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Abstract

Coherence is established by semantic connec-
tions between sentences of a text which can
be modeled by lexical relations. In this pa-
per, we introduce the lexical coherence graph
(LCG), a new graph-based model to represent
lexical relations among sentences. The fre-
quency of subgraphs (coherence patterns) of
this graph captures the connectivity style of
sentence nodes in this graph. The coherence
of a text is encoded by a vector of these fre-
quencies. We evaluate the LCG model on the
readability ranking task. The results of the ex-
periments show that the LCG model obtains
higher accuracy than state-of-the-art coher-
ence models. Using larger subgraphs yields
higher accuracy, because they capture more
structural information. However, larger sub-
graphs can be sparse. We adapt Kneser-Ney
smoothing to smooth subgraphs’ frequencies.
Smoothing improves performance.

1 Introduction

The concept of coherence is based on cohesive se-
mantic relations connecting elements of a text. Co-
hesive relations are expressed through grammar and
the vocabulary of a language. The former is referred
to as grammatical coherence, the latter as lexical
coherence (Halliday and Hasan, 1976). Grammat-
ical coherence encompasses coreference, substitu-
tion, ellipsis, etc. Lexical coherence comprises se-
mantic connections among words of a text.

In this paper we measure text coherence by mod-
eling lexical coherence. Lexical relations spec-
ify cohesive relations over the sentences of a text.

These lexical relations can be any kind of seman-
tic relation: repetition, synonymy, hyperonymy,
meronymy, etc. These lexical items may or may not
have the same reference (Halliday and Hasan, 1976).

Why does the little boy wriggle all the
time? Girls don’t.

In this example the lexical items boy and girls
are semantically related. Although they do not re-
fer to the same entity, they still connect these two
sentences.

There is coherence between any pair of lexi-
cal items that stand to each other in some lexico-
semantic relation (Halliday and Hasan, 1976). For
textual purposes it is not required to determine the
type of the relation. It is only necessary to recog-
nize semantically related lexical items, and these re-
lations can be learned by cooccurring lexical items.

One can use world knowledge resources to deter-
mine semantic relations. This way is expensive in
terms of determining the best resource, e.g. Word-
Net vs. Freebase. WordNet lacks broad coverage in
particular with proper names, Freebase is restricted
to nominal concepts and entities.

Recent improvements in embedding representa-
tions of words let us efficiently compute semantic
relations among lexical items in the vector space.
These models use a vector of numbers to encode the
meaning of words. We use these vectors to check the
existence of any kind of semantic relations between
two words.

In the following example the sentences are con-
nected because of the semantic relation between
king and queen which can be induced by word em-
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bedding models (Mikolov et al., 2013; Pennington
et al., 2014).

. . . The king was in his counting-house,
counting out his money,
The queen was in the parlour, eating bread
and honey.

We model lexical coherence between sentences
by a lexical coherence graph (LCG). We consider
subgraphs of this graph coherence patterns and use
their frequency as features representing the connec-
tivity of the graph and, hence, the coherence of a text
(Mesgar and Strube, 2015).

An important task for evaluating a coherence
model is readability assessment. The goal of this
task is to rate texts based on their readability. The
more coherent a text, the faster to read and easier
to understand it is. Other coherence models (Barzi-
lay and Lapata, 2008; Guinaudeau and Strube, 2013;
Mesgar and Strube, 2014) are also evaluated on this
task. Pitler and Nenkova (2008) use the entity grid
(Barzilay and Lapata, 2008) to capture the coher-
ence of a text for readability assessment. Mesgar and
Strube (2015) extend the entity graph (Guinaudeau
and Strube, 2013) as coherence model to measure
the readability of texts. They encode coherence as a
vector of frequencies of subgraphs of the graph rep-
resentation of a text. We build upon their method
and represent the connectivity of sentences in our
LCG model by a vector of frequencies of subgraphs.

Although using the frequency of subgraphs of the
lexical coherence graph encodes coherence features
well, the subgraph frequency method, in general,
is suffering from a sparsity problem when the sub-
graphs get larger. Large subgraphs capture more
structural information, but they occur only rarely.
We resolve this sparsity issue by adapting Kneser-
Ney smoothing (Heafield et al., 2013) to smooth
subgraph counts (Section 3). We estimate the prob-
ability of unseen subgraphs, i.e. coherence patterns.
This prediction lets us measure the coherence of a
text even when its corresponding graph representa-
tion contains a subgraph which does not occur in the
training data. If the unseen coherence pattern is sim-
ilar to seen ones, smoothing gives it closer proba-
bility to seen coherence patterns in comparison to
dissimilar unseen ones. This is due to the base prob-
ability factor in Kneser-Ney smoothing.

