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Abstract

What makes some types of languages more
probable than others? For instance, we know
that almost all spoken languages contain the
vowel phoneme /i/; why should that be? The
field of linguistic typology seeks to answer
these questions and, thereby, divine the mech-
anisms that underlie human language. In our
work, we tackle the problem of vowel system
typology, i.e., we propose a generative proba-
bility model of which vowels a language con-
tains. In contrast to previous work, we work di-
rectly with the acoustic information—the first
two formant values—rather than modeling dis-
crete sets of phonemic symbols (IPA). We de-
velop a novel generative probability model and
report results based on a corpus of 233 lan-
guages.

1 Introduction

Human languages are far from arbitrary; cross-
linguistically, they exhibit surprising similarity in
many respects and many properties appear to be
universally true. The field of linguistic typology
seeks to investigate, describe and quantify the axes
along which languages vary. One facet of language
that has been the subject of heavy investigation is
the nature of vowel inventories, i.e., which vowels
a language contains. It is a cross-linguistic univer-
sal that all spoken languages have vowels (Gordon,
2016), and the underlying principles guiding vowel
selection are understood: vowels must be both
easily recognizable and well-dispersed (Schwartz
et al., 2005). In this work, we offer a more formal
treatment of the subject, deriving a generative prob-
ability model of vowel inventory typology. Our
work builds on (Cotterell and Eisner, 2017) by in-
vestigating not just discrete IPA inventories but the
cross-linguistic variation in acoustic formants.

The philosophy behind our approach is that lin-
guistic typology should be treated probabilistically

and its goal should be the construction of a univer-
sal prior over potential languages. A probabilistic
approach does not rule out linguistic systems com-
pletely (as long as one’s theoretical formalism can
describe them at all), but it can position phenomena
on a scale from very common to very improbable.
Probabilistic modeling also provides a discipline
for drawing conclusions from sparse data. While
we know of over 7000 human languages, we have
some sort of linguistic analysis for only 2300 of
them (Comrie et al., 2013), and the dataset used in
this paper (Becker-Kristal, 2010) provides simple
vowel data for fewer than 250 languages.

Formants are the resonant frequencies of the hu-
man vocal tract during the production of speech
sounds. We propose a Bayesian generative model
of vowel inventories, where each language’s inven-
tory is a finite subset of acoustic vowels represented
as points (F1, F2) ∈ R2. We deploy tools from the
neural-network and point-process literatures and
experiment on a dataset with 233 distinct languages.
We show that our most complicated model outper-
forms simpler models.

2 Acoustic Phonetics and Formants

Much of human communication takes place
through speech: one conversant emits a sound wave
to be comprehended by a second. In this work, we
consider the nature of the portions of such sound
waves that correspond to vowels. We briefly review
the relevant bits of acoustic phonetics so as to give
an overview of the data we are actually modeling
and develop our notation.

The anatomy of a sound wave. The sound wave
that carries spoken language is a function from
time to amplitude, describing sound pressure vari-
ation in the air. To distinguish vowels, it is help-
ful to transform this function into a spectrogram
(Fig. 1) by using a short-time Fourier transform
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Figure 1: Example spectrogram of the three English vowels:
/i/, /u/ and /A/. The x-axis is time and y-axis is frequency. The
first two formants F1 and F2 are marked in with arrows for
each vowel. The figure was made with Praat (Boersma et al.,
2002).

(Deng and O’Shaughnessy, 2003, Chapter 1) to de-
compose each short interval of the wave function
into a weighted sum of sinusoidal waves of differ-
ent frequencies (measured in Hz). At each interval,
the variable darkness of the spectrogram indicates
the weights of the different frequencies. In pho-
netic analysis, a common quantity to consider is
a formant—a local maximum of the (smoothed)
frequency spectrum. The fundamental frequency
F0 determines the pitch of the sound. The formants
F1 and F2 determine the quality of the vowel.

Two is all you need (and what we left out). In
terms of vowel recognition, it is widely speculated
that humans rely almost exclusively on the first
two formants of the sound wave (Ladefoged, 2001,
Chapter 5). The two-formant assumption breaks
down in edge cases: e.g., the third formant F3

helps to distinguish the roundness of the vowel
(Ladefoged, 2001, Chapter 5). Other non-formant
features may also play a role. For example, in
tonal languages, the same vowel may be realized
with different tones (which are signaled using F0):
Mandarin Chinese makes a distinction between mǎ
(horse) and má (hemp) without modifying the qual-
ity of the vowel /a/. Other features, such as creaky
voice, can play a role in distinguishing phonemes.
We do not explicitly model any of these aspects of
vowel space, limiting ourselves to (F1, F2) as in
previous work (Liljencrants and Lindblom, 1972).
However, it would be easy to extend all the models
we will propose here to incorporate such informa-
tion, given appropriate datasets.

