
Proceedings of NAACL-HLT 2016, pages 1501–1511,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Deep LSTM based Feature Mapping for Query Classification

Yangyang Shi and Kaisheng Yao and Le Tian and Daxin Jiang
Microsoft

{yangshi,kaisheng.yao,letian,djiang}@microsoft.com

Abstract

Traditional convolutional neural network
(CNN) based query classification uses linear
feature mapping in its convolution opera-
tion. The recurrent neural network (RNN),
differs from a CNN in representing word
sequence with their ordering information
kept explicitly. We propose using a deep
long-short-term-memory (DLSTM) based fea-
ture mapping to learn feature representation
for CNN. The DLSTM, which is a stack of
LSTM units, has different order of feature
representations at different depth of LSTM
unit. The bottom LSTM unit equipped with
input and output gates, extracts the first order
feature representation from current word.
To extract higher order nonlinear feature
representation, the LSTM unit at higher
position gets input from two parts. First part
is the lower LSTM unit’s memory cell from
previous word. Second part is the lower LSTM
unit’s hidden output from current word. In
this way, the DLSTM captures the nonlinear
nonconsecutive interaction within n-grams.
Using an architecture that combines a stack of
the DLSTM layers with a tradition CNN layer,
we have observed new state-of-the-art query
classification accuracy on benchmark data
sets for query classification.

1 Introduction

Convolutional neural networks (CNNs) have
achieved significant improvements for query classi-
fication. CNNs capture the correlations of spatial or
temporal structures with different resolutions using
their temporal convolution operators. A pooling

strategy on these local correlations extracts invariant
regularities.

However, CNNs use simple linear operations on n-
gram vectors that are formed by concatenating word
vectors. The linear operation together with the con-
catenation may not be sufficient to model the non-
consecutive dependency and interaction within the
n-grams. For example, in the query “not a total
loss”, nonconsecutive dependency “not loss” is the
key information that is not well addressed by the lin-
ear operation with simple concatenation.

In this paper, we propose to use deep long-short-
term-memory (DLSTM) based feature mapping to
capture high order nonlinear feature representations.
LSTM (Hochreiter and Schmidhuber, 1997) is one
type of recurrent neural networks (RNNs) that have
achieved remarkable performance in natural lan-
guage processing and speech recognition (Sutskever
et al., 2014; Graves et al., 2013).

The DLSTM is a stack of LSTM units where dif-
ferent order of nonlinear feature representation is
captured by LSTM units at different depth. The bot-
tom LSTM unit extracts the first order feature repre-
sentation from current word. The LSTM unit at the
higher position captures the higher order feature rep-
resentation relying on the outputs from LSTM units
at lower position, specifically, the memory cell from
lower LSTM unit at previous word position and the
hidden output from lower LSTM unit at current word
position. Using DLSTM, linear feature mapping in
traditional CNN can be obviously extended to non-
linear feature mapping. Moreover, the memory cell
together with different gates in LSTM unit are able
to model the nonconsecutive feature interaction and

1501



information decaying based on context. For exam-
ple, in the query “not so good”, the proposed DL-
STM is expected to keep the information of “not” and
“good” in the memory, and to decay the information
about “so” via the forget gates.

Similar to CNNs where multiple convolution oper-
ations are used, we propose to stack different DLSTM

feature mappings together to model multiple level
nonlinear feature representations. The bottom DL-
STM layer takes the original word sequence as input.
The DLSTM layer at lower position fed its output to
the adjacent higher DLSTM layer. In the proposed
models, the concatenation of the multiple level fea-
ture representations are further reduced by the pool-
ing operation. The prediction output is finally made
based on the reduced feature representations.

We evaluated the proposed method on three
benchmark data sets: Standford Sentiment Treebank
dataset (Socher et al., 2013), TREC (Text Retrieval
Conference) question type classification data set (Li
and Roth, 2002) and ATIS (Airline Travel Informa-
tion Systems) dataset (Hemphill et al., 1990). On
Standford Sentiment Treebank dataset, our model
obtains 51.9% accuracy on fine-grained classifica-
tion and 88.7% accuracy on binary classification.
The SVM based method uses a large amount of engi-
neered features, and it outperforms LSTM and RNN

based methods on TREC question type classification
dataset. The DLSTM outperforms other neural net-
work based methods without using engineered fea-
tures. On ATIS data, DLSTM achieves 97.9% F1
score, which is better than the previous best F1 score
of 95.6% using the same data settings.

