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Abstract

Textual similarity measurement is a challeng-
ing problem, as it requires understanding the
semantics of input sentences. Most previ-
ous neural network models use coarse-grained
sentence modeling, which has difficulty cap-
turing fine-grained word-level information for
semantic comparisons. As an alternative, we
propose to explicitly model pairwise word in-
teractions and present a novel similarity focus
mechanism to identify important correspon-
dences for better similarity measurement. Our
ideas are implemented in a novel neural net-
work architecture that demonstrates state-of-
the-art accuracy on three SemEval tasks and
two answer selection tasks.

1 Introduction

Given two pieces of text, measuring their seman-
tic textual similarity (STS) remains a fundamental
problem in language research and lies at the core of
many language processing tasks, including question
answering (Lin, 2007), query ranking (Burges et al.,
2005), and paraphrase generation (Xu, 2014).

Traditional NLP approaches, e.g., developing
hand-crafted features, suffer from sparsity because
of language ambiguity and the limited amount of
annotated data available. Neural networks and dis-
tributed representations can alleviate such sparsity,
thus neural network-based models are widely used
by recent systems for the STS problem (He et al.,
2015; Tai et al., 2015; Yin and Schütze, 2015).

However, most previous neural network ap-
proaches are based on sentence modeling, which
first maps each input sentence into a fixed-length

vector and then performs comparisons on these
representations. Despite its conceptual simplic-
ity, researchers have raised concerns about this ap-
proach (Mooney, 2014): Will fine-grained word-
level information, which is crucial for similarity
measurement, get lost in the coarse-grained sen-
tence representations? Is it really effective to “cram”
whole sentence meanings into fixed-length vectors?

In contrast, we focus on capturing fine-grained
word-level information directly. Our contribution is
twofold: First, instead of using sentence modeling,
we propose pairwise word interaction modeling that
encourages explicit word context interactions across
sentences. This is inspired by our own intuitions of
how people recognize textual similarity: given two
sentences sent1 and sent2, a careful reader might
look for corresponding semantic units, which we op-
erationalize in our pairwise word interaction model-
ing technique (Sec. 5). Second, based on the pair-
wise word interactions, we describe a novel simi-
larity focus layer which helps the model selectively
identify important word interactions depending on
their importance for similarity measurement. Since
not all words are created equal, important words that
can make more contributions deserve extra “focus”
from the model (Sec. 6).

We conducted thorough evaluations on ten test
sets from three SemEval STS competitions (Agirre
et al., 2012; Marelli et al., 2014; Agirre et al., 2014)
and two answer selection tasks (Yang et al., 2015;
Wang et al., 2007). We outperform the recent multi-
perspective convolutional neural networks of He et
al. (2015) and demonstrate state-of-the-art accuracy
on all five tasks. In addition, we conducted ablation
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studies and visualized our models to show the clear
benefits of modeling pairwise word interactions for
similarity measurement.

2 Related Work

Feature engineering was the dominant approach in
most previous work; different types of sparse fea-
tures were explored and found useful. For ex-
ample, n-gram overlap features at the word and
character levels (Madnani et al., 2012; Wan et al.,
2006), syntax features (Das and Smith, 2009; Xu et
al., 2014), knowledge-based features using Word-
Net (Fellbaum, 1998; Fern and Stevenson, 2008)
and word-alignment features (Sultan et al., 2014).

The recent shift from sparse feature engineer-
ing to neural network model engineering has sig-
nificantly improved accuracy on STS datasets.
Most previous work use sentence modeling with a
“Siamese” structure (Bromley et al., 1993). For ex-
ample, Hu et al. (2014) used convolutional neural
networks that combine hierarchical structures with
layer-by-layer composition and pooling. Tai et al.
(2015) and Zhu et al. (2015) concurrently proposed
tree-structured long short-term memory networks,
which recursively construct sentence representations
following their syntactic trees. There are many
other examples of neural network-based sentence
modeling approaches for the STS problem (Yin and
Schütze, 2015; Huang et al., 2013; Andrew et al.,
2013; Weston et al., 2011; Socher et al., 2011;
Zarrella et al., 2015).