3 The Phonology of Vowel Systems

The vowel inventories of the world’s languages
display clear structure and appear to obey several
underlying principles. The most prevalent of these

principles are focalization and dispersion.

Focalization. The notion of focalization grew
out of quantal vowel theory (Stevens, 1989). Quan-
tal vowels are those that are phonetically “better”
than others. They tend to display certain proper-
ties, e.g., the formants tend to be closer together
(Stevens, 1987). Cross-linguistically, quantal vow-
els are the most frequently attested vowels, e.g., the
cross-linguistically common vowel /i/ is considered
quantal, but less common /y/ is not.

Dispersion. The second core principle of vowel
system organization is known as dispersion. As
the name would imply, the principle states that
the vowels in “good” vowel systems tend to be
spread out. The motivation for such a principle
is clear—a well-dispersed set of vowels reduces a
listener’s potential confusion over which vowel is
being pronounced. See Schwartz et al. (1997) for a
review of dispersion in vowel system typology and
its interaction with focalization, which has led to
the joint dispersion-focalization theory.

Notation. We will denote the universal set of
international phonetic alphabet (IPA) symbols
as V . The observed vowel inventory for lan-
guage ` has size n` and is denoted V ` =
{(v`1,v`1), . . . , (v`

n`
,v`

n`
)} ⊆ V × Rd, where for

each k ∈ [1, n`], v`k ∈ V is an IPA symbol assigned
by a linguist and v`k ∈ Rd is a vector of d measur-
able phonetic quantities. In short, the IPA symbol
v`k was assigned as a label for a phoneme with pro-
nunciation v`k. The ordering of the elements within
V ` is arbitrary.

Goals. This framework recognizes that the same
IPA symbol v (such as /u/) may represent a slightly
different sound v in one language than in another,
although they are transcribed identically. We are
specifically interested in how the vowels in a lan-
guage influence one another’s fine-grained pro-
nunciation in Rd. In general, there is no reason
to suspect that speakers of two languages, whose
phonological systems contain the same IPA symbol,
should produce that vowel with identical formants.

Data. For the remainder of the paper, we will
take d = 2 so that each v = (F1, F2) ∈ R2, the
vector consisting of the first two formant values,
as compiled from the field literature by Becker-
Kristal (2006). This dataset provides inventories
V ` in the form above. Thus, we do not consider
further variation of the vowel pronunciation that
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may occur within the language (between speakers,
between tokens of the vowel, or between earlier
and later intervals within a token).

4 Phonemes versus Phones

Previous work (Cotterell and Eisner, 2017) has
placed a distribution over discrete phonemes, ignor-
ing the variation across languages in the pronuncia-
tion of each phoneme. In this paper, we crack open
the phoneme abstraction, moving to a learned set
of finer-grained phones.

Cotterell and Eisner (2017) proposed (among
other options) using a determinantal point process
(DPP) over a universal inventory V of 53 sym-
bolic (IPA) vowels. A draw from such a DPP is
a language-specific inventory of vowel phonemes,
V ⊆ V . In this paper, we say that a language in-
stead draws its inventory from a larger set V̄ , again
using a DPP. In both cases, the reason to use a
DPP is that it prefers relatively diverse inventories
whose individual elements are relatively quantal.

While we could in principle identify V̄ with Rd,
for convenience we still take it to be a (large) dis-
crete finite set V̄ = {v̄1, . . . , v̄N}, whose elements
we call phones. V̄ is a learned cross-linguistic pa-
rameter of our model; thus, its elements—the “uni-
versal phones”—may or may not correspond to
phonetic categories traditionally used by linguists.

We presume that language ` draws from the DPP
a subset V̄ ` ⊆ V̄ , whose size we call n`. For each
universal phone v̄i that appears in this inventory V̄ `,
the language then draws an observable language-
specific pronunciation v`i ∼ N

(
µi, σ

2I
)

from a
distribution associated cross-linguistically with the
universal phone v̄i. We now have an inventory of
pronunciations.