We evaluate our LCG model on the two readabil-
ity datasets provided by Pitler and Nenkova (2008)
and De Clercq et al. (2014), respectively (Section
4). The results (Section 5) indicate that the LCG
model outperforms state-of-the-art systems. By ap-
plying Kneser-Ney smoothing we solve the sparsity
problem. Smoothing allows us to exploit the high
informativity of large subgraphs which leads to new
state-of-the-art results in readability assessment.

2 Related Work

The entity grid model (Barzilay and Lapata, 2008)
is based on entity transitions over sentences. It uses
a two dimensional matrix to represent transitions
of entities among adjacent sentences. The entity
grid is applied to readability assessment by Pitler
and Nenkova (2008). The entity graph (Guinaudeau
and Strube, 2013) is a graph-based, mainly unsuper-
vised interpretation of the entity grid. This model
represents the distribution of entities over sentences
in a text with a bipartite graph. Connections be-
tween sentences are obtained by information on en-
tites shared by sentences. Guinaudeau and Strube
(2013) perform a one-mode projection on sentence
nodes and use the average out-degree of the one-
mode projection graph to quantify the coherence
of the given text. Mesgar and Strube (2015) rep-
resent the connectivity of the one-mode projection
graph by a vector whose elements are the frequen-
cies of subgraphs in projection graphs. This encod-
ing works much better than the entity graph for the
readability task on the P&N dataset and even out-
performs Pitler and Nenkova (2008) by a large mar-
gin. Zhang et al. (2015) state that the entity graph
model is limited, because it only captures mentions
which refer to the same entity (the entity graph uses
a very restricted version of coreference resolution to
determine entities). Zhang et al. (2015) use world
knowledge YAGO (Hoffart et al., 2013), WikiPedia
(Denoyer and Gallinari, 2006) and FreeBase (Bol-
lacker et al., 2008) to capture the semantic related-
ness between entities even if they do not refer to the
same entity. Main issues with using world knowl-
edge are: the choice knowledge sources, selection of
knowledge from the source, coverage, and language-
dependence.

Word embedding approaches like word2vec and
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GloVe (Mikolov et al., 2013; Pennington et al.,
2014) show that the semantic connection between
words can be captured by word vectors which are
obtained by applying a neural network. The ability
to train on very large data sets allows the model to
learn complex relationships between words.

3 Method

We introduce a new graph representation of seman-
tic connections over lexical items in texts. After-
wards we compute the frequency of all subgraphs,
i.e. coherence patterns. The intuition is that sub-
graphs capture how sentence nodes are connected
and, respectively, encode text coherence.

3.1 Graph Model
We model semantic relations between sentences by
a graphG = <V,E> where V is the set of sentence
nodes and E is the set of edges between sentence
nodes. Two nodes of G are adjacent if there is a se-
mantic connection between the corresponding sen-
tences. Two sentences are semantically connected if
there is at least one strong semantic relation between
the words of these sentences. We model seman-
tic relations between words by their corresponding
word embeddings (Pennington et al., 2014). Given
word vectors va for word a of sentence A and vb for
word b of sentence B, the cosine similarity value,
cos(va, vb), between the two word vectors is a mea-
sure of semantic connectivity of the two words. The
range of cos(va, vb) is between [−1,+1]. One in-
terpretation of cosine is the normalized correlation
coefficient, which states how well the two words
are semantically correlated (Manning and Schütze,
1999). The absolute value of cosine, |cos(va, vb)|,
encodes how strongly the two words are connected.

The connection between sentences is obtained
from connections between their words (Figure 1).
Assume sentenceA precedes sentenceB, each word
b of sentence B is connected with word a∗ of A,
where

a∗ = argmax
a∈A

cos(b, a)

Then from all connections between the words of
sentences A and B, the connection with the maxi-
mum weight among the words of B is selected to
connect these two sentences (Figure 2).

w1 w2 w3 w4 w5

Figure 1: Sentence A with three words {w1, w2, w3} and sen-

tence B with two words {w4, w5}. w4 is highly related to w2

and w5 is highly related to w3.

w1 w2 w3 w4 w5

(a)

A B

(b)
Figure 2: The word relation with the maximum weight (a) rep-

resents the connections between sentences (b).

The output of this phase is a graph whose edge
weights model the strength of connections between
sentences. The edges in this graph are directed to
model the order of sentences.