2 Related Work

Deep neural networks (Bengio, 2009; Deng and Yu,
2014; Hinton et al., 2006) dominates natural lan-
guage processing (Socher, 2012; Collobert et al.,
2011; Gao et al., 2014). They have achieved cutting-
edge performance in various tasks such as language
modeling (Mikolov et al., 2010; Sundermeyer et
al., 2012), machine translation (Bahdanau et al.,
2014; Cho et al., 2014; Jean et al., 2015), slot fill-
ing (Yao et al., 2014a; Shi et al., 2015a) and syn-
tactic parsing (Wang et al., 2015; Collobert et al.,
2011). For query classifications, recurrent neural
networks (RNNs) and convolutional neural networks

(CNNs) have emerged as top performing architec-
tures (Zhang and Wallace, 2016; Kim, 2014; Kalch-
brenner et al., 2014; Ravuri and Stolcke, 2015a).

Due to its superior ability to memorize long dis-
tance dependencies, LSTMs have been applied to
extract the sentence-level continuous representation
(Ravuri and Stolcke, 2015a; Tang et al., 2015; Tai
et al., 2015). When the LSTM is applied to model a
sentence, memory cell from the ending word in the
sentence carries the information of the whole sen-
tence. The LSTM hidden vector from the ending
word is directly used as sentence feature represen-
tation in (Ravuri and Stolcke, 2015a). Alternatively,
a sentence is represented by the average of LSTM

hidden vectors from its words (Tang et al., 2015).
Inspired from recursive neural networks (Socher et
al., 2011a), LSTM is further combined with a tree
structure to model sentence representation (Tai et al.,
2015).

CNNs have been originally developed for image
processing (Lecun et al., 1998). They are firstly ap-
plied by Collobert et al. (2008; 2011) for natural lan-
guage processing tasks using max-over-time pool-
ing method to aggregate convolution layer vectors.
CNNs have also been applied to spoken language un-
derstanding (Shi et al., 2015b), information retrieval
(Shen et al., 2014) and semantic parsing (Yih et al.,
2015). Kalchbrenner et al. (2014) proposed to ex-
tend CNNs max-over-time pooling to k-max pooling
for sentence modeling. Remarkable query classifi-
cation performance on different benchmark datasets
have been achieved by integrating CNNs with differ-
ent feature mapping channels and pre-trained word
vectors (Zhang and Wallace, 2015; Kim, 2014). Re-
cently, Mou et al. (2015) proposed to model sen-
tences by tree structured CNNs.

CNNs and LSTMs are complementary in their
modeling capabilities; CNNs are good at capturing
local invariant regularities and LSTMs are good at
modeling temporal features. The combination of
CNNs and LSTMs achieves improved performances
in speech recognition (Sainath et al., 2015) and
query classification (Tang et al., 2015; Zhou et al.,
2015). In these models, the basic architecture is the
LSTM that models sequence representation from lo-
cal features captured by CNNs.

Different from the above methods, our method
use LSTM units to model the nonlinear and non-

1502



consecutive local features. CNNs are placed on top
of these local features for query classification. Our
motivation is to use LSTM replace the linear feature
mapping in convolution operation where the feature
mapping is a multiplication of the word vectors with
a filter matrix. So our proposed model is still CNN

based model but using DLSTM as feature mapping
for convolution operation.

Our work is closely related to tensor product
based CNNs (Lei et al., 2015) that expand CNN fea-
ture representation capacity with non-consecutive n-
grams. They improve the query modeling from two
aspects. Firstly, tensor products enable the non-
linear feature vector interactions between adjacent
words. Secondly, an exponentially decaying weight
is applied to represent non-consecutive n-gram fea-
tures. Instead of using tensor products as feature
mapping, we propose to apply DLSTM to address
these two aspects. Nonlinear feature mapping can be
achieved by the DLSTM that equipped with nonlin-
ear activation function. The nonconsecutive feature
interaction is well addressed by the memory cell and
different gates in LSTM unit. In particular, the for-
get gate is able to decay the information according
to the context rather than a fixed decaying weight in
tensor product based CNNs.

3 CNN Based Query Classification Using
DLSTM Feature Mapping

3.1 Linear Feature Mapping in CNN
Let k-dimensional vector xt ∈ Rk be the continu-
ous feature representation of the tth word in a sen-
tence. A sentence with l words is represented by
x0:l−1 = [x0;x2; ...;xl−1] that is a concatenation of all
word vectors. The traditional CNN (Collobert et al.,
2011; Kim, 2014) takes such sentence feature vector
as input.

Different filters M j ∈ Rnd∗h are applied in con-
volution operation to map each n-gram feature vec-
tor xt:t+n−1, t ∈ (0, l−n) to an h-dimensional feature
vector ct, j.

ct, j = MT
j · xt:t+n−1 +b j, (1)

where b j is the bias in filter j.
The resulting feature vector ct, j are often passed

through non-linear element-wise transformations
(e.g. the hyperbolic tangent and rectifier linear unit)

as well as pooling operations. After aggregation or
reduction by different pooling operations such as the
max-over-time pooling (Collobert et al., 2011; Kim,
2014) and the average pooling (Lei et al., 2015), a
constant dimensional feature vector is generated for
sentences with various lengths.