As a final step in generating the vowel inventory,
we could model IPA labels. For each v̄i ∈ V̄ `, a
field linguist presumably draws the IPA label v`i
conditioned on all the pronunciations {v`i ∈ Rd :
v̄i ∈ V̄ `} in the inventory (and perhaps also on
their underlying phones v̄i ∈ V̄ `). This labeling
process may be complex. While each pronuncia-
tion in Rd (or each underlying phone in V̄) may
have a preference for certain IPA labels in V , the
n` labels must be drawn jointly because the lin-
guist will take care not to use the same label for
two phones, and also because the linguist may like
to describe the inventory using a small number of
distinct IPA features, which will tend to favor fac-
torial grids of symbols. The linguist’s use of IPA

features may also be informed by phonological and
phonetic processes in the language. We leave mod-
eling of this step to future work; so our current
likelihood term ignores the evidence contributed
by the IPA labels in the dataset, considering only
the pronunciations in Rd.

The overall idea is that human languages ` draw
their inventories from some universal prior, which
we are attempting to reconstruct. A caveat is that
we will train our method by maximum-likelihood,
which does not quantify our uncertainty about the
reconstructed parameters. An additional caveat is
that some languages in our dataset are related to
one another, which belies the idea that they were
drawn independently. Ideally, one ought to capture
these relationships using hierarchical or evolution-
ary modeling techniques.

5 Determinantal Point Processes

Before delving into our generative model, we
briefly review technical background used by Cot-
terell and Eisner (2017). A DPP is a probability
distribution over the subsets of a fixed ground set of
size N—in our case, the set of phones V̄ . The DPP
is usually given as an L-ensemble (Borodin and
Rains, 2005), meaning that it is parameterized by a
positive semi-definite matrix L ∈ RN×N . Given a
discrete base set V̄ of phones, the probability of a
subset V̄ ⊆ V̄ is given by

p(V̄ ) ∝ det (LV̄ ) , (1)

where LV̄ is the submatrix of L corresponding to
the rows and columns associated with the subset
V̄ ⊆ V̄ . The entry Lij , where i 6= j, has the effect
of describing the similarity between the elements
v̄i and v̄j (both in V̄)—an ingredient needed to
model dispersion. And, the entry Lii describes the
quality—focalization—of the vowel v̄i, i.e., how
much the model wants to have v̄i in a sampled set
independent of the other members.

5.1 Probability Kernel
In this work, each phone v̄i ∈ V̄ is associated with
a probability density over the space of possible pro-
nunciations R2. Our measure of phone similarity
will consider the “overlap” between the densities
associated with two phones. This works as follows:
Given two densities f(x, y) and f ′(x, y) over R2,
we define the kernel (Jebara et al., 2004) as

K(f, f ′; ρ) =

∫

x

∫

y
f(x, y)ρf ′(x, y)ρdx dy, (3)
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M∏

`=1

[
p(v`,1, . . . ,v`,n

` | µ1, . . . ,µN , N)
]
p(µ1, . . .µN | N) p(N) (2)

=
M∏

`=1

[ ∑

a`∈A(n`,N)

(
n`∏

k=1

p(v`,k | µa`k)
︸ ︷︷ ︸

4

)
p(V̄ (a`) | µ1, . . . ,µN , N)︸ ︷︷ ︸

3

]
p(µ1, . . .µN | N)︸ ︷︷ ︸

2

p(N)︸ ︷︷ ︸
1

Figure 2: Joint likelihood of M vowel systems under our deep generative probability model for continuous-space vowel
inventories. Here language ` has an observed inventory of pronunciations {v`,k : 1 ≤ k ≤ n`}, and a`k ∈ [1, N ] denotes a
phone that might be responsible for the pronunciation v`,k. Thus, a` denotes some way to jointly label all n` pronunciations
with distinct phones. We must sum over all

(
N
n`

)
such labelings a` ∈ A(n`, N) since the true labeling is not observed. In other

words, we sum over all ways a` of completing the data for language `. Within each summand, the product of factors 3 and 4 is
the probability of the completed data, i.e., the joint probability of generating the inventory V̄ (a`) of phones used in the labeling
and their associated pronunciations. Factor 3 considers the prior probability of V̄ (a`) under the DPP, and factor 4 is a likelihood
term that considers the probability of the associated pronunciations.

with inverse temperature parameter ρ.
In our setting, f, f ′ will both be Gaussian dis-

tributions with means µ and µ′ that share a fixed
spherical covariance matrix σ2I . Then eq. (3) and
indeed its generalization to any Rd has a closed-
form solution (Jebara et al., 2004, §3.1):

K(f,f ′; ρ) = (4)

(2ρ)
d
2
(
2πσ2

) (1−2ρ)d
2 exp

(
−ρ||µ− µ′||2

4σ2

)
.