Word embeddings relate each word in sentence
A with each word in sentence B. Since the result-
ing graph is very dense, we filter out edges whose
weights are below a threshold1.

3.2 Coherence Features

Mesgar and Strube (2015) propose that the connec-
tion style of an entity graph can be captured by the
frequency of all k-node subgraphs in this graph.
Larger2 subgraphs3 can capture more information
about the structure of graphs and are more informa-
tive coherence patterns than smaller ones. We exper-
iment with k ∈ {3, 4, 5, 6}. Text coherence is repre-

1We set this threshold to 0.9 to connect only sentences with
high confidence.

2The size of a subgraph is the number of its nodes.
3We compute induced subgraphs (Mesgar and Strube,

2015). However, we use the term subgraph for brevity.
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sented by a vector whose elements are the frequency
of subgraphs (coherence patterns) with k-node.

3.3 Smoothing
Although increasing the size k of subgraphs captures
more structural information about the connections of
sentence nodes, a main risk with large subgraphs
is sparsity. Given a sentence graph, many large
subgraph types do not occur in this graph. Small
subgraph types occur frequently in most sentence
graphs in the dataset, but these subgraphs do not cap-
ture enough information about the connectivity style
of the graphs.

Inspired by Kneser-Ney smoothing in language
models (Heafield et al., 2013), each feature vector of
a sentence graph can be smoothed. Smoothing deals
with the problem of zero counts in the feature vec-
tor. It also lets the model having feature values for
unseen subgraphs (like OOV in language modeling)
which may be seen in the testing phase.

Kneser-Ney smoothing uses a discount factor to
discount the raw count of each event (subgraph) and
distributes the total discount to all event (subgraph)
probabilities by means of a base probability.

The estimated frequency of subgraph sg in a given
sentence graph is computed as follows:

KN(sg) =
max{count(sg)− α, 0}

Z
+
M · α
Z

Pb(sg),

where α is the discount factor and M is the number
of times that discount factor is applied. Z is a nor-
malization factor to ensure that the distribution sums
to one and is obtained as follows:

Z =
∑
sg∈A

count(sg),

whereA is the set of all subgraphs with k-nodes and
function count(·) computes the number of instances
of subgraph sg in the given sentence graph.
Pb(sg) in Kneser-Ney smoothing is the base prob-

ability of subgraph sg among all k-node subgraphs
(A). The base probability can be computed based
on hierarchical (parent-child) relations in subgraphs.
k-node subgraph sgi is a parent of (k+1)-node sub-
graph sgj , if sgi is a subgraph of sgj . Figure 3
shows the parent-child relation between subgraphs
via a weighted tree. The root of this tree is a null

graph4. The weight of a parent-child relation con-
necting the parent subgraph sgi and child subgraph
sgj is shown by wij and computed as follows:

wij =
count(sgi, sgj)∑

sgl∈A count(sgi, sgl)
,

where A is all subgraphs with k-node and k equals
the number of nodes of sgj . Interpretation of weight
wij is the normalized count of sgi in sgj with respect
to all outgoing edges from sgi.

The base probability of each subgraph sgj is the
inner product of the Kneser-Ney probabilities of
sgj’s parents by the weights of the corresponding
relations:

Pb(sgj) = P ·W, (1)

where P is the vector of probabilities of all parents
of sgj and W is the vector of all corresponding edge
weights connecting the parents of sgj to sgj .

Since the root node of this tree is the null sub-
graph, and it is a subgraph of all possible sentence
graphs, its base probability is one. Because the edge
weights are in the range [0, 1] the sum of the proba-
bilities of all subgraphs with k-node is always equal
to one.

Proof. Assume I and J are the set of all k-node
and (k+1)-node subgraphs. We also assume that I
has n subgraphs and

∑n
i=1 p(sgi) = 1. Considering

these assumptions we prove that

m∑
j=1

p(sgj) = 1,

where m is the number of subgraphs in J .
We start from the left and compute the value of

m∑
j=1

p(sgj).

Based on the definition of base probability, the value
of p(sgj) is computed based on its parents in I ,

p(sgj) =
n∑

i=1

wijp(sgi),

where wij is the weight of the parent-child relation
between sgi and sgj . Now we have:

4A null graph is a graph with no nodes.
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Figure 3: parent child relation.

m∑
j=1

p(sgj) =
m∑

j=1

n∑
i=1

wijp(sgi).

If we exchange the place of the sums and re-write
the equation, we have:

m∑
j=1

p(sgj) =
n∑

i=1

m∑
j=1

wijp(sgi).

