of the three

dense layers in ‘FeedForward’. We reuse the
triplet loss in Eq. 2 to learn these parameters, but
redefine the similarity function s(di, dj) as the sig-
moid output described in Eq. 3.

At test time, we use this model to recommend
candidates di with the highest s(dq, di) scores.

5 Experiments

In this section, we describe experimental results of
our citation recommendation method and compare
it to previous work.

Datasets. We use the DBLP and PubMed
datasets (Ren et al., 2014) to compare with previ-
ous work on citation recommendation. The DBLP

241

dataset contains over 50K scientific articles in the
computer science domain, with an average of 5
citations per article. The PubMed dataset con-
tains over 45K scientific articles in the medical do-
mains, with an average of 17 citations per article.
In both datasets, a document is accompanied by
its title, abstract, venue (i.e. journal or conference
where the document was published), authors, cita-
tions (i.e. other documents in the corpus that are
referenced in the given document) and keyphrases
(i.e. phrases considered important by automated
extraction methods). We replicate the experimen-
tal setup of Ren et al. (2014) by excluding papers
with fewer than 10 citations and using the standard
train, dev and test splits.7

We also introduce OpenCorpus,8 a new
dataset of 7 million scientific articles primar-
ily drawn from the computer science and neuro-
science domain. Due to licensing constraints, doc-
uments in the corpus do not include the full text
of the scientific articles, but include the title, ab-
stract, year, author, venue, keyphrases and citation
information. The mutually exclusive training, de-
velopment, and test splits were selected such that
no document in the development or test set has a
publication year less than that of any document in
the training set. Papers with zero citations were
removed from the development and test sets. We
describe the key characteristics of OpenCorpus
in Table 1.

Statistic Value
of documents in corpus 6.9 million
of unique authors 8.3 million
of unique keyphrases 823,677
of unique venues 23,672
avg. # of incoming citations 7.4 (± 38.1)
avg. # of outgoing citations 8.4 (± 14.4)
size of training set [years 1991 to 2014] 5.5 million
size of dev set [years 2014 to 2015] 689,000
size of test set [years 2015 to 2016] 20,000

Table 1: Characteristics of the OpenCorpus.

Baselines. We compare our method to two base-
line methods for recommending citations: Clus-
Cite and BM25. ClusCite (Ren et al., 2014) clus-
ters nodes in a heterogeneous graph of terms, au-
thors and venues in order to find related documents
which should be cited. We use the ClusCite results

7 The dataset characteristics reported here are different from
those in Table 3 in (Ren et al., 2014) because we report the
size of the filtered datasets while they report the size of the
datasets before filtering.

8 http://labs.semanticscholar.org/corpus/

as reported in Ren et al. (2014), which compared it
to several other citation recommendation methods
and found that it obtains state of the art results on
the PubMed and DBLP datasets. The BM25 re-
sults are based on our implementation of the pop-
ular ranking function Okapi BM25 used in many
information retrieval systems. See Appendix §D
for details of our BM25 implementation.

Evaluation. We use Mean Reciprocal Rank
(MRR) and F1@20 to report the main results in
this section. In Appendix §F, we also report ad-
ditional metrics (e.g., precision and recall at 20)
which have been used in previous work. We com-
pute F1@20 as the harmonic mean of the corpus-
level precision and recall at 20 (P@20 and R@20).
Following (Ren et al., 2014), precision and recall
at 20 are first computed for each query document
then averaged over query documents in the test set
to compute the corpus-level P@20 and R@20.

Configurations. To find candidates in
NNSelect, we use the approximate nearest
neighbor search algorithm Annoy9, which builds
a binary-tree structure that enables searching for
nearest neighbors in O(log n) time. To build this
tree, points in a high-dimensional space are split
by choosing random hyperplanes. We use 100
trees in our approximate nearest neighbors index,
and retrieve documents using the cosine distance
metric.

We use the hyperopt library10 to optimize
various hyperparameters of our method such as
size of hidden layers, regularization strength and
learning rate. To ensure reproducibility, we pro-
vide a detailed description of the parameters used
in both NNSelect and NNRank models, our hy-
perparameter optimization method and parameter
values chosen in Appendix §A.