Notice that making ρ small (i.e., high temperature)
has an effect on (4) similar to scaling the variance
σ2 by the temperature, but it also results in chang-
ing the scale of K, which affects the balance be-
tween dispersion and focalization in (6) below.

5.2 Focalization Score

The probability kernel given in eq. (3) naturally
handles the linguistic notion of dispersion. What
about focalization? We say that a phone is focal to
the extent that it has a high score

F (µ) = exp (U2 tanh(U1µ + b1) + b2) > 0
(5)

where µ is the mean of its density. To learn the
parameters of this neural network from data is to
learn which phones are focal. We use a neural net-
work since the focal regions of R2 are distributed
in a complex way.

5.3 The L Matrix

If fi = N (µi, σ
2I) is the density associated with

the phone v̄i, we may populate an N × N real

Algorithm 1 Generative Process
1: N ∼ Poisson (λ) (∈ N) 1

2: for i = 1 to N :
3: µi ∼ N (0, I) (∈ R2) 2

4: define L ∈ RN×N via (6)
5: for ` = 1 to M :
6: V̄ ` ∼ DPP (L) (⊆ [1, N ]); let n` = |V̄ `| 3

7: for i ∈ V̄ ` :
8: ṽ`i ∼ N

(
µi, σ

2I
)

4

9: v`i = νθ
(
ṽ`i
)

4

matrix L where

Lij =

{
K(fi, fj ; ρ) if i 6= j

K(fi, fj ; ρ) + F (µi) if i = j
(6)

Since L is the sum of two positive definite ma-
trices (the first specializes a known kernel and the
second is diagonal and positive), it is also positive
definite. As a result, it can be used to parameterize
a DPP over V̄ . Indeed, since L is positive definite
and not merely positive semidefinite, it will assign
positive probability to any subset of V̄ .

As previously noted, this DPP does not define
a distribution over an infinite set, e.g., the pow-
erset of R2, as does recent work on continuous
DPPs (Affandi et al., 2013). Rather, it defines a
distribution over the powerset of a set of densities
with finite cardinality. Once we have sampled a
subset of densities, a real-valued quantity may be
additionally sampled from each sampled density.

6 A Deep Generative Model

We are now in a position to expound our generative
model of continuous-space vowel typology. We
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generate a set of formant pairs for M languages
in a four step process. Note that throughout this
exposition, language-specific quantities with be
superscripted with an integral language marker
`, whereas universal quantities are left unsuper-
scripted. The generative process is written in al-
gorithmic form in Alg. 1. Note that each step is
numbered and color-coded for ease of comparison
with the full joint likelihood in Fig. 2.

Step 1 : p(N). We sample the size N of the uni-
versal phone inventory V̄ from a Poisson distribu-
tion with a rate parameter λ, i.e.,

N ∼ Poisson (λ) . (7)

That is, we do not presuppose a certain number of
phones in the model.

Step 2 : p(µ1, . . . ,µN ). Next, we sample the
means µi of the Gaussian phones. In the model
presented here, we assume that each phone is
generated independently, so p(µ1, . . . ,µN ) =∏N
i=1 p(µi). Also, we assume a standard Gaussian

prior over the means, µi ∼ N (0, I).

The sampled means define our N Gaussian
phones N

(
µi, σ

2I
)
: we are assuming for simplic-

ity that all phones share a single spherical covari-
ance matrix, defined by the hyperparameter σ2.
The dispersion and focalization of these phones
define the matrix L according to equations (4)–(6),
where ρ in (4) and the weights of the focalization
neural net (5) are also hyperparameters.

Step 3 : p(V̄ ` | µ1, . . . ,µN ). Next, for each lan-
guage ` ∈ [1, . . . ,M ], we sample a diverse subset
of the N phones, via a single draw from a DPP
parameterized by matrix L:

V̄ ` ∼ DPP(L), (8)

where V̄ ` ⊆ [1, N ]. Thus, i ∈ V̄ ` means that
language ` contains phone v̄i. Note that even the
size of the inventory, n` = |V̄ `|, was chosen by the
DPP. In general, we have n` � N .