In this equation p(sgi) is independent of j (index of
the inner sum), so it can be moved out of the inner
sum:

m∑
j=1

p(sgj) =
n∑

i=1

p(sgi)
m∑

j=1

wij

The inner sum equals 1.

m∑
j=1

p(sgj) =
n∑

i=1

p(sgi).

Based on our assumption the right side of the equa-
tion is 1 and

m∑
j=1

p(sgj) = 1.

So we proved that the sum of the base probability of
all k-node subgraphs is 1. �

This way, Kneser-Ney smoothing distributes the
total discount value by considering the weights of
parent-child relations among the subgraphs. The re-
sult of applying smoothing is an estimation of the
frequency of each subgraph in the sentence graph.

4 Experiments

4.1 Evaluation Task

We evaluate our coherence model on the task of
ranking texts by their readability. The intuition is
that more coherent texts are easier to read.

Datasets. We run our experiments on two datasets
annotated with readability information provided by
human annotators: P&N (Pitler and Nenkova, 2008)
and De Clercq (De Clercq et al., 2014).

The dataset P&N contains 27 articles randomly
selected from the Wall Street Journal corpus5. The
average number of sentences is about 10 words. Ev-
ery article is associated with a human score between
[0.0, 5.0] indicating the readability score of that arti-
cle. We create pairs of documents, if the difference
between their readability scores is greater than 0.5.
If the first document in a pair has the higher score,
we label this pair with +1, otherwise with −1. The
resulting number of text pairs in this dataset is 209.

The dataset De Clercq consists of 105 articles
from different genres: administrative (17 articles),
journalistic (43 articles), manuals (14 articles) and
miscellaneous (31 articles). The average number of
sentences is about 12. This dataset was annotated by
De Clercq et al. (2014) by asking human judges to
compare two texts based on their readability. They
use five labels:

5Pitler and Nenkova (2008)’s dataset contains 30 articles.
They remove one. We assume this is wsj-0382 which does
not exist in the Penn Treebank. We furthermore remove wsj-
-2090which does not exist in the final release of the Penn Dis-
course Treebank. We also remove wsj-1398 which is a poem
and, hence, not very informative for readability assessment.
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LME: left text is much easier,

LSE: left text is somewhat easier,

ED: both texts are equally difficult,

RSE: right text is somewhat easier,

RME: right text is much easier.

We map these labels to three class labels:

+1: for text pairs where the left text is easier to
read (LME or LSE),

0: for text pairs where both texts are equally dif-
ficult to read (ED),

−1: for text pairs where the right text is easier to
read (RSE or RME).

Properties of this dataset are shown in Table 1.

Genre No. of articles No. of text pairs
Administrative 17 272
Journalistic 43 1806
Manuals 14 182
Miscellaneous 31 931
Table 1: Properties of the different genres in the De Clercq

dataset.

4.2 Experimental Settings

Word Embeddings and Classification. In order
to reduce the effect of very frequent words, stop
words are filtered by using the SMART English
stop word list (Salton, 1971). We use a pretrained
model of GloVe for word embeddings. This model is
trained on Common Crawl with 840B tokens, 2.2M
vocabulary. We represent each word by a vector with
length 300 (Pennington et al., 2014). For handling
out-of-vocabulary words, we assign a random vector
to each word and memorize it for its next occurrence
(Kusner et al., 2015). The classification task is done
by the SVM implementation in WEKA (SMO) with
the linear kernel function. All settings are set to the
default values. The evaluation is computed by 10-
fold cross validation.

Graph Processing and Smoothing. In order to
compare the performance of LCG with the entity
graph model, we follow Mesgar and Strube (2015)
and use the gSpan method (Yan and Han, 2002) to
compute all common subgraphs on each dataset and
their frequencies. Note that gSpan does not count

all possible k-node subgraphs, whereas for apply-
ing Kneser-Ney smoothing it is necessary to count
all possible k-node subgraphs, because the proba-
bility should be distributed among all possible sub-
graphs. This also helps to estimate the probability of
unseen patterns. We use a random sampling method
(Shervashidze et al., 2009) to obtain the frequency
of subgraphs in a sentence graph. In this regard, we
take 10, 000 samples of the given sentence graph by
randomly selecting k nodes of the graph to count
the occurrence of k-node subgraphs in this graph.
We compute the base probability for at most k = 6.
We find the best value for d in a greedy manner.
First, we initialize d with 0.001. In each iteration
we compute the performance. Then we multiply the
discount factor by 10. We iterate as long as the dis-
count factor is less than 1000. We report the best
performance.