Sentence modeling is coarse-grained by nature.
Most recently, despite still using a sentence model-
ing approach, He et al. (2015) moved toward fine-
grained representations by exploiting multiple per-
spectives of input sentences with different types of
convolution filters and pooling, generating a “ma-
trix” representation where rows and columns cap-
ture different aspects of the sentence; comparisons
over local regions of the representation are then per-
formed. He et al. (2015) achieves highly competitive
accuracy, suggesting the usefulness of fine-grained
information. However, these multiple perspectives
are obtained at the cost of increased model complex-
ity, resulting in slow model training. In this work,
we take a different approach by focusing directly on
pairwise word interaction modeling.
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Figure 1: Our end-to-end neural network model,
consisting of four major components.

3 Model Overview

Figure 1 shows our end-to-end model with four ma-
jor components:

1. Bidirectional Long Short-Term Memory Net-
works (Bi-LSTMs) (Graves et al., 2005; Graves et
al., 2006) are used for context modeling of input
sentences, which serves as the basis for all follow-
ing components (Sec. 4).

2. A novel pairwise word interaction modeling tech-
nique encourages direct comparisons between
word contexts across sentences (Sec. 5).

3. A novel similarity focus layer helps the model
identify important pairwise word interactions
across sentences (Sec. 6).
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4. A 19-layer deep convolutional neural network
(ConvNet) converts the similarity measurement
problem into a pattern recognition problem for fi-
nal classification (Sec. 7).

To our best knowledge this is the first neural net-
work model, a novel hybrid architecture combining
Bi-LSTMs and a deep ConvNet, that uses a simi-
larity focus mechanism with selective attention to
important pairwise word interactions for the STS
problem. Our approach only uses pretrained word
embeddings, and unlike several previous neural net-
work models (Yin and Schütze, 2015; Tai et al.,
2015), we do not use sparse features, unsupervised
model pretraining, syntactic parsers, or external re-
sources like WordNet. We describe details of each
component in the following sections.

4 Context Modeling

Different words occurring in similar semantic con-
texts of respective sentences have a higher chance to
contribute to the similarity measurement. We there-
fore need word context modeling, which serves as a
basis for all following components of this work.

LSTM (Hochreiter and Schmidhuber, 1997)
is a special variant of Recurrent Neural Net-
works (Williams and Zipser, 1989). It can cap-
ture long-range dependencies and nonlinear dynam-
ics between words, and has been successfully ap-
plied to many NLP tasks (Sutskever et al., 2014; Fil-
ippova et al., 2015). LSTM has a memory cell that
can store information over a long history, as well as
three gates that control the flow of information into
and out of the memory cell. At time step t, given an
input xt, previous output ht−1, input gate it, output
gate ot and forget gate ft, LSTM(xt, ht−1) outputs
the hidden state ht based on the equations below:

it = σ(W ixt + U iht−1 + bi) (1)

ft = σ(W fxt + Ufht−1 + bf ) (2)
ot = σ(W oxt + Uoht−1 + bo) (3)

ut = tanh(Wuxt + Uuht−1 + bu) (4)
ct = it · ut + ft · ct−1 (5)
ht = ot · tanh(ct) (6)

LSTM(xt, ht−1) = ht (7)

BiLSTMs(xt, ht−1) = {LSTMf , LSTM b} (8)

where σ is the logistic sigmoid activation, W ∗,
U∗ and b∗ are learned weight matrices and biases.
LSTMs are better than RNNs for context modeling,
in that their memory cells and gating mechanisms
handle the vanishing gradients problem in training.

We use bidirectional LSTMs (Bi-LSTMs) for
context modeling in this work. Bi-LSTMs consist
of two LSTMs that run in parallel in opposite direc-
tions: one (forward LSTMf ) on the input sequence
and the other (backward LSTM b) on the reverse of
the sequence. At time step t, the Bi-LSTMs hidden
state hbit is a concatenation of the hidden state hfort

of LSTMf and the hidden state hbackt of LSTM b,
representing the neighbor contexts of input xt in the
sequence. We define the unpack operation below:

hfort , hbackt = unpack(hbit ) (9)

Context modeling with Bi-LSTMs allows all the
following components to be built over word con-
texts, rather than over individual words.