Step 4 :
∏
i∈V̄ ` p(v

`
i | µi) The final step in our

generative process is that the phones v̄i in language
` must generate the pronunciations v`i ∈ R2 (for-
mant vectors) that are actually observed in lan-
guage `. Each vector takes two steps. For each
i ∈ V̄ `, we generate an underlying ṽi ∈ R2 from
the corresponding Gaussian phone. Then, we run

this vector through a feed-forward neural network
νθ with parameters θ. In short:

ṽ`i ∼ N (µi, σ
2I) (9)

v`i = νθ(ṽ`i), (10)

where the second step is deterministic. We can
fuse these two steps into a single step p(vi | µi),
whose closed-form density is given in eq. (12) be-
low. In effect, step 4 takes a Gaussian phone as
input and produces the observed formant vector
with an underlying formant vector in the middle.

This completes our generative process. We do
not observe all the steps, but only the final col-
lection of pronunciations v`i for each language,
where the subscripts i that indicate phone identity
have been lost. The probability of this incomplete
dataset involves summing over possible phones for
each pronunciation, and is presented in Fig. 2.

6.1 A Neural Transformation of a Gaussian

A crucial bit of our model is running a sample
from a Gaussian through a neural network. Under
certain restrictions, we can find a closed form for
the resulting density; we discuss these below. Let
νθ be a depth-2 multi-layer perceptron

νθ(ṽi) = W2 tanh (W1ṽi + b1) + b2. (11)

In order to find a closed-form solution, we require
that (5) be a diffeomorphism, i.e., an invertible
mapping from R2 → R2 where both νθ and its
inverse ν−1

θ are differentiable. This will be true as
long asW1,W2 ∈ R2×2 are square matrices of full-
rank and we choose a smooth, invertible activation
function, such as tanh. Under those conditions, we
may apply the standard theorem for transforming a
random variable (see Stark and Woods, 2011):

p(vi | µi) = p(ν−1
θ (vi) | µi) det Jν−1

θ (vi)

= p(ṽi | µi) det Jν−1
θ (vi)

(12)

where Jν−1
θ (x) is the Jacobian of the inverse of the

neural network at the point x. Recall that p(ṽi | µi)
is Gaussian-distributed.

7 Modeling Assumptions

Imbued in our generative story are a number of
assumptions about the linguistic processes behind
vowel inventories. We briefly draw connections
between our theory and the linguistics literature.

41



Why underlying phones? A technical assump-
tion of our model is the existence of a universal
set of underlying phones. Each phone is equipped
with a probability distribution over reported acous-
tic measurements (pronunciations), to allow for a
single phone to account for multiple slightly differ-
ent pronunciations in different languages (though
never in the same language). This distribution can
capture both actual interlingual variation and also
random noise in the measurement process.

While our universal phones may seem to re-
semble the universal IPA symbols used in phono-
logical transcription, they lack the rich featural
specifications of such phonemes. A phone in our
model has no features other than its mean position,
which wholly determines its behavior. Our univer-
sal phones are not a substantive linguistic hypothe-
sis, but are essentially just a way of partitioning R2

into finitely many small regions whose similarity
and focalization can be precomputed. This techni-
cal trick allows us to use a discrete rather than a
continuous DPP over the R2 space.1

Why a neural network? Our phones are Gaus-
sians of spherical variance σ2, presumed to be scat-
tered with variance 1 about a two-dimensional la-
tent vowel space. Distances in this latent space
are used to compute the dissimilarity of phones
for modeling dispersion, and also to describe the
phone’s ability to vary across languages. That is,
two phones that are distant in the latent space can
appear in the same inventory—presumably they
are easy to discriminate in both perception and
articulation—and it is easy to choose which one
better explains an acoustic measurement, thereby
affecting the other measurements that may appear
in the inventory.

