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Abstract

Word clusters improve performance in many
NLP tasks including training neural network
language models, but current increases in
datasets are outpacing the ability of word
clusterers to handle them. In this paper we
present a novel bidirectional, interpolated, re-
fining, and alternating (BIRA) predictive ex-
change algorithm and introduce ClusterCat, a
clusterer based on this algorithm. We show
that ClusterCat is 3–85 times faster than four
other well-known clusterers, while also im-
proving upon the predictive exchange algo-
rithm’s perplexity by up to 18% . Notably,
ClusterCat clusters a 2.5 billion token English
News Crawl corpus in 3 hours. We also eval-
uate in a machine translation setting, resulting
in shorter training times achieving the same
translation quality measured in BLEU scores.
ClusterCat is portable and freely available.

1 Introduction

Words can be grouped into equivalence classes to
reduce data sparsity and generalize data. Word clus-
ters are useful in many NLP applications. Within
machine translation, word classes are used in word
alignment (Brown et al., 1993; Och and Ney, 2000),
translation models (Koehn and Hoang, 2007; Wue-
bker et al., 2013), reordering (Cherry, 2013), pre-
ordering (Stymne, 2012), SAMT (Zollmann and Vo-
gel, 2011), and OSM (Durrani et al., 2014).

Word clusterings have also found utility in pars-
ing (Koo et al., 2008; Candito and Seddah, 2010;
Kong et al., 2014), chunking (Turian et al., 2010),

and NER (Miller et al., 2004; Liang, 2005; Turian et
al., 2010; Ritter et al., 2011), among many others.

Word clusters also speed up normalization in
training neural network and MaxEnt language
models, via class-based decomposition (Goodman,
2001b). This reduces the normalization time from
O(|V |) (the vocabulary size) to ≈ O(

√|V |) .

2 Exchange-Based Clustering

The exchange algorithm (Kneser and Ney,
1993) uses an unlexicalized (two-sided) model:
P (wi|wi−1) = P (wi|ci)P (ci|ci−1) where the
class ci of the predicted word wi is condi-
tioned on the class ci−1 of the previous word
wi−1 . Goodman (2001a) altered this model
so that ci is conditioned directly upon wi−1 :
P (wi|wi−1) = P (wi|ci)P (ci|wi−1) . This frac-
tionates the history more, but it greatly speeds up
hypothesizing an exchange since the history doesn’t
change. The resulting partially lexicalized (one-
sided) model gives the accompanying predictive
exchange algorithm (Uszkoreit and Brants, 2008)
a time complexity of O((B + |V |) × |C| × I)
where B is the number of unique bigrams, |C| is the
number of classes, and I is the number of training
iterations, usually <20 .

3 ClusterCat

ClusterCat is word clustering software designed to
be fast and scalable, while also improving upon the
predictive exchange algorithm. We describe in this
section improvements in the model, the algorithm,
as well as in the implementation.
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3.1 Model and Algorithm

We developed a bidirectional, interpolated, refin-
ing, and alternating (BIRA) predictive exchange
algorithm. The goal of BIRA is to produce bet-
ter clusters by using multiple, changing models to
escape local optima. This uses both forward and
reversed bigram class models in order to improve
cluster quality by evaluating log-likelihood on two
different models. Unlike using trigrams, bidirec-
tional bigram models only linearly increase time and
memory requirements, and in fact some data struc-
tures can be shared. The two directions are interpo-
lated to allow softer integration of these two models:
P (wi|wi−1, wi+1) , P (wi|ci) · (λP (ci|wi−1) +
(1− λ)P (ci|wi+1)) . Furthermore, the interpolation
weight λ for the forward direction alternates to 1−λ
every a iterations i to help escape local optima. The
time complexity is O(2 × (B + |V |) × |C| × I) .
The original predictive exchange algorithm can be
obtained by setting λ = 1 and a = 0 .

Cluster refinement improves both cluster quality
and speed. The vocabulary is initially clustered into
|G| sets, where |G| � |C|, typically 2–10 . This
groups words into broad classes, like nouns, verbs,
etc. After a few iterations (i) of this, the full par-
titioning Cf is explored. Clustering G converges
very quickly, typically requiring no more than 3 it-
erations. In contrast to divisive hierarchical cluster-
ing and coarse-to-fine methods (Petrov, 2009), af-
ter the initial iterations, any word can still move to
any cluster—there is no hard constraint that the more
refined partitions be subsets of the initial coarser
partitions. This gives more flexibility in optimiz-
ing on log-likelihood, especially given the noise that
naturally arises from coarser clusterings. We ex-
plored cluster refinement over more stages than just
two, successively increasing the number of clusters.
We observed no improvement over the two-stage
method described above.