In traditional CNNs, the concatenated word vec-
tors are mapped linearly to feature coordinates as
shown in Equation (1). Such linear feature mapping
can be improved from the following two aspects, one
is to extend linear mapping to nonlinear mapping.
The other one is to improve the consecutive feature
mapping to nonconsecutive feature mapping. For
example, in the query “not a total loss”, “not loss”
is the key sentiment. By using nonconsecutive fea-
ture representation, the information about “not loss”
could be addressed. Lei et al. (2015) extends the
linear feature mapping to tensor based feature map-
ping. To model the nonconsecutive n-grams, a de-
caying weight is applied to control the information
carryover. In this paper, we propose to replace the
linear feature mapping using DLSTM that captures
the nonlinear and nonconsecutive feature interaction
within n-grams. Rather than setting a fixed decaying
weight, the proposed architecture is able to control
the information decaying according to the context
information.

3.2 Feature Mapping Based on Deep Long
Short Term Memory

Figure 1 gives the basic architecture of a three-order
nonlinear feature mapping in DLSTM. The bottom
LSTM0 extract the first order information from word
input vector xt . It is equipped with input gate and
output gate. The input gate automatically controls
the information saving in memory cell that will be
passed to higher order LSTM unit. The output gate
modifies the information from the memory cell to
represent current word.

i0,t = sigmoid(Wixt +bi) (2)

c̃0,t = tanh(Wcxt +bc) (3)

c0,t = i0,t ∗ c̃0,t (4)

o0,t = sigmoid(Woxt +Voc0,t +bo) (5)

h0,t = o0,t ∗ tanh(c0,t) (6)

On top of the bottom LSTM0 unit, we analogously

1503



𝑥𝑡−1

Tan
h

𝜎

𝑐2,𝑡−1

𝜎 Tanh

ℎ2,𝑡−1

𝜎

𝑜2,𝑡−1

Tan
h

𝜎

𝑐0,𝑡−1

𝜎 Tanh

ℎ0,𝑡−1

𝑖0,𝑡−1

𝑜0,𝑡−1

Tan
h

𝜎

𝑐1,𝑡−1

𝜎 Tanh

ℎ1,𝑡−1

𝜎

𝑜1,𝑡−1

𝑖1,𝑡−1 𝑓1,𝑡−1

𝑖2,𝑡−1
𝑓2,𝑡−1

𝑥𝑡

Tan
h

𝜎

𝑐2,𝑡

𝜎 Tanh

ℎ2,𝑡

𝜎

𝑜2,𝑡

Tan
h

𝜎

𝑐0,𝑡

𝜎 Tanh

ℎ0,𝑡

𝑖0,𝑡

𝑜0,𝑡

Tan
h

𝜎

𝑐1,𝑡

𝜎 Tanh

ℎ1,𝑡

𝜎

𝑜1,𝑡

𝑖1,𝑡 𝑓1,𝑡

𝑖2,𝑡 𝑓2,𝑡

𝐿𝑆𝑇𝑀0

𝐿𝑆𝑇𝑀1

𝐿𝑆𝑇𝑀2

Figure 1: DLSTM based nonlinear feature mapping for bigram

“xt−1xt”. Three LSTM units are used to extract features from

each word position. The bottom LSTM0 is used for first order

feature extraction from the current word. The output from the

lower LSTM unit at current word position and the memory cell

from lower LSTM at previous word position are fed to the higher

LSTM units. Such information propagation is highlighted in the

figure by bold orange lines.

stack two LSTM units LSTM1 and LSTM2 to extract
nonlinear feature representations from bigram and
trigram, respectively. The LSTM j is formulated as
follows:

i j,t = sigmoid(Wixt +Uih j−1,t +bi) (7)

c̃ j,t = tanh(Wcxt +Uch j−1,t +bc) (8)

f j,t = sigmoid(Wf xt +U f h j−1,t +b f ) (9)

c j,t = i j,t ∗ c̃ j,t ∗ c j−1,t−1 + f j,t ∗ c j−1,t (10)

o j,t = sigmoid(Woxt +Uoh j−1,t +Voc j,t +bo) (11)

h j,t = o j,t ∗ tanh(c j,t) (12)

Due to the effect from different gates that con-
trols the information saving, expressing and decay-
ing, LSTM1 and LSTM2 are able to model the non-
consecutive interaction in n-grams. Take “not so
good” as a example. LSTM0 extract the nonlinear
feature mapping from word “good” as h0,2. The
LSTM1 takes c0,1 (carries the information from word
“so”) and h0,2 as input. Due to the effect of forget

gate, we expect the output h1,2 from LSTM1 to ad-
dress more on word “good” rather than “so”. By
further stacking LSTM2, information about the word
“not” and “good” should be emphasized by the pro-
posed DLSTM.