We relate this latent space to measurable acous-
tic space by a learned diffeomorphism νθ (Cotterell
and Eisner, 2017). ν−1

θ can be regarded as warping
the acoustic distances into perceptual/articulatory
distances. In some “high-resolution” regions of
acoustic space, phones with fairly similar (F1, F2)
values might yet be far apart in the latent space.
Conversely, in other regions, relatively large acous-

1Indeed, we could have simply taken our universal phone
set to be a huge set of tiny, regularly spaced overlapping Gaus-
sians that “covered” (say) the unit circle. As a computational
matter, we instead opted to use a smaller set of Gaussians,
giving the learner the freedom to infer their positions and tune
their variance σ2. Because of this freedom, this set should not
be too large, or a MAP learner may overfit the training data
with zero-variance Gaussians and be unable to explain the test
languages—similar to overfitting a Gaussian mixture model.

tic changes in some direction might not prevent
two phones from acting as similar or two pronunci-
ations from being attributed to the same phone. In
general, a unit circle of radius σ in latent space may
be mapped by νθ to an oddly shaped connected re-
gion in acoustic space, and a Gaussian in latent
space may be mapped to a multimodal distribution.

8 Inference and Learning

We fit our model via MAP-EM (Dempster et al.,
1977). The E-step involves deciding which phones
each language has. To achieve this, we fashion a
Gibbs sampler (Geman and Geman, 1984), yielding
a Markov-Chain Monte Carlo E-step (Levine and
Casella, 2001).

8.1 Inference: MCMC E-Step

Inference in our model is intractable even when the
phones µ1, . . . ,µN are fixed. Given a language
with n vowels, we have to determine which subset
of the N phones best explains those vowels. As
discussed above, the alignment a between the n
vowels and n of the N phones represents a latent
variable. Marginalizing it out is #P-hard, as we
can see that it is equivalent to summing over all
bipartite matchings in a weighted graph, which, in
turn, is as costly as computing the permanent of a
matrix (Valiant, 1979). Our sampler2 is an approxi-
mation algorithm for the task. We are interested in
sampling a, the labeling of observed vowels with
universal phones. Note that this implicitly sam-
ples the language’s phone inventory V̄ (a), which
is fully determined by a.

Specifically, we employ an MCMC method
closely related to Gibbs sampling. At each step
of the sampler, we update our vowel-phone align-
ment a` as follows. Choose a language ` and a
vowel index k ∈ [1, n`], and let i = a`k (that is,
pronunciation v`,k is currently labeled with univer-
sal phone v̄i). We will consider changing a`k to j,
where j is drawn from the (N − n`) phones that
do not appear in V̄ (a`), heuristically choosing j in
proportion to the likelihood p(v`,k | µj). We then
stochastically decide whether to keep a`k = i or set
a`k = j in proportion to the resulting values of the
product 4 · 3 in eq. (2).

For a single E-step, the Gibbs sampler “warm-
starts” with the labeling from the end of the pre-
vious iteration’s E-step. It sweeps S = 5 times

2Taken from Volkovs and Zemel (2012, 3.1).
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through all vowels for all languages, and returns S
sampled labelings, one from the end of each sweep.

We are also interested in automatically choosing
the number of phones N , for which we take the
Poisson’s rate parameter λ = 100. To this end,
we employ reversible-jump MCMC (Green, 1995),
resampling N at the start of every E-step.

8.2 Learning: M-Step
Given the set of sampled alignments provided by
the E-step, our M-step consists of optimizing the
log-likelihood of the now-complete training data
using the inferred latent variables. We achieved
this through SGD training of the diffeomorphism
parameters θ, the means µi of the Gaussian phones,
and the parameters of the focalization kernel F .

9 Experiments

9.1 Data
Our data is taken from the Becker-Kristal corpus
(Becker-Kristal, 2006), which is a compilation of
various phonetic studies and forms the largest multi-
lingual phonetic database. Each entry in the corpus
corresponds to a linguist’s phonetic description of
a language’s vowel system: an inventory consist-
ing of IPA symbols where each symbol is associ-
ated with two or more formant values. The corpus
contains data from 233 distinct languages. When
multiple inventories were available for the same
language (due to various studies in the literature),
we selected one at random and discarded the others.

9.2 Baselines
Baseline #1: Removing dispersion. The key
technical innovation in our work lies in the incor-
poration of a DPP into a generative model of vowel
formants—a continuous-valued quantity. The role
of the DPP was to model the linguistic principle
of dispersion—we may cripple this portion of our
model, e.g., by forcing K to be a diagonal kernel,
i.e., Kij = 0 for i 6= j. In this case the DPP
becomes a Bernoulli Point Process (BPP)—a spe-
cial case of the DPP. Since dispersion is widely
accepted to be an important principle governing
naturally occurring vowel systems, we expect a
system trained without such knowledge to perform
worse.