The contributions of each of these, relative to the
original predictive exchange algorithm, are shown
in Figure 1 . The data and configurations are dis-
cussed in more detail in Section 4. The greatest im-
provement is due to using lambda inversion (+Rev),
followed by cluster refinement (+Refine), then in-
terpolating the bidirectional models (+BiDi), with
robust improvements by using all three of these—an
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Figure 1: Dev set PP of combinations of improvements to the

predictive exchange algorithm (cf. §3.1), using 100M tokens of

the Russian News Crawl, with 800 word classes.

18% reduction in perplexity over the predictive ex-
change algorithm. We have found that both lambda
inversion and cluster refinement prevent early con-
vergence at local optima, while bidirectional models
give immediate and consistent training set PP im-
provements, but this is attenuated in a unidirectional
evaluation.

3.2 Implementation

We represent the set of bigrams B as an array of
records that track the number of predecessors, as
well as having a pointer to an array of the predeces-
sors’ IDs. This allows for easy prefetching to reduce
memory latency, while also keeping memory over-
head low. We dispense with the predictive exchange
RemoveWord procedure for tentative steps, since
this does not change the final clustering.

Most of the computation for the predictive ex-
change algorithm is spent on the logarithm func-
tion in δ ← δ − N(w, c) · logN(w, c) .1 Since the
codomain of N(w, c) is N0 , and due to the power
law distribution of the algorithm’s access to these
entropy terms, we precompute pN ·logNq up to, say
10e+7, with minimal memory requirements.2 This
results in a considerable speedup of around 40% .

4 Experiments

We evaluate ClusterCat on training time, two-
sided class-based language model (LM) perplexity

1δ is the change in log-likelihood, and N(w, c) is the count
of a given word followed by a given class.

2This was independently discovered in Botros et al. (2015).
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(cf. Brown et al., 1992; Uszkoreit and Brants, 2008),
and BLEU scores in phrase-based MT.

4.1 Intrinsic Evaluation
For the two-sided class-based LM task we used 800
and 1200 classes for English, and 800 classes for
Russian. The clusterers (cf. Sec. 2) are Brown-
cluster (Liang, 2005), ClusterCat (introduced in Sec-
tion 3), mkcls (Och, 1995), Phrasal’s clusterer
(Green et al., 2014), and word2vec’s clustering fea-
ture (Mikolov et al., 2013).

The data comes from the 2011–2013 News Crawl
monolingual data of the WMT task.3 For these ex-
periments the data was deduplicated, shuffled, tok-
enized, digit-conflated, and lowercased. In order to
have a large test set, one line per 100 of the resulting
corpus was separated into the test set.4 For English
this gave 1B training tokens, 2M training types, and
12M test tokens. For Russian, 550M training tokens,
2.7M training types, and 6M test tokens.

All clusterers had a minimum count threshold of
3 occurrences in the training set. All used 12 threads
and 15 iterations, except single-threaded mkcls
which used the default one iteration. Clusterings
were performed on a 2.4 GHz Opteron 8378 ma-
chine featuring 16 threads and 64 GB of RAM.

Table 1 presents wall clock times. The predictive
exchange-based clusterers (ClusterCat and Phrasal)
exhibit slow time growth as |C| increases, while
the other three (Brown, mkcls, and word2vec) are
much more sensitive to |C| . ClusterCat is three
times faster than Phrasal for all sets. For both En-
glish and Russian we observe prohibitive growth for
mkcls, with the full Russian training set taking
over 3 days, compared to 1.5 hours for ClusterCat.

Training Set Brown CC mkcls Phrasal w2v
EN, |C| = 800 12.5 1.4 48.8 5.1 20.6
EN, |C| = 1200 25.5 1.7 68.8 6.2 33.7
RU, |C| = 800 14.6 1.5 75.0 5.5 12.0

Table 1: Clustering times (hours) of full training sets. For En-

glish, T = 109; for Russian, T = 108.74.

We performed an additional experiment on Clus-
terCat, adding more training data.5 ClusterCat took

3http://bit.ly/1SAjeIx
4We provide a script to replicate the data setup at http:

//www.dfki.de/˜jode03/naacl2016.sh .
5Adding years 2008–2010 and 2014 to the existing English

Training Set Brown CC mkcls Phrasal w2v
EN, |C| = 800 160.2 158.1 155.0 178.3 383.4
EN, |C| = 1200 141.5 140.4 138.4 157.6 330.7
RU, |C| = 800 350.4 340.7 322.4 389.3 560.9

Table 2: 5-gram two-sided class-based LM PP using 109 En-

glish training tokens or 108.74 Russian training tokens.

3.0 hours to cluster 2.5 billion training tokens, using
40 GB of memory for |C| = 800. When the number
of clusters was tripled to |C| = 2400 , the same 2.5B
corpus was clustered in under 8 hours.