5 Pairwise Word Interaction Modeling

From our own intuitions, given two sentences in a
STS task, a careful human reader might compare
words and phrases across the sentences to establish
semantic correspondences and from these infer sim-
ilarity. Our pairwise word interaction model is in-
spired by such behavior: whenever the next word of
a sentence is read, the model would compare it and
its context against all words and their contexts in the
other sentence. Figure 2 illustrates this model.

We first define a comparison unit for comparing
two hidden states

−→
h1,
−→
h2 of Bi-LSTMs.

coU (
−→
h1,
−→
h2) = {cos(

−→
h1,
−→
h2), L2Euclid(

−→
h1,
−→
h2),

DotProduct(
−→
h1,
−→
h2)} (10)

Cosine distance (cos) measures the distance of
two vectors by the angle between them, while
L2 Euclidean distance (L2Euclid ) and dot-product
distance (DotProduct) measure magnitude differ-
ences. We use three similarity functions for richer
measurement.

Algorithm 1 provides details of the modeling pro-
cess. Given the input xat ∈ senta at time step t
where a ∈ {1, 2}, its Bi-LSTMs hidden state hbiat is
the concatenation of the forward state hforat and the
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Cats Sit On the Mat On the Mat There Sit Cats

Pairwise Word Interactions

Figure 2: Pairwise word interaction modeling. Sen-
tences are encoded by weight-shared Bi-LSTMs.
We construct pairwise word interactions for context
comparisons across sentences.

Algorithm 1 Pairwise Word Interaction Modeling
1: Initialize: simCube ∈ R13·|sent1|·|sent2| to all 1
2: for each time step t = 1...|sent1| do
3: for each time step s = 1...|sent2| do
4: hfor1t , h

back
1t = unpack(hbi1t)

5: hfor2s , h
back
2s = unpack(hbi2s)

6: hadd1t = hfor1t + hback1t

7: hadd2s = hfor2s + hback2s

8: simCube[1 : 3][t][s] = coU (hbi1t, h
bi
2s)

9: simCube[4 : 6][t][s] = coU (hfor1t , h
for
2s )

10: simCube[7 : 9][t][s] = coU (hback1t , hback2s )
11: simCube[10 : 12][t][s] = coU (hadd1t , h

add
2s )

12: end for
13: end for
14: return simCube

backward state hbackat . Algorithm 1 proceeds as fol-
lows: it enumerates all word pairs (s, t) across both
sentences, then perform comparisons using the coU
unit four times over: 1) Bi-LSTMs hidden states hbi1t
and hbi2s; 2) forward hidden states hfor1t and hfor2s ;
3) backward hidden states hback1t and hback2s ; and 4)
the addition of forward and backward hidden states
hadd1t and hadd2s . The output of Algorithm 1 is a
similarity cube simCubewith sizeR13·|sent1|·|sent2|,
where |sent∗| is the number of words in the sentence
sent∗. The 13 values collected from each word pair
(s, t) are: the 12 similarity distances, plus one extra
dimension for the padding indicator. Note that all
word interactions are modeled over word contexts
in Algorithm 1, rather than individual words.

Our pairwise word interaction model shares sim-
ilarities with recent popular neural attention mod-
els (Bahdanau et al., 2014; Rush et al., 2015). How-
ever, there are important differences: For example,
we do not use attention weight vectors or weighted
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Figure 3: The similarity focus layer helps identify
important pairwise word interactions (in black dots)
depending on their importance for similarity mea-
surement.

representations, which are the core of attention mod-
els. The other difference is that attention weights
are typically interpreted as soft degrees with which
the model attends to particular words; in contrast,
our word interaction model directly utilizes multiple
similarity metrics, and thus is more explicit.

6 Similarity Focus Layer

Since not all words are created equal, important
pairwise word interactions between the sentences
(Sec. 5) that can better contribute to the similarity
measurement deserve more model focus. We there-
fore develop a similarity focus layer which can iden-
tify important word interactions and increase their
model weights correspondingly. This similarity fo-
cus layer is directly incorporated into our end-to-end
model and is placed on top of the pairwise word in-
teraction model, as in Figure 1.