Main results. Table 2 reports the F1@20 and
MRR results for the two baselines and three vari-
ants of our method. Since the OpenCorpus
dataset is much bigger, we were not able to train
the ClusCite baseline for it. Totti et al. (2016) have
also found it difficult to scale up ClusCite to larger
datasets. Where available, we report the mean ±
standard deviation based on five trials.

The first variant, labeled “NNSelect,” only
uses the candidate selection part of our method
(i.e., phase 1) to rank candidates by their cosine
9 https://github.com/spotify/annoy
10https://github.com/hyperopt/hyperopt

242

Method DBLP PubMed OpenCorpus
F1@20 MRR F1@20 MRR F1@20 MRR

BM25 0.119 0.425 0.209 0.574 0.058 0.218
ClusCite 0.237 0.548 0.274 0.578 – –
NNSelect 0.282±0.002 0.579±0.007 0.309±0.001 0.699±0.001 0.109 0.221

+ NNRank 0.302±0.001 0.672±0.015 0.325±0.001 0.754±0.003 0.126 0.330
+ metadata 0.303±0.001 0.689±0.011 0.329±0.001 0.771±0.003 0.125 0.330

Table 2: F1@20 and MRR results for two baselines and three variants of our method. BM25 results are based
on our implementation of this baseline, while ClusCite results are based on the results reported in Ren et al.
(2014). “NNSelect” ranks candidates using cosine similarity between the query and candidate documents in
the embedding space (phase 1). “NNSelect + NNRank” uses the discriminative reranking model to rerank
candidates (phase 2), without encoding any of the metadata features. “+ metadata” encodes the metadata features
(i.e., keyphrases, venues and authors), achieving the best results on all datasets. Mean and standard deviations are
reported based on five trials.

similarity to the query document in the embedding
space as illustrated in Fig. 1. Although the docu-
ment embedding space was designed to efficiently
select candidates for further processing in phase 2,
recommending citations directly based on the co-
sine distance in this space outperforms both base-
lines.

The second variant, labeled “NNSelect +
NNRank,” uses the discriminative model (i.e.,
phase 2) to rerank candidates selected by
NNSelect, without encoding metadata (venues,
authors, keyphrases). Both the first and second
variants show that improved modeling of paper
text can significantly outperform previous meth-
ods for citation recommendation, without using
metadata.

The third variant, labeled “NNSelect +
NNRank + metadata,” further encodes the meta-
data features in the reranking model, and gives
the best overall results. On both the DBLP and
PubMed datasets, we obtain relative improve-
ments over 20% (for F1@20) and 25% (for MRR)
compared to the best reported results of ClusCite.

In the rest of this section, we describe controlled
experiments aimed at analyzing different aspects
of our proposed method.

Choice of negative samples. As discussed in §3,
we use different types of negative samples to train
our models. We experimented with using only a
subset of the types, while controlling for the total
number of negative samples used, and found that
using negative nearest neighbors while training the
models is particularly important for the method to
work. As illustrated in Table 3, on the PubMed
dataset, adding negative nearest neighbors while
training the models improves the F1@20 score

from 0.306 to 0.329, and improves the MRR score
from 0.705 to 0.771. Intuitively, using nearest
neighbor negative examples focuses training on
the harder cases on which the model is more likely
to make mistakes.

F1@20 ∆ MRR ∆

Full model 0.329 0.771
without intersection 0.296 0.033 0.653 0.118
without -ve NNs 0.306 0.016 0.705 0.066
without numerical 0.314 0.008 0.735 0.036

Table 3: Comparison of PubMed results of the full
model with model without (i) intersection features, (ii)
negative nearest neighbors in training samples, and (iii)
numerical features.