Note the sum of the resulting outputs from these
LSTM units is used as the high order feature rep-
resentation of a n-gram ending with word xt . So
the original sequence input x0:l−1 is mapped to a
sequence of feature vector z0:l−1 = [z0,z1, ...,zl−1],
where z j = h0, j +h1, j +h2, j.

The proposed DLSTM architecture is character-
ized by the following two features:

1. Weight Sharing: LSTM1 and LSTM2 are iden-
tical LSTM units that share the same weights.
The bottom LSTM unit LSTM0 also shares the
corresponding weights with other LSTM units
such as Wi, Wc and Wo. By sharing weights
among different LSTM units, we can effectively
reduce the risk of model over-fitting issue. At
the same time, LSTM is good at capturing tem-
poral regularities. By sharing weights, the
LSTM units can learn the temporal dependen-
cies from being exposed to different order of
n-grams during the training.

2. Memory Cell Interaction: To model the nonlin-
ear feature interaction in n-gram vectors, tradi-
tional LSTM unit is modified by Equation (10)
in which the memory cell stores the interaction
of different order memory cells. In this way,
the feature interaction in n-grams is character-
ized by the memory cell interactions.

To stack the LSTM unit deeper, the depth-gated
LSTM (Yao et al., 2015) and the highway network
(Srivastava et al., 2015; Zhang et al., 2015) also al-
low the memory cell flow across LSTM units at dif-
ferent depth. There are three basic differences be-
tween these architectures with the proposed DLSTM.
Firstly, in their architectures, LSTM units at different
depth are different LSTMs that have different weight
matrices. In our model, the LSTM units in DLSTM

share weight matrices with each other. Secondly, in
their proposed architecture, the memory cell is car-
ried over to higher LSTM unit for facilitating model
training. Because the networking training becomes
more difficult with increasing model depth. In our

1504



DLSTM, the LSTM unit at higher position takes the
memory cell from lower LSTM unit mainly for fea-
ture interaction in n-grams. Finally, an additional
“depth” gate is applied in their architecture to con-
trol the information flow across different layers. In
our model, the input gate in higher LSTM unit con-
trols the interaction between the memory cells ex-
tracted from previous word and current word.

3.3 The Architecture
Figure 3 gives the whole architecture of the pro-
posed query classification system. A DLSTM layer
first maps the input sequence to a sequence of high
order nonlinear feature representations z0. Instead of
being directly used for query classification, the fea-
ture representation z0 is further processed by a stack
of DLSTM layers illustrated in previous section. In
such stacked DLSTM layers, the output zi of the ith
DLSTM layer, is used as the input for the i+1th DL-
STM layer parameterized by a different set of weight
matrices. As shown in Figure 3, the resulting fea-
ture representations z0,z1, ...,zd of all these layers
are concatenated. Finally, an average pooling is ap-
plied to reduce the sentence feature representation
to a fixed dimensional vector that is further fed to a
softmax function to obtain the prediction output.

3.4 Learning and Regularization
In the classification layer, the prediction output is
obtained by the following softmax function.

so f tmax(y) j =
exp(y j)

∑i=m
i=1 exp(yi)

, (13)

where y is a m-dimensional vector. The model is
trained by minimizing cross-entropy on the given
training data set. To avoid overfitting during train-
ing, L2 regularization and dropout (Hinton et al.,
2012) are used. The L2 regularization is applied to
constrain all weight matrices using the same regu-
larization weight. The dropout is only applied to the
output of each DLSTM layer.

In the training, the model weights are updated
using mini-batch stochastic gradient descent (SGD).
We adapt a per-feature learning rate control method
(AdaGrad) (Duchi et al., 2011) to dynamically tune
the learning rate as follows:

αt,i =
α√

∑t
j=1 g2

j,i + ε
, (14)

Word vector

Low level 
features z0

High level 
features zd

...

DLSTM

DLSTM

DLSTM

x0 x1 x2

...

Concatenate 
different level 

features

... Classification

Average 
pooling

k×l

h×l

h×l

dh×l dh

Figure 2: CNN based query classification using DLSTM feature

mapping. The input sequence is represented by a k× l matrix

where column t is the word vector for the tth word in the se-

quence. The word vectors are mapped by a stack of DLSTM

layers to multi-level feature representations z0, ...,zd . As illus-

trated in Figure 1, each level feature representation is the sum

of outputs from different LSTM units. The multi-level features

are concatenated and reduced to a dh-dimensional vector where

d is the number of DLSTM layers, h is the output size of each

LSTM unit. A classification layer gives the prediction output.

where αt,i is the learning rate for weight i at epoch t.
∑t

j=1 g j,i sums all the historical gradients of weight
i. A small positive ε is applied to make the AdaGrad
robust. ε is usually set to 1e−5.