Figure 3 shows one example where each cell of
the matrix represents a pairwise word interaction.
The similarity focus layer introduces re-weightings
to word interactions depending on their importance
for similarity measurement. The ones tagged with
black dots are considered important, and are given
higher weights than those without.

Algorithm 2 shows the forward pass of the sim-
ilarity focus layer. Its input is the similarity cube
simCube (Section 5). Algorithm 2 is designed
to incorporate two different aspects of similarity
based on cosine (angular) and L2 (magnitude) sim-
ilarity, thus it has two symmetric components: the
first one is based on cosine similarity (Line 5 to
Line 13); and the second one is based on L2 sim-
ilarity (Line 15 to Line 23). We also aim for the goal
that similarity values of all found important word in-
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Algorithm 2 Forward Pass: Similarity Focus Layer
1: Input: simCube ∈ R13·|sent1|·|sent2|

2: Initialize: mask ∈ R13·|sent1|·|sent2| to all 0.1
3: Initialize: s1tag ∈ R|sent1| to all zeros
4: Initialize: s2tag ∈ R|sent2| to all zeros
5: sortIndex1 = sort(simCube[10])
6: for each id = 1...|sent1|+ |sent2| do
7: poss1, poss2 = calcPos(id, sortIndex1)
8: if s1tag[poss1] + s2tag[poss2] == 0 then
9: s1tag[poss1] = 1

10: s2tag[poss2] = 1
11: mask[:][poss1][poss2] = 1
12: end if
13: end for
14: Re-Initialize: s1tag, s2tag to all zeros
15: sortIndex2 = sort(simCube[11])
16: for each id = 1...|sent1|+ |sent2| do
17: poss1, poss2 = calcPos(id, sortIndex2)
18: if s1tag[poss1] + s2tag[poss2] == 0 then
19: s1tag[poss1] = 1
20: s2tag[poss2] = 1
21: mask[:][poss1][poss2] = 1
22: end if
23: end for
24: mask[13][:][:] = 1
25: focusCube = mask · simCube
26: return focusCube ∈ R13·|sent1|·|sent2|

teractions should be maximized. To achieve this, we
sort the similarity values in descending order (Line 5
for cosine, Line 15 for L2). Note channels 10 and
11 of the simCube contain cosine and L2 values,
respectively; the padding indicator is in Line 24.

We start with the cosine part first, then L2. For
each, we check word interaction candidates mov-
ing down the sorted list. Function calcPos is used
to calculate relative sentence positions poss∗ in the
simCube given one interaction pair. We follow the
constraint that no word in both sentences should be
tagged to be important more than once. We in-
crease weights of important word interactions to 1
(in Line 11 based on cosine and Line 21 based on
L2), while unimportant word interactions receive
weights of 0.1 (in Line 2).

We use a mask matrix, mask, to hold the weights
of each. The final output of the similarity focus layer
is a focus-weighted similarity cube focusCube,
which is the element-wise multiplication (Line 25)
of the matrix mask and the input simCube.

The similarity focus layer is based on the follow-

ing intuition: given each word in one sentence, we
look for its semantically similar twin in the other
sentence; if found then this word is considered im-
portant, otherwise it contributes to a semantic dif-
ference. Though technically different, this process
shares conceptual similarity with finding translation
equivalences in statistical machine translation (Al-
onaizan et al., 1999).

The backward pass of the similarity focus layer is
straightforward: we reuse themask matrix as gener-
ated in the forward pass and apply the element-wise
multiplication of mask and inflow gradients, then
propagate the resulting gradients backward.

7 Similarity Classification with Deep
Convolutional Neural Networks

The focusCube contains focus-weighted fine-
grained similarity information. In the final model
component we use the focusCube to compute the
final similarity score. If we treat the focusCube as
an “image” with 13 channels, then semantic simi-
larity measurement can be converted into a pattern
recognition (image processing) problem, where we
are looking for patterns of strong pairwise word in-
teractions in the “image”. The stronger the overall
pairwise word interactions are, the higher similarity
the sentence pair will have.