Valuable features. We experimented with dif-
ferent subsets of the optional features used in
NNRank in order to evaluate the contribution
of various features. We found intersection fea-
tures, NNSelect scores, and the number of
incoming citations to be the most valuable fea-
ture. As illustrated in Table 3, the intersection
features improves the F1@20 score from 0.296 to
0.329, and the MRR score from 0.653 to 0.771,
on the PubMed dataset. The numerical features
(NNSelect score and incoming citations) im-
prove the F1@20 score from 0.314 to 0.329, and
improves the MRR score from 0.735 to 0.771.
This shows that, in some applications, feeding en-
gineered features to neural networks can be an ef-
fective strategy to improve their performance.

Performance across venues We studied the
variability of performance of our model for papers
from different venues. Figure 3 shows the F1@20
score of NNRank for papers belonging to the top

243

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

0.37

0.34

0.35

0.34

0.35

0.31

0.37

0.32

0.32

0.3

Pubmed F1@20

V
en

ue
R

an
k

Figure 3: F1@20 of NNRank on the Pubmed dataset
across top ten venues

ten venues (by their paper count) in the Pubmed
corpus. NNRank’s performance is robust across
venues.

Encoding textual features. We also experi-
mented with using recurrent and convolutional
neural network to encode the textual fields of
query and candidate documents, instead of us-
ing a weighted sum as described in Eq. 1. We
found that recurrent and convolutional encoders
are much slower, and did not observe a significant
improvement in the overall performance as mea-
sured by the F1@20 and MRR metrics. This result
is consistent with previous studies on other tasks,
e.g., Iyyer et al. (2015).

Number of nearest neighbors. As discussed
in §3, the candidate selection step is crucial for
the scalability of our method because it reduces
the number of computationally expensive pair-
wise comparisons with the query document at run-
time. We did a controlled experiment on the
OpenCorpus dataset (largest among the three
datasets) to measure the effect of using different
numbers of nearest neighbors, and found that both
P@20 and R@20 metrics are maximized when
NNSelect fetches five nearest neighbors using
the approximate nearest neighbors index (and their
out-going citations), as illustrated in Table 4.

Self-citation bias. We hypothesized that a
model trained with the metadata (e.g., authors)
could be biased towards self-citations and other
well-cited authors. To verify this hypothesis, we
compared two NNRank models – one with meta-

of neighbors R@20 P@20 Time(ms)
1 0.123 0.079 131
5 0.142 0.080 144

10 0.138 0.069 200
50 0.081 0.040 362

Table 4: OpenCorpus results for NNSelect step
with varying number of nearest neighbors on 1,000 val-
idation documents.

data, and one without. We measured the mean and
max rank of predictions that had at least one author
in common with the query document. This ex-
periment was performed with the OpenCorpus
dataset.

A lower mean rank for NNRank + Metadata in-
dicates that the model trained with metadata tends
to favor documents authored by one of the query
document’s authors. We verified the prevalence of
this bias by varying the number of predictions for
each model from 1 to 100. Figure 4 shows that
the mean and max rank of the model trained with
metadata is always lower than those for the model
that does not use metadata.

Figure 4: Mean and Max Rank of predictions with
varying number of candidates.

6 Related Work

Citation recommendation systems can be divided
into two categories – local and global. A local
citation recommendation system takes a few sen-
tences (and an optional placeholder for the can-
didate citation) as input and recommends cita-
tions based on the local context of the input sen-

244

tences (Huang et al., 2015; He et al., 2010; Tang
and Zhang, 2009; Huang et al., 2012; He et al.,
2011). A global citation recommendation system
takes the entire scholarly article as input and rec-
ommends citations for the paper (McNee et al.,
2002; Strohman et al., 2007; Nallapati et al., 2008;
Kataria et al., 2010; Ren et al., 2014). We ad-
dress the global citation recommendation problem
in this paper.

A key difference of our proposed method com-
pared to previous work is that our method is
content-based and works well even in the absence
of metadata (e.g. authors, venues, key phrases,
seed list of citations). Many citation recommenda-
tion systems crucially rely on a query document’s
metadata. For example, the collaborative filtering
based algorithms of McNee et al. (2002); Jia and
Saule (2017); Liu et al. (2015) require seed cita-
tions for a query document. (Ren et al., 2014; Yu
et al., 2012) require authors, venues and key terms
of the query documents to infer interest groups and
to extract features based on paths in a heteroge-
neous graph. In contrast, our model performs well
solely based on the textual content of the query
document.