5 Results

In order to compare our method with related work,
we run our model on the P&N dataset. Table 2 re-
ports the accuracy of LCG with different values for k
in k-node subgraphs. This corresponds to coherence
patterns spanning different numbers of sentences.

System Accuracy
ZeroR 50.24%
EGrid 83.25%
k-node EGraph EGraph+PRN LCG
3-node 79.43% 80.38%** 78.95%
4-node 89.00% 89.95% 89.47%
5-node 96.17%** 95.69%** 97.13%

Table 2: P&N dataset.

We start in Table 2 with a majority class baseline
(ZeroR). EGrid is our reimplementation of Pitler and
Nenkova (2008) which we use as non-trivial base-
line. The column EGraph is the entity graph model
of Mesgar and Strube (2015). In EGraph+PRN we
extend this model by a pronoun resolution system,
so that entities mentioned by pronouns also enter
the graph. We apply the Stanford coreference res-
olution system (Lee et al., 2013). Using the full
coreference resolution system, however, decreases
performance, hence we only use resolved pronouns.
The enriched model with resolved pronouns works
slightly better for 3-node and 4-node subgraphs,
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and slightly worse for 5-node subgraphs than the
EGraph. The lexical coherence graph model, LCG,
performs slightly worse than EGraph on 3-node sub-
graphs. This could be because the graphs in LCG
have more edges than the graphs in EGraph. When
graphs are denser 3-node subgraphs occur in ev-
ery graph, hence their frequency is less discrimina-
tive. As shown in Table 2 larger subgraphs (4-node
and 5-node) capture more information and improve
upon EGraph and for 5-node subgraphs even upon
EGraph+PRN. LCG significantly (p value = 0.01)
works better than EGraph+PRN and EGraph using
5-node subgraphs. The difference between LCG and
EGraph+PRN and EGraph using 4-node subgraphs
is not significant.

Table 3 shows the performance of different mod-
els on the De Clercq dataset.

System Accuracy
ZeroR 42.312%
k-node EGraph+PRN LCG
3-node 42.31% 42.31%
4-node 48.07% 49.12%**
5-node 65.77% 76.27%**

Table 3: De Clercq dataset.

Again, we use a majority baseline (ZeroR) to put
our results in context. While the performance of
both methods almost does not beat the baseline for
3-node subgraphs, 4-node-subgraphs work already
better, and 5-node subgraphs yield reasonable per-
formance on this dataset. Although EGraph+PRN
and LCG reach almost the same performance for
4-node, the difference between them is statistically
significant (p value = 0.01). With 5-node sub-
graphs, LCG outperforms EGraph+PRN subgraphs
by a large margin and gets a very reasonable perfor-
mance on this dataset.

The general performance on the De Clercq dataset
is lower than the performance on the the P&N
dataset. This can have two reasons: first, the ranking
task on the De Clercq dataset is three-label classifi-
cation which is more difficult than the binary clas-
sification task on the P&N dataset. Second, texts in
the De Clercq dataset are from different genres and
coherence patterns may vary across genres. Hence,
we take a closer look on the performance on the dif-
ferent genres.

5-node EGraph+PRN LCG
Administrative 69.49% 71.69%
Journalistic 65.01% 82.12%
Manuals 54.95% 61.54%
Misc. 70.68% 76.69%

Table 4: Accuracy of EGraph+PRN and LCG on different gen-

res in the De Clercq dataset.

Table 4 shows the performance for EGraph+PRN
and LCG using 5-node subgraphs on the different
genres in the De Clercq dataset. The performance of
LCG is higher than EGraph+PRN on all genres. Un-
like EGraph+PRN, LCG gets the best performance
on journalistic articles. The lowest performance of
both models is obtained on manuals. On administra-
tive articles, performance of LCG is slightly better
than EGraph+PRN. On miscellaneous articles LCG
performs better than EGraph+PRN.

While large subgraphs are very informative for
coherence modeling, extracting large subgraphs
(k > 4) in relatively small datasets leads to a data
sparsity problem, as there are very many possible
subgraphs to be represented in a high dimensional
vector space. Hence, many possible subgraphs have
low or even zero counts. The problem for such a
vector is that each graph is only similar to itself and
not to any other graph. Hence, we observe a drop in
performance when the model deals with large sub-
graphs (6-node subgraphs, LCG1 for P&N in Table
5). We solve this problem by smoothing.