Recent advances from successful systems at
ImageNet competitions (Simonyan and Zisserman,
2014; Szegedy et al., 2015) show that the depth of a
neural network is a critical component for achieving
competitive performance. We therefore use a deep
homogeneous architecture which has repetitive con-
volution and pooling layers.

Our network architecture (Table 1) is composed
of spatial max pooling layers, spatial convolutional
layers (Conv) with a small filter size of 3 × 3 plus
stride 1 and padding 1. We adopt this filter size
because it is the smallest one to capture the space
of left/right, up/down, and center; the padding and
stride is used to preserve the spatial input resolution.
We then use fully-connected layers followed by the
final softmax layer for the output. After each spatial
convolutional layer, a rectified linear units (ReLU)
non-linearity layer (Krizhevsky et al., 2012) is used.

The input to this deep ConvNet is the focusCube,
which does not always have the same size because
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Deep ConvNet Configurations
Input Size: 32 by 32 Input Size: 48 by 48

Spatial Conv 128: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: size 2× 2, stride 2
Spatial Conv 164: size 3× 3, stride 1, pad 1

ReLU
Max Pooling: size 2× 2, stride 2

Spatial Conv 192: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: size 2× 2, stride 2
Spatial Conv 192: size 3× 3, stride 1, pad 1

ReLU
Max Pooling: size 2× 2, stride 2

Spatial Conv 128: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: 2× 2, s2 Max Pooling: 3× 3, s1
Fully-Connected Layer

ReLU
Fully-Connected Layer

LogSoftMax

Table 1: Deep ConvNet architecture given two
padding size configurations for final classification.

the lengths of input sentences vary. To address this,
we use zero padding. For computational reasons we
provide two configurations in Table 1, for length
padding up to either 32 × 32 or 48 × 48. The
only difference between the two configurations is
the last pooling layer. If sentences are longer than
the padding length limit we only use the number of
words up to the limit. In our experiments we found
the 48×48 padding limit to be acceptable since most
sentences in our datasets are only 1−30 words long.

8 Experimental Setup

Datasets. We conducted five separate experiments
on ten different datasets: three recent SemEval com-
petitions and two answer selection tasks. Note that
the answer selection task, which is to rank candi-
date answer sentences based on their similarity to
the questions, is essentially the similarity measure-
ment problem. The five experiments are as follows:

1. Sentences Involving Compositional Knowledge
(SICK) is from Task 1 of the 2014 SemEval com-
petition (Marelli et al., 2014) and consists of
9,927 annotated sentence pairs, with 4,500 for
training, 500 as a development set, and 4,927 for

STS2014 Domain Pairs
deft-forum discussion forums 450
deft-news news articles 300
headlines news headlines 750
images image descriptions 750
OnWN word sense definitions 750
tweet-news social media 750
Total 3,750

Table 2: Description of STS2014 test sets.

testing. Each pair has a relatedness score ∈ [1, 5]
which increases with similarity.

2. Microsoft Video Paraphrase Corpus (MSRVID)
is from Task 6 of the 2012 SemEval competi-
tion (Agirre et al., 2012) and consists of 1,500 an-
notated pairs of video descriptions, with half for
training and the other half for testing. Each sen-
tence pair has a relatedness score ∈ [0, 5] which
increases with similarity.

3. Task 10 of the 2014 SemEval competition on Se-
mantic Textual Similarity (STS2014) (Agirre et
al., 2014) provided six different test sets from dif-
ferent domains. Each pair has a similarity score
∈ [0, 5] which increases with similarity. Follow-
ing the competition rules, our training data is only
drawn from previous STS competitions in 2012
and 2013. We excluded training sentences with
lengths longer than the 48 word padding limit,
resulting in 7,382 training pairs out of a total of
7,592. Table 2 provides a brief description of the
test sets.