4 Experiments

4.1 Datasets

We evaluate the proposed query classification mod-
els on sentence sentiment classification, question
type categorization and query intent detection tasks.

For sentence sentiment classification, the Stan-
ford Sentiment Treebank (Socher et al., 2013) is
used. In this dataset, 11855 English sentences are
annotated at both sentence level and phrases level
with fine-grained labels (very positive, positive, neu-
tral, negative and very negative). We use the pro-
vided data split, which has 8544 sentences for train-
ing, 1101 sentences for developing and 2210 sen-
tences for testing. This dataset also provides a bi-
nary classification variant that ignores the neutral

1505



sentences. The binary classification task in this
dataset has 6920 sentences for training, 872 sen-
tences for developing and 1821 sentences for test-
ing. There are in total 17835 unique running words
for fine-grained dataset and 16185 for binary version
dataset.

For query intent detection, ATIS (airline travel in-
formation system) dataset (Hemphill et al., 1990;
Yao et al., 2014b) is used. This dataset is mainly
about the air travel domain with 26 different intents
such as “flight”, “groundservice” and “city”. There
are 893 utterances for testing (ATIS-III, Nov93 and
Dec94), and 4978 utterances for training (rest of
ATIS-III and ATIS-II). There are 899 unique run-
ning words and 22 intents in the training data.

The question type classification task is to clas-
sify a question into a specific type, which is a
very important step in question answering system.
In TREC (Text Retrieval Conference) data (Li and
Roth, 2002), all the questions are divided into 6
categories, including “human”, “entity”, “location”,
“description”, “abbreviation” and “numeric”. The
dataset in total has 5952 questions, 5452 of them for
training, the rest for testing. The vocabulary size of
TREC dataset is 9592.

Following previous work (Iyyer et al., 2015; Tai
et al., 2015; Lei et al., 2015), we used word vectors
pre-trained on large unannotated corpora to achieve
better generalization capability. In this paper, we
used a publicly available 300 dimensional GloVe
word vectors that are trained using Common Crawl
with 840B tokens and 2.2M vocabulary size.

4.2 Settings
We implemented our model based on Theano library
(Bastien et al., 2012). All our models are trained on
Nvidia Tesla K40m.

We performed extensive hyperparameter selection
based on Stanford Sentiment Treebank Binary ver-
sion of validation data. The selected hyperparame-
ters were directly used for all datasets. To investi-
gate the robustness of the proposed method, we ran
each configuration 10 times using different random
initialization (random seed ranges from 1 to 10).

For final models, we set the initial learning rate to
0.1, L2 regularization weight to 1e− 5, the dropout
probability to 0.5 and mini-batch size to 64. We use
hidden layer size 256 for all the models described in

model Fine Binary
SVM (Lei et al., 2015) 38.3 81.3
Nbow(Lei et al., 2015) 44.5 82.0
Para-vec(Le and Mikolov, 2014) 48.7 87.8
DAN(Iyyer et al., 2015) 48.2 86.8
RAE(Socher et al., 2011b) 43.2 82.4
MVRNN(Socher et al., 2012) 44.4 82.9
RNTN(Socher et al., 2013) 45.7 85.4
DRNN(Irsoy and Cardie, 2014) 49.8 86.8
RLSTM(Tai et al., 2015) 51.0 88.0
CLSTM(Zhou et al., 2015) 49.2 87.8
DCNN(Kalchbrenner et al., 2014) 48.5 86.9
CNN-MC(Kim, 2014) 47.4 88.1
CNN-nostatic(Kim, 2014) 48.0 87.2
TCNN (Lei et al., 2015) 50.6 87.0
TCNN+phrases(Lei et al., 2015) 51.2 88.6
ours 49.2 87.2
ours+phrases 51.9 88.7

Table 1: Standford Sentiment Treebank Classification accuracy

results. “Fine” denotes the accuracy on the fine-grained dataset

with 5 labels. “Binary” denotes binary classification results.

the experiments. The number of the DLSTM layers
and the number of the LSTM units in each DLSTM

are both set to 3. So basically there are 9 LSTM units
are used for each word position.

For all models, we set maximum iteration num-
ber 100 to terminate the training process. For sen-
timent classification task, during the training, the
model with the best classification accuracy on val-
idation data was used as final model for testing. For
question type classification and query intent detec-
tion, there wasn’t validation data. So we simply use
the model trained at the 100th iteration as the final
model for testing.

4.3 Results on Stanford Sentiment Treebank

model Acc
discriminative(Tur et al., 2010) 95.5
SVM (Shi et al., 2015b) 95.6
joint-RNN(Shi et al., 2015b) 95.2
ours 97.9

Table 2: ATIS intent classification accuracy comparison of dif-

ferent models.