In order to apply Kneser-Ney smoothing we use
a sampling method to create all possible (connected
and disconnected) k-node subgraphs (for LCG1 and
LCG1* we use connected and disconnected sub-
graphs, for LCG only connected ones).

Table 5 shows the performance of LCG1 when it
is applied to ever larger subgraphs. As can be seen
in Table 5, the performance on the P&N dataset sud-
denly drops for 6-node subgraphs. This is could be
caused by the sparsity problem.

When we apply Kneser-Ney smoothing as de-
scribed in Section 3 the results for all tested values of
k are superior for LCG1* when compared to LCG1
(Table 5).

Kneser-Ney smoothing improves the performance
of the system even with 3-node subgraphs by a
large margin. Smoothing reduces the power of fre-
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P&N De Clercq
k-node LCG1 LCG1* LCG1 LCG1*
3-node 84.52% 89.00% 42.31% 49.60%
4-node 95.69% 96.17% 65.10% 66.23%
5-node 97.61% 98.08% 79.33% 79.85%
6-node 93.26% 95.69% 76.67% 78.03%

Table 5: Applying smoothing method yields to higher accuracy

for larger subgraphs.

quency and makes the frequency distribution of sub-
graphs more even. Smoothing reduces the values
through all subgraphs by considering parent-child
relations between subgraphs to relate similar sub-
graphs. That is the advantage of the Kneser-Ney
method in comparison to the other smoothing meth-
ods like Laplace-Smoothing.

For the P&N dataset we achieve the best results
to date. Pitler and Nenkova (2008) reported 83.25%
accuracy, Mesgar and Strube (2015) 89.95%. When
smoothing 5-node subgraphs we are able to report
98.08%. This, however, indicates that this dataset
may not be the best one to report performance on.
Hence, we now check whether smoothing also im-
proves the performance on the more difficult De
Clercq dataset.

On this dataset, we basically observe the same
trends. Both settings result in better performance
than LCG (see Table 3).

Note that none of the parameters in this work is
tuned on the datasets. One may get better perfor-
mance by tuning the parameters. The results con-
firm the intuition that the lexical coherence graph
LCG captures coherence and models lexical coher-
ence appropriately.

Applying smoothing on graphs of EGraph+PRN
model increases the performance of this model. But
this improvement is not as high as the improvement
on the LCG graph.

Coherence Patterns. In this part we check the
Pearson correlation coefficient between LCG1 and
human judgements of a few frequent subgraphs on
the P&N dataset. In order to be consistent with Mes-
gar and Strube (2015), we use the exhaustive value
of subgraph frequencies, i.e. LCG1 for our work.

For the 3-node subgraphs only one subgraph (Fig-
ure 4) in the LCG1 representation is significantly

(and positively) correlated (p-value< 0.05) with hu-
man scores. For the 4-node subgraphs, we find six
subgraphs which are significantly correlated with
readability. Only one is positively correlated, while
four are negatively correlated. Interestingly, both
positively correlated 3-node and 4-node subgraphs
have been determined as positively and significantly
correlated by Mesgar and Strube (2015) as well.
Both also capture a similar coherence pattern, indi-
cating that our method is linguistically sound.

Pattern ρ p-value

3-node 0.43 0.024

4-node -0.45 0.018

+0.39 0.047

-0.43 0.024

-0.59 0.001

-0.55 0.003

-0.55 0.003

Figure 4: Pearson correlation between 3-node and 4-node sub-

graphs and readability scores in the P&N dataset.

6 Conclusions and Future Work

In this paper we propose a new graph based co-
herence model, the lexical coherence graph, LCG.
We view coherence as semantic connectedness be-
tween words which we model by word embeddings.
We take only the strongest connection between sen-
tences to create a graph with connected sentences.
Then we extract large subgraphs capturing coher-
ence patterns, which show similarity to patterns de-
scribed in text linguistics (Daneš, 1974).
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While the entity grid works only on sequences of
up to three adjacent sentences, we are able to model
relationships of up to six non-adjacent sentences.
We solve the sparsity problem of large subgraphs by
adapting Kneser-Ney smoothing to graphs. Smooth-
ing prevents LCG from losing performance with
large subgraphs and leads to superior performance
on the Pitler and Nenkova (2008) dataset and to a
first reasonable state-of-the-art on the De Clercq et
al. (2014) dataset.

In future work we want to apply LCG to essay
scoring as well. Also, we see that our adaption of
Kneser-Ney smoothing to graphs may be useful for
research in subgraph mining in general.
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