4. The open domain question-answering WikiQA
data is from Bing query logs by Yang et al.
(2015). We followed the same pre-processing
steps as Yang et al. (2015), where questions with
no correct candidate answer sentences are ex-
cluded and answer sentences are truncated to 40
tokens. The resulting dataset consists of 873
questions with 8,672 question-answer pairs in the
training set, 126 questions with 1,130 pairs in the
development set, and 243 questions with 2,351
pairs in the test set.

5. The TrecQA dataset (Wang et al., 2007) from
the Text Retrieval Conferences has been widely
used for the answer selection task during the past
decade. To enable direct comparison with pre-
vious work, we used the same training, develop-
ment, and test sets as released by Yao et al. (2013).
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The TrecQA data consists of 1,229 questions with
53,417 question-answer pairs in the TRAIN-ALL
training set, 82 questions with 1,148 pairs in the
development set, and 100 questions with 1,517
pairs in the test set.

Training. For experiments on SICK, MSRVID, and
STS2014, the training objective is to minimize the
KL-divergence loss:

loss(θ) =
1
n

n∑
k=1

KL
(
fk || f̂kθ

)
(11)

where f is the ground truth, f̂θ is the predicted dis-
tribution with model weights θ, and n is the number
of training examples.

We used a hinge loss for the answer selection task
on WikiQA and TrecQA data. The training objec-
tive is to minimize the following loss, summed over
examples 〈x, ygold 〉:

loss(θ, x, ygold ) =∑
y′ 6=ygold

max(0, 1 + fθ(x, y′)− fθ(x, ygold )) (12)

where ygold is the ground truth label, input x is the
pair of sentences x = {S1, S2}, θ is the model
weight vector, and the function fθ(x, y′) is the out-
put of our model.

In all cases, we performed optimization using
RMSProp (Tieleman and Hinton, 2012) with back-
propagation (Bottou, 1998), with a learning rate
fixed to 10−4.
Settings. For the SICK and MSRVID experi-
ments, we used 300-dimension GloVe word embed-
dings (Pennington et al., 2014). For the STS2014,
WikiQA, and TrecQA experiments, we used 300-
dimension PARAGRAM-SL999 embeddings from
Wieting et al. (2015) and the PARAGRAM-PHRASE

embeddings from Wieting et al. (2016), trained
on word pairs from the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013). We did not up-
date word embeddings in all experiments.

We used the SICK development set for tuning and
then applied exactly the same hyperparameters to all
ten test sets. For the answer selection task (Wiki-
QA and TrecQA), we used the official trec eval
scorer to compute the metrics Mean Average Preci-
sion (MAP) and Mean Reciprocal Rank (MRR) and

Model r ρ MSE
Socher et al. (2014) DTRNN 0.7863 0.7305 0.3983
Socher et al. (2014) SDTRNN 0.7886 0.7280 0.3859
Lai and Hockenmaier (2014) 0.7993 0.7538 0.3692
Jimenez et al. (2014) 0.8070 0.7489 0.3550
Bjerva et al. (2014) 0.8268 0.7721 0.3224
Zhao et al. (2014) 0.8414 - -
LSTM 0.8477 0.7921 0.2949
Bi-LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bi-LSTM 0.8488 0.7926 0.2893
Tai et al. (2015) Const. LSTM 0.8491 0.7873 0.2852
Tai et al. (2015) Dep. LSTM 0.8676 0.8083 0.2532
He et al. (2015) 0.8686 0.8047 0.2606
This work 0.8784 0.8199 0.2329

Table 3: Test results on SICK grouped as: (1) RNN
variants; (2) SemEval 2014 systems; (3) Sequential
LSTM variants; (4) Dependency and constituency
tree LSTMs. Evaluation metrics are Pearson’s r,
Spearman’s ρ, and mean squared error (MSE). Rows
in grey are neural network models.

selected the best development model based on MRR
for final testing. Our timing experiments were con-
ducted on an Intel Xeon E5-2680 CPU.

Due to sentence length variations, for the SICK
and MSRVID data we padded the sentences to 32
words; for the STS2014, WikiQA, and TrecQA data,
we padded the sentences to 48 words.