The clusterings are also evaluated on the perplex-
ity (PP) of an external 5-gram two-sided class-based
LM. Botros et al. (2015) found that the two-sided
model (which mkcls uses) tends to give better PP in
two-sided class-based LM experiments, but the one-
sided model of the predictive exchange that we em-
ployed produces better PP for training LSTM LMs.

Table 2 shows perplexity results using a varying
number of classes. As word2vec is the only clus-
terer not optimized on log-likelihood, its perplexity
is quite high, and remains high as more training data
is added.6 On the other hand, mkcls gives the low-
est perplexity, although this is an artefact of the two-
sided evaluation. ClusterCat gives lower perplex-
ity than the original predictive exchange algorithm
(in Phrasal) and Brown clustering. The Russian
experiments yielded higher PP for all clusterings,
but otherwise the same comparative results. The
metaheuristic techniques used in mkcls can be ap-
plied to other exchange-based clusterers—including
ours—for further improvements.

It is also interesting to look at time-sensitive clus-
tering. Figure 2 shows what perplexity can be ob-
tained within a given training time frame. For each
clusterer, each successive rightward point in the fig-
ure represents an order of magnitude more training
data, from 106 to 109 tokens. ClusterCat can train
on 10 times more data than either mkcls or Brown-
cluster and produces better perplexity than either,
within a given amount of time.

News Crawl training data. This training set was too large for
the external class-based LM to fit into memory, so no perplexity
evaluation of this clustering was possible.

6The skip-gram model within word2vec resulted in even
higher PP at almost three times the clustering time, relative to
the CBOW model that we used. Using hierarchical softmax
with a window of one word on either side gave no appreciable
difference in perplexity, while also increasing training time.
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Figure 2: Relationship between two-sided class-based LM PP

and the time needed to produce clusters (|C| = 1200). Points

in the lower-left corner are best.

|C|=50 100 200 500 1000
EN-RU +0.2∗ +0.7 −0.2 0 +0.2
RU-EN −0.2 −0.1 +0.1 +0.1∗ +0.1∗∗

Table 3: BLEU score changes and significance across

varying cluster sizes. Positive values indicate ClusterCat

BLEU > mkcls BLEU.

4.2 Extrinsic Evaluation
We also evaluated mkcls and ClusterCat extrinsi-
cally in machine translation, for word alignment. As
training sets get larger every year, mkcls strug-
gles to keep pace, and is a substantial time bot-
tleneck in MT pipelines. We compare time and
BLEU scores of using either mkcls or ClusterCat
for Russian↔English translation.

The parallel data comes from the WMT-2015
Common Crawl Corpus, News Commentary, Yan-
dex 1M Corpus, and the Wiki Headlines Cor-
pus.7 The monolingual data consists of 2007–
2014 News Commentary and News Crawl arti-
cles. The dev and test sets contain 3000 sen-
tences from EN→RU manually translated news ar-
ticles. We used standard configurations, like true-
casing, MGIZA alignment, GDFA phrase extrac-
tion, phrase-based Moses, quantized KenLM 5-gram
MKN LMs, and MERT tuning.

Table 3 presents the BLEU score changes across
varying cluster sizes.8 The BLEU score differences
between using mkcls and ClusterCat are minimal
but there are a few statistically significant changes,
using bootstrap resampling (Koehn, 2004).

7http://bit.ly/1SAjeIx
8*: p-value < 0.05, **: p-value < 0.01 . More results are

presented in Dehdari et al. (2016) .

Figure 3: End-to-end translation model training times for

English-Russian and Russian-English for various cluster sizes

using mkcls and ClusterCat.

Figure 3 shows translation model training times,
before MERT. Using ClusterCat reduces the transla-
tion model training time with 500 clusters from 20
hours using mkcls (of which 60% of the time is
spent on clustering) to just 8 hours (of which 5% is
spent on clustering).

5 Conclusion

In this article we have presented improvements to
the predictive exchange algorithm that address long-
standing drawbacks of the original algorithm com-
pared to other clustering algorithms. Bidirectional
models, lambda inversion, and cluster refinement
produce better word clusters, as we showed in sev-
eral two-sided class-based LM experiments. On
these large datasets the quality of the resulting clus-
ters is better than predictive exchange clusters and
Brown clusters, and approaches the stochastic ex-
change clusters produced by mkcls, which takes
35–85 times longer.

We also improved upon the speed of the algorithm
by cluster refinement and entropy term precalcula-
tion. MT experiments showed that word alignment
models using ClusterCat fully match those using
mkcls in BLEU scores, with time savings found by
using ClusterCat. The software, as well as additional
compatibility and visualization scripts, are available
under a Free license at https://github.com/
jonsafari/clustercat .

Acknowledgements

We would like to thank Hermann Ney, Kazuki Irie,
and the reviewers. This work was supported by the
QT21 project (Horizon 2020 No. 645452).