Some previous work (e.g. (Ren et al., 2014; Yu
et al., 2012)) have addressed the citation recom-
mendation problem using graph-based methods.
But, training graph-based citation recommenda-
tion models has been found to be expensive. For
example, the training complexity of the ClusCite
algorithm (Ren et al., 2014) is cubic in the number
of edges in the graph of authors, venues and terms.
This can be prohibitively expensive for datasets
as large as OpenCorpus. On the other hand
our model is a neural network trained via batched
stochastic gradient descent that scales very well to
large datasets (Bottou, 2010).

Another crucial difference between our ap-
proach and some prior work in citation predic-
tion is that we build up a document representa-
tion using its constituent words only. Prior algo-
rithms (Huang et al., 2015, 2012; Nallapati et al.,
2008; Tanner and Charniak, 2015) learn an explicit
representation for each training document sepa-
rately that isn’t a deterministic function of the doc-
ument’s words. This makes the model effectively
transductive since a never-before-seen document
does not have a ready-made representation. Simi-
larly, Huang et al. (2012)’s method needs a candi-
date document to have at least one in-coming cita-

tion to be eligible for citation – this disadvantages
newly published documents. Liu et al. (2015)
form document representations using citation re-
lations, which are not available for unfinished or
new documents. In contrast, our method does not
need to be re-trained as the corpus of potential can-
didates grows. As long as the new documents are
in the same domain as that of the model’s training
documents, they can simply be added to the cor-
pus and are immediately available as candidates
for future queries.

While the citation recommendation task has at-
tracted a lot of research interest, a recent survey
paper (Beel et al., 2016) has found three main con-
cerns with existing work: (i) limitations in evalu-
ation due to strongly pruned datasets, (ii) lack of
details for re-implementation, and (iii) variations
in performance across datasets. For example, the
average number of citations per document in the
DBLP dataset is 5, but Ren et al. (2014) filtered
out documents with fewer than 10 citations from
the test set. This drastically reduced the size of the
test set. We address these concerns by releasing
a new large scale dataset for future citation rec-
ommendation systems. In our experiments on the
OpenCorpus dataset, we only prune documents
with zero outgoing citations. We provide extensive
details of our system (see Appendix §A) to facil-
itate reproducibility and release our code11. We
also show in experiments that our method consis-
tently outperforms previous systems on multiple
datasets.

Finally, recent work has combined graph node
representations and text-based document repre-
sentations using CCA (Gupta and Varma, 2017).
This sort of approach can enhance our text-based
document representations if a technique to create
graph node representations at test-time is avail-
able.

7 Conclusion

In this paper, we present a content-based cita-
tion recommendation method which remains ro-
bust when metadata is missing for query docu-
ments, enabling researchers to do an effective liter-
ature search early in their research cycle or during
the peer review process, among other scenarios.
We show that our method obtains state of the art
results on two citation recommendation datasets,
even without the use of metadata available to the

11https://github.com/allenai/citeomatic

245

baseline method. We make our system publicly
accessible online. We also introduce a new dataset
of seven million scientific articles to facilitate fu-
ture research on this problem.

Acknowledgements

We would like to thank Oren Etzioni, Luke Zettle-
moyer, Doug Downey and Iz Beltagy for partic-
ipating in discussions and for providing helpful
comments on the paper draft; Hsu Han and rest
of the Semantic Scholar team at AI2 for creating
the OpenCorpus dataset. We also thank Xiang Ren
for providing the data used in their experiments on
the DBLP and Pubmed datasets. Finally, we thank
the anonymous reviewers for insightful comments
on the draft.

References
Joeran Beel, Bela Gipp, Stefan Langer, and Corinna

Breitinger. 2016. Research-paper recommender sys-
tems: a literature survey. International Journal on
Digital Libraries 17(4):305–338.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, Springer, pages 177–186.