9 Results

SICK Results (Table 3). Our model outperforms
previous neural network models, most of which
are based on sentence modeling. The ConvNet
work (He et al., 2015) and TreeLSTM work (Tai et
al., 2015) achieve comparable accuracy; for exam-
ple, their difference in Pearson’s r is only 0.1%. In
comparison, our model outperforms both by 1% in
Pearson’s r, over 1.1% in Spearman’s ρ, and 2-3%
in MSE. Note that we used the same word embed-
dings, sparse distribution targets, and loss function
as in He et al. (2015) and Tai et al. (2015), thereby
representing comparable experimental conditions.

MSRVID Results (Table 4). Our model outper-
forms the work of He et al. (2015), which already
reports a Pearson’s r score of over 0.9,

STS2014 Results (Table 5). Systems in the com-
petition are ranked by the weighted mean (the of-
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Model Pearson’s r
Beltagy et al. (2014) 0.8300
Bär et al. (2012) 0.8730
Šarić et al. (2012) 0.8803
He et al. (2015) 0.9090
This work 0.9112

Table 4: Test results on MSRVID data.

STS2014 3rd 2nd 1st This work
deft-forum 0.5305 0.4711 0.4828 0.5684
deft-news 0.7813 0.7628 0.7657 0.7079
headlines 0.7837 0.7597 0.7646 0.7551
image 0.8343 0.8013 0.8214 0.8221
OnWN 0.8502 0.8745 0.8589 0.8847
tweetnews 0.6755 0.7793 0.7639 0.7469
Wt. Mean 0.7549 0.7605 0.7610 0.7666

Table 5: Test results on all six test sets in STS2014.
We show results of the top three participating sys-
tems at the competition in Pearson’s r scores.

ficial measure) of Pearson’s r scores calculated
based on the number of sentence pairs in each test
set. We show the 1st ranked (Sultan et al., 2014),
2nd (Kashyap et al., 2014), 3rd (Lynum et al., 2014)
systems in the STS2014 competition, all of which
are based on heavy feature engineering. Our model
does not use any sparse features, WordNet, or parse
trees, but still performs favorably compared to the
STS2014 winning system (Sultan et al., 2014).

WikiQA Results (Table 6). We compared our
model to competitive baselines prepared by Yang
et al. (2015) and also evaluated He et al. (2015)’s
multi-perspective ConvNet on the same data. The
neural network models in the table, paragraph vec-
tor (PV) (Le and Mikolov, 2014), CNN (Yu et al.,
2014), and PV-Cnt/CNN-Cnt with word matching
features (Yang et al., 2015), are mostly based on sen-
tence modeling. Our model outperforms them all.

TrecQA Results (Table 7). This is the largest
dataset in our experiments, with over 55,000
question-answer pairs. Only recently have neural
network approaches (Yu et al., 2014) started to show
promising results on this decade-old dataset. Pre-
vious approaches with probabilistic tree-edit tech-
niques or tree kernels (Wang and Manning, 2010;
Heilman and Smith, 2010; Yao et al., 2013) have
been successful since tree structure information per-

Model MAP MRR
Word Cnt (Yang et al., 2015) 0.4891 0.4924
Wgt Word Cnt (Yang et al., 2015) 0.5099 0.5132
PV (Le and Mikolov, 2014) 0.5110 0.5160
PV-Cnt (Yang et al., 2015) 0.5976 0.6058
LCLR (Yih et al., 2013) 0.5993 0.6086
CNN (Yu et al., 2014) 0.6190 0.6281
CNN-Cnt (Yang et al., 2015) 0.6520 0.6652
He et al. (2015) 0.6930 0.7090
This work 0.7090 0.7234

Table 6: Test results on WikiQA data.

Model MAP MRR
Cui et al. (2005) 0.4271 0.5259
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) 0.7092 0.7700
Wang and Nyberg (2015) 0.7134 0.7913
Severyn and Moschitti (2015) 0.7459 0.8078
This work 0.7588 0.8219

Table 7: Test results on TrecQA data.

mits a fine-grained focus on important words for
similarity comparison purposes. Our approach es-
sentially follows this intuition, but in a neural net-
work setting with the use of our similarity focus
layer. Our model outperforms previous work.