Table 1 lists results for sentiment classification.

1506



There are four blocks in the table. The bottom
block gives the results from our model. The third
blocks are methods related to CNNs. The second
block shows the results from recursive neural net-
work based approaches. The other baseline methods
are listed in the top block.

The top block shows that the traditional methods
such as SVM using ngram features and neural net-
work using bag-of-words features (Nbow) perform
much worse than Para-vec and DAN using word
vectors that are pre-trained on large amount of un-
labeled data. Para-vec builds a logistic regression
on top of paragraph vectors. DAN is a deep neural
network takes the average of word vectors as input.

In addition to pre-trained word vectors, syntac-
tic compositional information can be used to im-
prove the sentiment classification accuracy. RAE is
a tree structured Antoencoder model based on pre-
trained word vectors from Wikipedia. MVRNN fur-
ther improves the recursive neural network by as-
signing each node with a matrix to learn the meaning
change of neighboring words and phrases. To ad-
dress large amount of different vectors and matrices
involved in MVRNN, RNTN proposed to use one
single tensor based function to model all nodes. By
making the tree-structured recursive neural networks
deeper, significant improvement has been achieved
by DRNN. According to our knowledge, the best
compositional information based model is achieved
by RLSTM that combines LSTM unit with tree-
structure.

By comparing the classification accuracy between
second blocks and third blocks, we see that CNN

based models in general perform better than recur-
sive neural network based methods. Another advan-
tage of CNN based methods is that they can be gen-
eralized to any language without dependency over
compositional information. DCNN uses a dynamic
k-max pooling operator function in CNN. To explore
the task specific word vectors and the general word
vectors pre-trained on large News dataset, CNN-
MC equips CNN with two feature mapping channels.
CNN-nostatic gives the results by only making use
of general word vectors. The best published classi-
fication results are achieved by TCNN that is tensor
based CNN.

In this paper, the proposed method is closely re-
lated to TCNN. Instead of using tensor products to

replace linear convolution operation, our method ex-
ploits the nonlinear feature mapping through DL-
STM. Rather than setting specific decaying weight
to model non-consecutive n-gram features in tensor
based CNN, the different gates automatically adjust
the information storing, removing and outputting ac-
cording to context.

Following the work of TCNN, to leverage the
phrases level annotation in Standford Sentiment
Treebank, all phrases and their corresponding labels
are added to training data as additional sequences.
The bottom line of Table 1 shows that our models
achieved the state-of-the-art performance on senti-
ment classification task.

For the best settings described above, we ran each
model 10 times with different random initialization.
The average and standard deviation for fine-grained
classification are 50.7% and 1.04%, for binary clas-
sification 88% and 0.41%. Comparing with TCNN,
our model is more sensitive to the parameter random
initialization. In the future, some efforts should be
used to analyze and address this issue.

model Acc
SVM (Silva et al., 2010) 95.0
Para-vec(Le and Mikolov, 2014) 91.8
AdaSent(Zhao et al., 2015) 92.4
CNN-MC(Kim, 2014) 92.2
CNN-nostatic(Kim, 2014) 93.6
DCNN(Kalchbrenner et al., 2014) 93.0
LSTM(Zhou et al., 2015) 93.2
BiLSTM(Zhou et al., 2015) 93.0
CLSTM(Zhou et al., 2015) 94.6
ours 94.8

Table 3: TREC Question type Classification accuracy compar-

ison of different models.

4.4 Results on ATIS
ATIS dataset is widely used to test spoken language
understanding system. As shown in Table 2, SVM

using n-grams performs better than simple RNN and
CNN based approach. joint-RNN is a query classi-
fication and slot filling joint training model where
CNN is applied on top of slot tagging RNN for query
classification. In this way, joint-RNN actually im-
plicitly makes use of slot tag information for query
classification. However, joint-RNN doesn’t take ad-

1507



-2

-1

0

1

2

not so good

Negative Prediction

-2

-1

0

1

2

a successful failure

Negative Prediction

-2

-1

0

1

2

hardly to be bad

Postive Prediction

-2

-1

0

1

2

a waste of good performance

Negative Prediction (groundtruth:Negative)

-2
-1
0
1
2

Negative Prediction (groundtruth:Negative)

Figure 4: Example predictions given by our model trained on Stanford Sentiment Treebank fine-grained data. The expected

sentiment score of each word is plotted in the figure. The score range from −2 to 2, where a score −2 means very “negative”, 0

stands for “neutral” and 2 means “very positive”.