Baseline #2: Removing the neural network νθ.
Another question we may ask of our formulation is
whether we actually need a fancy neural mapping
νθ to model our typological data well. The human

perceptual system is known to perform a non-linear
transformation on acoustic signals, starting with
the non-linear cochlear transform that is physically
performed in the ear. While ν−1

θ is intended as
loosely analogous, we determine its benefit by re-
moving eq. (10) from our generative story, i.e., we
take the observed formants vk to arise directly from
the Gaussian phones.

Baseline #3: Supervised phones and alignments.
A final baseline we consider is supervised phones.
Linguists standardly employ a finite set of phones—
symbols from the international phonetic alphabet
(IPA). In phonetic annotation, it is common to map
each sound in a language back to this universal dis-
crete alphabet. Under such an annotation scheme, it
is easy to discern, cross-linguistically, which vow-
els originate from the same phoneme: an /I/ in
German may be roughly equated with an /I/ in En-
glish. However, it is not clear how consistent this
annotation truly is. There are several reasons to
expect high-variance in the cross-linguistic acous-
tic signal. First, IPA symbols are primarily useful
for interlinked phonological distinctions, i.e., one
applies the symbol /I/ to distinguish it from /i/ in
the given language, rather than to associate it with
the sound bearing the same symbol in a second
language. Second, field linguists often resort to the
closest common IPA symbol, rather than an exact
match: if a language makes no distinction between
/i/ and /I/, it is more common to denote the sound
with a /i/. Thus, IPA may not be as universal as
hoped. Our dataset contains 50 IPA symbols so this
baseline is only reported for N = 50.

9.3 Evaluation
Evaluation in our setting is tricky. The scientific
goal of our work is to place a bit of linguistic the-
ory on a firm probabilistic footing, rather than a
downstream engineering-task, whose performance
we could measure. We consider three metrics.

Cross-Entropy. Our first evaluation metric is
cross-entropy: the average negative log-probability
of the vowel systems in held-out test data, given
the universal inventory ofN phones that we trained
through EM. We find this to be the cleanest method
for scientific evaluation—it is the metric of opti-
mization and has a clear interpretation: how sur-
prised was the model to see the vowel systems of
held-out, but attested, languages?

The cross-entropy is the negative log of the∏[ · · ·
]

expression in eq. (2), with ` now rang-
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N metric DPP+νθ BPP+νθ DPP−νθ Sup.

x-ent 540.02 540.05 600.34 7

15 cloze1 5.76 5.76 6.53 7

cloze12 4.89 4.89 5.24 7

x-ent 280.47 275.36 335.36 7

25 cloze1 5.04 5.25 6.23 7

cloze12 4.76 4.97 5.43 7

x-ent 222.85 231.70 320.05 1610.37
50 cloze1 3.38 3.16 4.02 4.96

cloze12 2.73 2.93 3.04 6.95

x-ent 212.14 220.42 380.31 7

57 cloze1 2.21 3.08 3.25 7

cloze12 2.01 3.05 3.41 7

x-ent 271.95 301.45 380.02 7

100 cloze1 2.26 2.42 3.03 7

cloze12 1.96 2.01 2.51 7

Table 1: Cross-entropy in nats per language (lower is better)
and expected Euclidean-distance error of the cloze prediction
(lower is better). The overall best value for each task is bold-
faced. The case N = 50 is compared against our supervised
baseline. The N = 57 row is the case where we allowed N
to fluctuate during inference using reversible-jump MCMC;
this was the N value selected at the final EM iteration.

ing over held-out languages.3 Wallach et al. (2009)
give several methods for estimating the intractable
sum in language `. We use the simple harmonic
mean estimator, based on 50 samples of a` drawn
with our Gibbs sampler (warm-started from the
final E-step of training).

Cloze Evaluation. In addition, following Cot-
terell and Eisner (2017), we evaluate our trained
model’s ability to perform a cloze task (Taylor,
1953). Given n`−1 or n`−2 of the vowels in held-
out language `, can we predict the pronunciations
vk of the remaining 1 or 2? We predict vk to be
νθ(µi) where i = a`k is the phone inferred by the
sampler. Note that the sampler’s inference here is
based only on the observed vowels (the likelihood)
and the focalization-dispersion preferences of the
DPP (the prior). We report the expected error of
such a prediction—where error is quantified by Eu-
clidean distance in (F1, F2) formant space—over
the same 50 samples of a`.