Jane Bromley, James W Bentz, Léon Bottou, Is-
abelle Guyon, Yann LeCun, Cliff Moore, Eduard
Säckinger, and Roopak Shah. 1993. Signature veri-
fication using a siamese time delay neural network.
International Journal of Pattern Recognition and
Artificial Intelligence 7(04):669–688.

Cornelia Caragea, Florin Adrian Bulgarov, Andreea
Godea, and Sujatha Das Gollapalli. 2014a. Citation-
enhanced keyphrase extraction from research pa-
pers: A supervised approach. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics, pages 1435–1446.

Cornelia Caragea, Florin Adrian Bulgarov, Andreea
Godea, and Sujatha Das Gollapalli. 2014b. Citation-
enhanced keyphrase extraction from research pa-
pers: A supervised approach. In EMNLP. vol-
ume 14, pages 1435–1446.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289 .

Shashank Gupta and Vasudeva Varma. 2017. Scientific
article recommendation by using distributed repre-
sentations of text and graph. In WWW.

Qi He, Daniel Kifer, Jian Pei, Prasenjit Mitra, and
C. Lee Giles. 2011. Citation recommendation with-
out author supervision. In WSDM.

Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and Lee
Giles. 2010. Context-aware citation recommenda-
tion. In Proceedings of the 19th international con-
ference on World wide web. ACM, pages 421–430.

Wenyi Huang, Saurabh Kataria, Cornelia Caragea,
Prasenjit Mitra, C Lee Giles, and Lior Rokach. 2012.
Recommending citations: translating papers into
references. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management. ACM, pages 1910–1914.

Wenyi Huang, Zhaohui Wu, Liang Chen, Prasenjit Mi-
tra, and C Lee Giles. 2015. A neural probabilistic
model for context based citation recommendation.
In AAAI. pages 2404–2410.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-
Graber, and Hal Daumé. 2015. Deep unordered
composition rivals syntactic methods for text clas-
sification. In ACL.

Haofeng Jia and Erik Saule. 2017. An analysis of cita-
tion recommender systems: Beyond the obvious. In
ASONAM.

Saurabh Kataria, Prasenjit Mitra, and Sumit Bhatia.
2010. Utilizing context in generative bayesian mod-
els for linked corpus. In AAAI.

Haifeng Liu, Xiangjie Kong, Xiaomei Bai, Wei Wang,
Teshome Megersa Bekele, and Feng Xia. 2015.
Context-based collaborative filtering for citation rec-
ommendation. IEEE Access 3:1695–1703.

Patrice Lopez and Laurent Romary. 2010. Humb: Au-
tomatic key term extraction from scientific articles
in grobid. In Proceedings of the 5th international
workshop on semantic evaluation. Association for
Computational Linguistics, pages 248–251.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Sean M McNee, Istvan Albert, Dan Cosley, Pra-
teep Gopalkrishnan, Shyong K Lam, Al Mamunur
Rashid, Joseph A Konstan, and John Riedl. 2002.
On the recommending of citations for research pa-
pers. In Proceedings of the 2002 ACM conference
on Computer supported cooperative work. ACM,
pages 116–125.

Ramesh Nallapati, Amr Ahmed, Eric P. Xing, and
William W. Cohen. 2008. Joint latent topic models
for text and citations. In KDD.

Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal,
Quanquan Gu, Lidan Wang, and Jiawei Han. 2014.
Cluscite: Effective citation recommendation by in-
formation network-based clustering. In Proceedings
of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM,
pages 821–830.

246

Tim Salimans and Diederik P. Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. CoRR
abs/1602.07868. http://arxiv.org/abs/
1602.07868.

Trevor Strohman, W. Bruce Croft, and David D.
Jensen. 2007. Recommending citations for aca-
demic papers. In SIGIR.

Jie Tang and Jing Zhang. 2009. A discriminative ap-
proach to topic-based citation recommendation. In
PAKDD.

Chris Tanner and Eugene Charniak. 2015. A hybrid
generative/discriminative approach to citation pre-
diction. In HLT-NAACL.