84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

85 85.5 86 86.5 87 87.5 88 88.5 89 89.5

Te
st

 a
cc

u
ra

cy

Validation accuracy

depth 3 depth 2 depth 1

Figure 3: Stanford Sentiment Treebank Binary Classification

accuracy comparison among models using the same parameter

configuration except the number of DLSTM layers. For each

number of DLSTM layers, 10 models are run independently us-

ing different random initialization. Horizontal axis gives the

validation accuracy. Vertical axis shows the test accuracy.

vantage of word vectors trained on large amount of
unlabeled data. Based on pre-trained word vectors,
our models obtain more than 2% absolute classifica-
tion accuracy improvement over the published best
model.

In ATIS data, about 70% of queries is categorized
to “flight” intent. Recent work using RNN for ut-
terance classification (Ravuri and Stolcke, 2015b;

Ravuri and Stolcke, 2015a) simplifies it to a “flight”
VS “others” binary classification task. In their paper,
using word based LSTM, they achieve 97.55% clas-
sification accuracy. By using extra name entity fea-
tures, word based gated RNN obtains 98.42% classi-
fication accuracy.

4.5 Results on TREC Question Type
Classification

Table 3 gives the TREC question type classification
accuracy of our models with other baseline mod-
els. Different from the sentiment classification task,
the shallow models using diverse engineered feature
performs better than CNN and LSTM based models.
Previous best classification results on TREC data
is achieved by SVM using unigrams, bigrams, wh-
word, head word, POS tags, hypernyms, WordNet
synsets and a bunch of hand-coded rules.

AdaSent is a self adaptive hierarchical sentence
model based on gating networks with level pooling.
As shown in Table 3, CNN and LSTM achieve similar
performances on question type classification. Re-
cently CLSTM achieves substantial improvement
over previous neural network based methods. In
CLSTM, CNN is used to extract high level phrase
representation. Such local segment representation is

1508



fed into LSTM to model whole sequence representa-
tion. Different with CLSTM that is an LSTM based
sequence model with CNN for local feature extrac-
tion, our model is CNN based model using DLSTM

for non-linear feature mapping. Our model outper-
forms previous neural network based models with-
out relying on task specific feature engineering.

4.6 Deep Architecture

One critical hyperparameter in the proposed method
is the number of DLSTM layers. On sentiment bi-
nary classification task, we run our model 10 times
by keeping all the hyperparameters the same except
the number of DLSTM layers using different random
initialization. As observed from Figure 3, the bet-
ter performance is achieved by deeper architecture.
Our model achieves the best classification result by
stacking 3 DLSTM layers that actually leverages 9
different LSTM units to extract the nonlinear feature
from n-grams.

4.7 Examples

Figure 4 demonstrates some examples and their sen-
timents predicted by our model trained on fine-
grained classification data. In order to see how the
nonlinear feature mapping captures the sentiment
at each word position in the query, we follow the
strategy used in (Lei et al., 2015) where the soft-
max function is directly applied on the concatenated
feature mapping without passing through the aver-
age pooling layer. So the sentiment distribution pt

at tth word is computed as pt = W T [z0
t ,z

1
t , ...,z

d
t ].

The expected value over the probability distribution
∑2

s=−2 s.pt is used as the sentiment score that is plot-
ted in Figure 4. In the figure, the sentiment score
ranges from −2 to 2, where −2 means very nega-
tive, 2 mean very positive and 0 means neutral.

Five examples are illustrated in the figure where
the first row gives the synthetic examples to show
that our model is able to model the nonconsecutive
interaction within n-grams. For example, in query
“hardly to be bad”, even though word “hardly” is
not directly modifying word “bad”, our model still
be able to capture such sentiment changes.

The second row of the figure shows the examples
from fine-grained classification testing data. Both
the example show that our model to some degree
can capture sentiment of the satire. Especially the

last example, our model actually gives negative pre-
diction, even no word in the query really means neg-
ative.

5 Conclusions

We have proposed a deep long-short-term-memory
(DLSTM) nonlinear nonconsecutive feature mapping
architecture to replace traditional linear mapping in
the convolutional neural network based query clas-
sification. Each LSTM unit in the DLSTM is respon-
sible for capturing different order feature represen-
tation from word segments. The bottom LSTM unit
equipped with input gate and output gate, extracts
the nonlinear feature from unigram. The higher
LSTM unit in the DLSTM takes the outputs from
lower LSTM units as input. In such way, the higher
LSTM unit is able to capture nonlinear feature rep-
resentation from higher order n-grams. The sum of
different LSTM units is used as the output of the DL-
STM layer. The DLSTM output rather than being di-
rectly used as input to convolutional neural network
for query classification, is passed through a stacked
DLSTM layers. The query is finally represented by
the concatenation of the outputs from the stacked
DLSTM layers.

We evaluated the proposed models on three
benchmark datasets–Stanford Sentiment Treebank
dataset, TREC dataset and ATIS dataset. On both
sentiment classification dataset and ATIS dataset,
our model achieved the state-of-the-art performance.
On TREC question type classification, SVM based
model using extra engineered features still per-
formed better than our model. But we noticed that
the proposed method outperformed all the other neu-
ral network based approaches.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. In
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2:1–127.