For instance, consider a previously unseen
vowel system with formant values {(499, 2199),
(861, 1420), (571, 1079)}. A “cloze1” evaluation
would aim to predict {(499, 2199)} as the missing

3Since that expression is the product of both probability
distributions and probability densities, our “cross-entropy”
metric is actually the sum of both entropy terms and (poten-
tially negative) differential entropy terms. Thus, a value of 0
has no special significance.
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Figure 3: A graph of v = (F1, F2) in the union of all the
training languages’ inventories, color-coded by inferred phone
(N = 50).

vowel, given {(861, 1420), (571, 1079)}, and the
fact that n` = 3. A “cloze12” evaluation would
aim to predict two missing vowels.

9.4 Experimental Details

Here, we report experimental details and the hy-
perparameters that we use to achieve the results
reported. We consider a neural network νθ with
k ∈ [1, 4] layers and find k = 1 the best per-
former on development data. Recall that our dif-
feomorphism constraint requires that each layer
have exactly two hidden units, the same as the
number of observed formants. We consider N ∈
{15, 25, 50, 100} phones as well as letting N fluc-
tuate with reversible-jump MCMC (see footnote 1).
We train for 100 iterations of EM, taking S = 5
samples at each E-step. At each M-step, we run
50 iterations of SGD for the focalization NN and
also for the diffeomorphism NN. For each N ,
we selected (σ2, ρ) by minimizing cross-entropy
on a held-out development set. We considered
(σ2, ρ) ∈ {10k}5k=1 × {ρk}5k=1.

9.5 Results and Error Analysis

We report results in Tab. 1. We find that our DPP
model improves over the baselines. The results
support two claims: (i) dispersion plays an impor-
tant role in the structure of vowel systems and (ii)
learning a non-linear transformation of a Gaussian
improves our ability to model sets of formant-pairs.
Also, we observe that as we increase the number of
phones, the role of the DPP becomes more impor-
tant. We visualize a sample of the trained alignment
in Fig. 3.
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Frequency Encodes Dispersion. Why does dis-
persion not always help? The models with fewer
phones do not reap the benefits that the models
with more phones do. The reason lies in the fact
that the most common vowel formants are already
dispersed. This indicates that we still have not
quite modeled the mechanisms that select for good
vowel formants, despite our work at the phonetic
level; further research is needed. We would prefer
a model that explains the evolutionary motivation
of sound systems as communication systems.

Number of Induced Phones. What is most
salient in the number of induced phones is that
it is close to the number of IPA phonemes in the
data. However, the performance of the phoneme-
supervised system is much worse, indicating that,
perhaps, while the linguists have the right idea
about the number of universal symbols, they did
not specify the correct IPA symbol in all cases.
Our data analysis indicates that this is often due to
pragmatic concerns in linguistic field analysis. For
example, even if /I/ is the proper IPA symbol for
the sound, if there is no other sound in the vicinity
the annotator may prefer to use more common /i/.

10 Related Work

Most closely related to our work is the classic study
of Liljencrants and Lindblom (1972), who provide
a simulation-based account of vowel systems. They
argued that minima of a certain objective that en-
codes dispersion should correspond to canonical
vowel systems of a given size n. Our tack is dif-
ferent in that we construct a generative probability
model, whose parameters we learn from data. How-
ever, the essence of modeling is the same in that
we explain formant values, rather than discrete IPA
symbols. By extension, our work is also closely
related to extensions of this theory (Schwartz et al.,
1997; Roark, 2001) that focused on incorporating
the notion of focalization into the experiments.

Our present paper can also be regarded as a con-
tinuation of Cotterell and Eisner (2017), in which
we used DPPs to model vowel inventories as sets
of discrete IPA symbols. That paper pretended
that each IPA symbol had a single cross-linguistic
(F1, F2) pair, an idealization that we remove in this
paper by discarding the IPA symbols and modeling
formant values directly.

11 Conclusion

Our model combines existing techniques of proba-
bilistic modeling and inference to attempt to fit the
actual distribution of the world’s vowel systems.
We presented a generative probability model of
sets of measured (F1, F2) pairs. We view this as
a necessary step in the development of generative
probability models that can explain the distribu-
tion of the world’s languages. Previous work on
generating vowel inventories has focused on how
those inventories were transcribed into IPA by field
linguists, whereas we focus on the field linguists’
acoustic measurements of how the vowels are actu-
ally pronounced.
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