45



References

R. Botros, K. Irie, M. Sundermeyer, and H. Ney. 2015.
On Efficient Training of Word Classes and Their
Application to Recurrent Neural Network Language
Models. In Proc. INTERSPEECH, pages 1443–1447.

P. Brown, P. deSouza, R. Mercer, V. Della Pietra, and
J. Lai. 1992. Class-Based n-gram Models of Natural
Language. Comp. Ling., 18(4):467–479.

P. Brown, S. Della Pietra, V. Della Pietra, and R. Mer-
cer. 1993. The Mathematics of Statistical Machine
Translation: Parameter Estimation. Comp. Ling.,
19(2):263–311.

M. Candito and D. Seddah. 2010. Parsing Word Clusters.
In Proc. of the Workshop on SPMRL, pages 76–84.

C. Cherry. 2013. Improved Reordering for Phrase-Based
Translation using Sparse Features. In Proc. NAACL-
HLT 2013, pages 22–31.

J. Dehdari, L. Tan, and J. van Genabith. 2016. BIRA:
Improved Predictive Exchange Word Clustering. In
Proc. NAACL, San Diego, CA, USA.

N. Durrani, P. Koehn, H. Schmid, and A. Fraser. 2014.
Investigating the Usefulness of Generalized Word
Representations in SMT. In Proc. of Coling 2014,
pages 421–432.

J. Goodman. 2001a. A Bit of Progress in Language Mod-
eling, Extended Version. Technical Report MSR-TR-
2001-72, Microsoft Research.

J. Goodman. 2001b. Classes for Fast Maximum Entropy
Training. In Proc. of ICASSP, pages 561–564.

S. Green, D. Cer, and C. Manning. 2014. An Empirical
Comparison of Features and Tuning for Phrase-based
Machine Translation. In Proc. WMT, pages 466–476.

R. Kneser and H. Ney. 1993. Improved clustering tech-
niques for class-based statistical language modelling.
In Proc. EUROSPEECH, pages 973–976.

P. Koehn and H. Hoang. 2007. Factored Translation
Models. In Proc. EMNLP-CoNLL, pages 868–876.

P. Koehn. 2004. Statistical significance tests for machine
translation evaluation. In Proc. EMNLP, pages 388–
395.

L. Kong, N. Schneider, S. Swayamdipta, A. Bhatia,
C. Dyer, and N. Smith. 2014. A Dependency Parser
for Tweets. In Proc. EMNLP, pages 1001–1012.

T. Koo, X. Carreras, and M. Collins. 2008. Simple Semi-
supervised Dependency Parsing. In Proc. ACL: HLT,
pages 595–603.

P. Liang. 2005. Semi-Supervised Learning for Natural
Language. Master’s thesis, MIT.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector
Space. In Proc. ICLR.

S. Miller, J. Guinness, and A. Zamanian. 2004. Name
Tagging with Word Clusters and Discriminative Train-
ing. In Susan Dumais, Daniel Marcu, and Salim
Roukos, editors, Proc. HLT-NAACL, pages 337–342.

F. Och and H. Ney. 2000. A Comparison of Alignment
Models for Statistical Machine Translation. In Proc.
Coling, pages 1086–1090.

F. Och. 1995. Maximum-Likelihood-Schätzung von
Wortkategorien mit Verfahren der kombinatorischen
Optimierung. Bachelor’s thesis (Studienarbeit), Uni-
versität Erlangen-Nürnburg.

S. Petrov. 2009. Coarse-to-Fine Natural Language Pro-
cessing. Ph.D. thesis, UC-Berkeley.

A. Ritter, S. Clark, Mausam, and O. Etzioni. 2011.
Named Entity Recognition in Tweets: An Experimen-
tal Study. In Proc. EMNLP, pages 1524–1534.

S. Stymne. 2012. Clustered Word Classes for Preorder-
ing in Statistical Machine Translation. In Proc. of the
Joint Workshop on Unsupervised and Semi-Supervised
Learning in NLP, pages 28–34.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word Rep-
resentations: A Simple and General Method for Semi-
Supervised Learning. In Proc. ACL, pages 384–394.

J. Uszkoreit and T. Brants. 2008. Distributed Word Clus-
tering for Large Scale Class-Based Language Model-
ing in Machine Translation. In Proc. ACL: HLT, pages
755–762.

J. Wuebker, S. Peitz, F. Rietig, and H. Ney. 2013.
Improving Statistical Machine Translation with Word
Class Models. In Proc. EMNLP, pages 1377–1381.

A. Zollmann and S. Vogel. 2011. A Word-Class Ap-
proach to Labeling PSCFG Rules for Machine Trans-
lation. In Proc. ACL-HLT, pages 1–11.

46