1509



Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. In
EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In The Pro-
ceedings of the International Conference on Machine
Learning, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Li Deng and Dong Yu. 2014. Deep learning: Meth-
ods and applications. Found. Trends Signal Process.,
7:197–387.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng.
2014. Learning continuous phrase representations for
translation modeling. In Proceedings of ACL, pages
699–709.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In The proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The atis spoken language systems
pilot corpus. In The Proceedings of the Workshop on
Speech and Natural Language, pages 96–101.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A fast learning algorithm for deep belief nets.
Neural Comput., 18(7):1527–1554.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing
co-adaptation of feature detectors. CoRR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive neu-
ral networks for compositionality in language. In Pro-
ceedings of NIPS, pages 2096–2104.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered composi-
tion rivals syntactic methods for text classification. In
Proceedings of ACL, pages 1681–1691.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of ACL, pages 1–10.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL, June.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751, October.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of ICML, pages 1188–1196.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
Nov.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1565–1575.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics, COLING ’02,
pages 1–7.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nocký, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In The Proceed-
ings of Interspeech, pages 1045–1048.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi
Jin. 2015. Tree-based convolution: A new neural ar-
chitecture for sentence modeling. CoRR.

Suman Ravuri and Andreas Stolcke. 2015a. A compar-
ative study of neural network models for lexical intent
classification. In The Proceedings of IEEE Automatic
Speech Recogntion and Understanding Workshop.

Suman Ravuri and Andreas Stolcke. 2015b. Recurrent
neural network and lstm models for lexical utterance
classification. In Proceedings of Interspeech.

Tara N. Sainath, Oriol Vinyals, Andrew W. Senior, and
Hasim Sak. 2015. Convolutional, long short-term
memory, fully connected deep neural networks. In
Proceedings of ICASSP, pages 4580–4584.

Yelong Shen, Xiaodong he, Jianfeng Gao, Li Deng, and
Gregoire Mesnil. 2014. Learning semantic represen-
tations using convolutional neural networks for web
search. In Proceedings of WWW. WWW 2014, April.

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
and Mei-Yuh Hwang. 2015a. Semi-supervised spo-
ken language understanding using recurrent transduc-
tive support vector machines. In Proceeding of ASRU.

1510



Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
Mei-Yuh Hwang, and Baolin Peng. 2015b. Contextual
spoken language understanding using recurrent neural
networks. In The Proceedings of International Con-
ference on Acoustics, Speech and Signal Processing.

J. Silva, L. Coheur, A. C. Mendes, and Andreas Wichert.
2010. From symbolic to sub-symbolic information in
question classification. Artificial Intelligence Review.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christo-
pher D. Manning. 2011a. Parsing Natural Scenes and
Natural Language with Recursive Neural Networks.
In Proceedings of ICML.

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011b.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Proceedings of EMNLP,
pages 151–161.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic Compositional-
ity Through Recursive Matrix-Vector Spaces. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1631–1642.

Richard Socher. 2012. New directions in deep learning:
Structured models, tasks, and datasets. Neural Infor-
mation Processing Systems (NIPS) Workshop on Deep
Learning and Unsupervised Feature Learning.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. CoRR,
abs/1505.00387.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In INTERSPEECH, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of ACL, pages 1556–1566. Association
for Computational Linguistics, July.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1422–1432.

G. Tur, D. Hakkani-Tur, and L. Heck. 2010. What is
left to be understood in atis? In Spoken Language
Technology Workshop (SLT), 2010 IEEE, pages 19–24.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2015. A unified tagging solution: Bidi-
rectional LSTM recurrent neural network with word
embedding. CoRR.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi. 2014a. Spoken lan-
guage understanding using long short-term memory
neural networks. In The Proceedings of IEEE work-
shop on Spoken Language Technology, pages 189–
194.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi. 2014b. Spoken lan-
guage understanding using long short-term memory
neural networks. In The Proceedings of IEEE work-
shop on Spoken Language Technology, pages 189–
194.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin
Duh, and Chris Dyer. 2015. Depth-gated LSTM.
CoRR.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of ACL, pages 1321–1331.

Ye Zhang and Byron Wallace. 2015. A sensitivity analy-
sis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. CoRR.

Ye Zhang and Byron Wallace. 2016. A sensitivity analy-
sis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. In CoRR.

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yao, San-
jeev Khudanpur, and James Glass. 2015. Highway
long short-term memory rnns for distant speech recog-
nition. CoRR.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. CoRR.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis
C. M. Lau. 2015. A C-LSTM neural network for text
classification. CoRR, abs/1511.08630.

1511