Luam C. Totti, Prasenjit Mitra, Mourad Ouzzani, and
Mohammed J. Zaki. 2016. A query-oriented ap-
proach for relevance in citation networks. In WWW.

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosen-
berg, Jingbin Wang, James Philbin, Bo Chen, and
Ying Wu. 2014. Learning fine-grained image simi-
larity with deep ranking. In Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, Washington,
DC, USA, CVPR ’14, pages 1386–1393. https:
//doi.org/10.1109/CVPR.2014.180.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun,
and Edward Y Chang. 2015. Network representa-
tion learning with rich text information. In Pro-
ceedings of the 24th International Joint Conference
on Artificial Intelligence, Buenos Aires, Argentina.
pages 2111–2117.

Xiao Yu, Quanquan Gu, Mianwei Zhou, and Jiawei
Han. 2012. Citation prediction in heterogeneous
bibliographic networks. In SDM.

247

A Hyperparameter Settings

Neural networks are complex and have a large
number of hyperparameters to tune. This makes
it challenging to reproduce experimental results.
Here, we provide details of how the hyperparame-
ters of the NNSelect and NNRank models were
chosen or otherwise set. We chose a subset of hy-
perparameters for tuning, and left the rest at man-
ually set default values. Due to limited computa-
tional resources, we were only able to perform hy-
perparameter tuning on the development split of
the smaller DBLP and Pubmed datasets.

For DBLP and PubMed, we first ran Hyperopt12

with 75 trials. Each trial was run for five epochs
of 500,000 triplets each. The ten top performing
of these models were trained for a full 50 epochs,
and the best performing model’s hyperparameters
are selected. Hyperparameters for NNSelect
were optimized for Recall@20 and those for the
NNRank model were optimized for F1@20 on the
development set. The selected values for DBLP
are reported in Table 6 and for PubMed are re-
ported in Table 7.
OpenCorpus hyperparameters were set via in-

formal hand-tuning, and the results are in Table 9.
A few miscellaneous parameters (not tuned) that
are necessary for reproducibility are in Table 8.

We briefly clarify the meaning of some param-
eters below:

• Margin Multiplier - The triplet loss has vari-
able margins for the three types of negatives:
0.1γ, 0.2γ, and 0.3γ. We treat γ as a hyper-
parameter and refer to it as the margin multi-
plier.

• Use Siamese Embeddings - For the majority
of our experiments, we use a Siamese model
(Bromley et al., 1993). That is, the textual
embeddings for the query text and abstract
share the same weights. However, we had
a significantly larger amount of data to train
NNRank on OpenCorpus, and found that
non-Siamese embeddings are beneficial.

• Use Pretrained - We estimate word em-
beddings on the titles and abstracts of
OpenCorpus using Word2Vec imple-
mented by the gensim Python package13.

12https://github.com/hyperopt/hyperopt
13https://radimrehurek.com/gensim/

B Margin Loss Details

When computing the margins for the triplet loss,
we use a boosting function for highly cited docu-
ments. The full triplet loss function is as follows:

max
(
γα(d−)

+ s(dq, d
−) +B(d−)

− s(dq, d+)−B(d+)

, 0
)

where γ is the margin multiplier, and α(d−) varies
based on the type of negative document:

• α(d−) = 0.3 for random negatives

• α(d−) = 0.2 for nearest neighbor negatives

• α(d−) = 0.1 for citation-of-citation negatives.

The boosting function is defined as follows:

B(d) =
σ
(
d[in-citations]

100

)

50

where σ is the sigmoid function and d[in-citations]
is the number of times document dwas cited in the
corpus. The boosting function allows the model to
slightly prefer candidates that are cited more fre-
quently, and the constants were set without opti-
mization.

C Nearest Neighbors for Training Details

When obtaining nearest neighbors for negative ex-
amples during training, we use a heuristic to find
a subset of the fetched nearest neighbors that are
sufficiently wrong. That is, these are non-citation
samples that look dissimilar in the original text but
similar in the embedding space. This procedure is
as follows for each training query:

1. Compute the Jaccard similarities between a
training query and all of its true citations
using the concatenation of title and abstract
texts.