10 Analysis

Ablation Studies. Table 8 shows the results of abla-
tion studies on SICK and WikiQA data. We removed
or replaced one component at a time from the full
system and performed re-training and re-testing. We
found large drops when removing the context mod-
eling component, indicating that the context infor-
mation provided by the Bi-LSTMs is crucial for the
following components (e.g., interaction modeling).
The use of our similarity focus layer is also ben-
eficial, especially on the WikiQA data. When we
replaced the entire similarity focus layer with a ran-
dom dropout layer (p = 0.3), the dropout layer hurts
accuracy; this shows the importance of directing the
model to focus on important pairwise word interac-
tions, to better capture similarity.

Model Efficiency and Storage. He et al. (2015)’s
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Ablation on SICK Data Pearson
Full Model 0.8784
- Remove context modeling (Sec. 4) -0.1225
- Remove entire focus layer (Sec. 6) -0.0083
- Replace entire focus layer with dropout -0.0314
Ablation on WikiQA Data MRR
Full Model 0.7234
- Remove context modeling (Sec. 4) -0.0990
- Remove entire focus layer (Sec. 6) -0.0327
- Replace entire focus layer with dropout -0.0403

Table 8: Ablation studies on SICK and WikiQA
data, removing each component separately.

Model # of Parameters Timing (s)
He et al. (2015) 10.0 million 2265
This work 1.7 million 664

Table 9: Comparison of training efficiency and num-
ber of tunable model parameters on SICK data. Tim-
ing is the average epoch time in seconds for training
on a single CPU thread.

ConvNet model uses multiple types of convolution
and pooling for sentence modeling. This results in a
wide architecture with around 10 million tunable pa-
rameters. Our approach only models pairwise word
interactions and does not require such a complicated
architecture. Compared to that previous work, Ta-
ble 9 shows that our model is 3.4× faster in training
and has 83% fewer tunable parameters.

Visualization. Table 10 visualizes the cosine value
channel of the focusCube for pairwise word inter-
actions given two sentence pairs in the SICK test set.
Note for easier visualization, the values are multi-
plied by 10. Darker red areas indicate stronger pair-
wise word interactions. From these visualizations,
we see that our model is able to identify important
word pairs (in dark red) and tag them with proper
similarity values, which are significantly higher than
the ones of their neighboring unimportant pairs.
This shows that our model is able to recognize im-
portant fine-grained word-level information for bet-
ter similarity measurement, suggesting the reason
why our model performs well.

11 Conclusion

In summary, we developed a novel neural net-
work model based on a hybrid of ConvNet and Bi-

A man is playing the drum
A 8.99 0.69 0.43 0.32 0.38 0.22
man 0.70 9.93 0.62 0.45 0.46 0.38
is 0.64 0.80 8.50 0.62 0.58 0.36
practicing 0.46 0.67 0.66 6.51 0.62 0.48
the 0.35 0.56 0.66 0.64 7.85 0.52
drum 0.27 0.47 0.46 0.55 0.64 8.82

A man is carrying a tree
A 0.53 0.33 0.32 0.33 5.53 0.49
tree 0.32 0.30 0.19 0.20 0.38 8.73
is 0.35 0.31 0.21 0.06 0.03 0.40
being 0.28 0.37 2.60 0.18 0.13 0.38
picked 0.15 0.18 0.10 1.60 0.07 0.27
up 0.26 0.27 0.06 0.13 0.05 0.21
by 0.43 0.36 0.08 1.33 0.15 0.29
a 6.50 0.45 0.03 0.08 0.16 0.23
man 0.50 8.60 0.45 0.34 0.34 0.34

Table 10: Visualization of cosine values (multiplied
by 10) in the focusCube given two sentence pairs
in the SICK test set.

LSTMs for the semantic textual similarity measure-
ment problem. Our pairwise word interaction model
and the similarity focus layer can better capture fine-
grained semantic information, compared to previ-
ous sentence modeling approaches that attempt to
“cram” all sentence information into a fixed-length
vector. We demonstrated the state-of-the-art accu-
racy of our approach on data from three SemEval
competitions and two answer selection tasks.
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