2. Compute the bottom fifth percentile Jaccard
similarity value. I.e. the value below which
only the bottom 5% most least textually sim-
ilar true citations fall. For example, if the
Jaccard similarities range from 0.2 to 0.9, the
fifth percentile might plausibly be 0.3.

3. Use the Annoy index computed at the end of
the previous epoch to fetch nearest neighbors
for the query document.

248

4. Compute the textual Jaccard similarity be-
tween all of the nearest neighbors and the
query document.

5. Retain nearest neighbors that have a smaller
Jaccard similarity than the fifth percentile.
Using the previous example, retain the near-
est neighbors that have a lower Jaccard simi-
larity than 0.3.

D BM25 Details

BM25 Implemen-
tation

DBLP PubMed

F@20 MRR F@20 MRR
Ren et al. (2014) 0.111 0.411 0.153 0.497
Our approximation 0.119 0.425 0.209 0.574

Table 5: Results of our BM25 implementation on
DBLP and Pubmed datasets.

Okapi-BM25 is a popular ranking function.
We use BM25 as an IR-based baseline for the
task of citation recommendation. For the DBLP
and Pubmed datasets, BM25 performance is pro-
vided in Ren et al. (2014). To create a com-
petitive BM25 baseline for OpenCorpus, we
first created indexes for the DBLP and Pubmed
datasets and tuned the query to approximate the
performance reported in previous work. We used
Whoosh14 to create an index. We extract the key
terms (using Whoosh’s key terms from text
method) from the title and abstract of each query
document. The key terms from the document are
concatenated to form the query string. Table 5
shows that our BM25 is a close approximation to
the BM25 implementation of previous work and
can be reliably used as a strong IR baseline for
OpenCorpus. In Table 2, we report results on all
three datasets using our BM25 implementation.

E Key Phrases for OpenCorpus

In the OpenCorpus dataset, some documents
are accompanied by automatically extracted key
phrases. Our implementation of automatic key
phrase extraction is based on standard key phrase
extraction systems – e.g. (Caragea et al., 2014a,b;
Lopez and Romary, 2010). We first extract noun
phrases using the Stanford CoreNLP package
(Manning et al., 2014) as candidate key phrases.
Next, we extract corpus level and document level

14https://pypi.python.org/pypi/Whoosh/

features (e.g. term frequency, document fre-
quency, n-gram probability etc.) for each candi-
date key phrase. Finally, we rank the candidate
key phrases using a ranking model that is trained
on author-provided key phrases as gold labels.

F Detailed Experimental Results

Table 10 compares NNRank with previous work
in detail on DBLP and Pubmed datasets. Clus-
Cite (Ren et al., 2014) clusters nodes in a het-
erogeneous graph of terms, authors and venues in
order to find related documents which should be
cited. ClusCite obtains the previous best results on
these two datasets. L2-LR (Yu et al., 2012) uses a
linear combination of meta-path based linear fea-
tures to classify candidate citations. We show that
NNRank (with and without metadata) consistently
outperforms ClusCite and other baselines on all
metrics on both datasets.

249

NNSelect NNRank
Hyperparameter Range Chosen Value Range Chosen Value
learning rate [1e-5, 1e-4, . . . , 1e-1] 0.01 [1e-5, 1e-4, . . . , 1e-1] 0.01
l2 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 0 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-3
l1 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 1e-7 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-4
word dropout [0, 0.05, 0.1, . . . , 0.75] 0.60 [0, 0.05, 0.1, . . . , 0.75] 0.35
margin multiplier [0.5, 0.75, 1.0, 1.25, 1.5] 1.0 [0.5, 0.75, 1.0, 1.25, 1.5] 0.5
dense dimension [25, 50, . . . , 325] 300 [25, 50, . . . , 325] 175
metadata dimension - - [5, 10, . . . , 55] 45
use pretrained [true, false] true [true, false] false
finetune pretrained [true, false] true [true, false] -
number ANN neighbors - 10 - -
triplets per batch size - 256 - 256
triplets per epoch - 500000 - 500000
triplets per training - 2500000 - 2500000
use Siamese embeddings - true - true

Table 6: DBLP hyperparameter tuning results. Note that the dense dimension when using pretrained vectors is
fixed to be 300. A ’-’ indicates that the variable was not tuned.

NNSelect NNRank
Hyperparameter Range Chosen Value Range Chosen Value
learning rate [1e-5, 1e-4, . . . , 1e-1] 0.001 [1e-5, 1e-4, . . . , 1e-1] 0.001
l2 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 0 [0, 1e-7, 1e-6, . . . , 1e-2] 0
l1 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 1e-6 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-6
word dropout [0, 0.05, 0.1, . . . , 0.75] 0.55 [0, 0.05, 0.1, . . . , 0.75] 0.1
margin multiplier [0.5, 0.75, 1.0, 1.25, 1.5] 0.5 [0.5, 0.75, 1.0, 1.25, 1.5] 1.5
dense dimension [25, 50, . . . , 325] 325 [25, 50, . . . , 325] 150
metadata dimension - - [5, 10, . . . , 55] 40
use pretrained [true, false] false [true, false] false
finetune pretrained [true, false] - [true, false] -
number ANN neighbors - 10 - -
triplets per batch size - 256 - 256
triplets per epoch - 500000 - 500000
triplets per training - 2500000 - 2500000
use Siamese embeddings - true - true

Table 7: PubMed hyperparameter tuning results. Note that the dense dimension when using pretrained GloVe
vectors is fixed to be 300. A ’-’ indicates that the variable was not tuned.

250

Hyperparameter PubMed/DBLP Value OpenCorpus Value
title/abstract vocabulary size 200000 200000
maximum title length 50 50
maximum abstract length 500 500
training triplets per query 6 6
min # of papers per author included 1 10
min # of papers per venue included 1 10
min # of papers per keyphrases included 5 10
max authors per document 8 8
max keyphrases per document 20 20
minimum true citations per document 2/1 2
maximum true citations per document 100 100
optimizer LazyAdamOptimizer* Nadam**
use magnitude-direction embeddings true true
reduce learning rate upon plateau false true

Table 8: Per-dataset parameters. These were hand-specified. *LazyAdamOptimizer is part of TensorFlow.
**Nadam is part of Keras.

Hyperparameter NNSelect Value NNRank Value
learning rate 0.001 0.001
l2 regularization 1e-5 1e-5
l1 regularization 1e-7 1e-7
word dropout 0.1 0.1
margin multiplier 1.0 1.0
dense dimension 75 75
metadata dimension - 25
use pretrained false false
number ANN neighbors 5 -
triplets per batch size 256 32
triplets per epoch 2500000 2500000
triplets per training 25000000 100000000
use Siamese embeddings true false

Table 9: Hyperparameters used for OpenCorpus

DBLP PubMed
Method P@10 P@20 R@20 F1@20 MRR P@10 P@20 R@20 F1@20 MRR
BM25 0.126 0.0902 0.1431 0.11 0.4107 0.1847 0.1349 0.1754 0.15 0.4971
L2-LR 0.2274 0.1677 0.2471 0.200 0.4866 0.2527 0.1959 0.2504 0.2200 0.5308
ClusCite 0.2429 0.1958 0.2993 0.237 0.5481 0.3019 0.2434 0.3129 0.274 0.5787
NNSelect 0.287 0.230 0.363 0.282 0.579 0.388 0.316 0.302 0.309 0.699

+ NNRank 0.339 0.247 0.390 0.302 0.672 0.421 0.332 0.318 0.325 0.754
+ metadata 0.345 0.247 0.390 0.303 0.689 0.429 0.337 0.322 0.329 0.771

Table 10: Comparing NNRank with ClusCite. (Ren et al., 2014) have presented results on several other topic-
based, link-based and network-based citation recommendation methods as baselines. For succinctness, we show
results for the best system, Cluscite, and two baselines BM25 and L2-LR.

251

