
Proceedings of NAACL-HLT 2016, pages 681–691,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Visualizing and Understanding Neural Models in NLP

Jiwei Li1, Xinlei Chen2, Eduard Hovy2 and Dan Jurafsky1

1Computer Science Department, Stanford University, Stanford, CA 94305, USA
2Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{jiweil,jurafsky}@stanford.edu {xinleic,ehovy}@andrew.cmu.edu

Abstract

While neural networks have been successfully
applied to many NLP tasks the resulting vector-
based models are very difficult to interpret.
For example it’s not clear how they achieve
compositionality, building sentence meaning
from the meanings of words and phrases. In
this paper we describe strategies for visual-
izing compositionality in neural models for
NLP, inspired by similar work in computer
vision. We first plot unit values to visualize
compositionality of negation, intensification,
and concessive clauses, allowing us to see well-
known markedness asymmetries in negation.
We then introduce methods for visualizing a
unit’s salience, the amount that it contributes
to the final composed meaning from first-order
derivatives. Our general-purpose methods may
have wide applications for understanding com-
positionality and other semantic properties of
deep networks.

1 Introduction

Neural models match or outperform the performance
of other state-of-the-art systems on a variety of NLP
tasks. Yet unlike traditional feature-based classifiers
that assign and optimize weights to varieties of hu-
man interpretable features (parts-of-speech, named
entities, word shapes, syntactic parse features etc) the
behavior of deep learning models is much less easily
interpreted. Deep learning models mainly operate
on word embeddings (low-dimensional, continuous,
real-valued vectors) through multi-layer neural ar-
chitectures, each layer of which is characterized as
an array of hidden neuron units. It is unclear how

deep learning models deal with composition, imple-
menting functions like negation or intensification, or
combining meaning from different parts of the sen-
tence, filtering away the informational chaff from the
wheat, to build sentence meaning.

In this paper, we explore multiple strategies to in-
terpret meaning composition in neural models. We
employ traditional methods like representation plot-
ting, and introduce simple strategies for measur-
ing how much a neural unit contributes to meaning
composition, its ‘salience’ or importance using first
derivatives.

Visualization techniques/models represented in
this work shed important light on how neural mod-
els work: For example, we illustrate that LSTM’s
success is due to its ability in maintaining a much
sharper focus on the important key words than other
models; Composition in multiple clauses works com-
petitively, and that the models are able to capture neg-
ative asymmetry, an important property of semantic
compositionally in natural language understanding;
there is sharp dimensional locality, with certain di-
mensions marking negation and quantification in a
manner that was surprisingly localist. Though our
attempts only touch superficial points in neural mod-
els, and each method has its pros and cons, together
they may offer some insights into the behaviors of
neural models in language based tasks, marking one
initial step toward understanding how they achieve
meaning composition in natural language processing.

The next section describes some visualization mod-
els in vision and NLP that have inspired this work.
We describe datasets and the adopted neural mod-
els in Section 3. Different visualization strategies
and correspondent analytical results are presented

681

separately in Section 4,5,6, followed by a brief con-
clusion.

2 A Brief Review of Neural Visualization

Similarity is commonly visualized graphically, gen-
erally by projecting the embedding space into two
dimensions and observing that similar words tend
to be clustered together (e.g., Elman (1989), Ji and
Eisenstein (2014), Faruqui and Dyer (2014)). (Karpa-
thy et al., 2015) attempts to interpret recurrent neural
models from a statical point of view and does deeply
touch compositionally of meanings. Other relevant
attempts include (Fyshe et al., 2015; Faruqui et al.,
2015).

Methods for interpreting and visualizing neural
models have been much more significantly explored
in vision, especially for Convolutional Neural Net-
works (CNNs or ConvNets) (Krizhevsky et al., 2012),
multi-layer neural networks in which the original ma-
trix of image pixels is convolved and pooled as it is
passed on to hidden layers. ConvNet visualizing tech-
niques consist mainly in mapping the different layers
of the network (or other features like SIFT (Lowe,
2004) and HOG (Dalal and Triggs, 2005)) back to
the initial image input, thus capturing the human-
interpretable information they represent in the input,
and how units in these layers contribute to any final
decisions (Simonyan et al., 2013; Mahendran and
Vedaldi, 2014; Nguyen et al., 2014; Szegedy et al.,
2013; Girshick et al., 2014; Zeiler and Fergus, 2014).
Such methods include:

(1) Inversion: Inverting the representations by
training an additional model to project outputs from
different neural levels back to the initial input images
(Mahendran and Vedaldi, 2014; Vondrick et al., 2013;
Weinzaepfel et al., 2011). The intuition behind re-
construction is that the pixels that are reconstructable
from the current representations are the content of the
representation. The inverting algorithms allow the
current representation to align with corresponding
parts of the original images.

(2) Back-propagation (Erhan et al., 2009; Si-
monyan et al., 2013) and Deconvolutional Networks
(Zeiler and Fergus, 2014): Errors are back propa-
gated from output layers to each intermediate layer
and finally to the original image inputs. Deconvolu-
tional Networks work in a similar way by projecting
outputs back to initial inputs layer by layer, each layer

associated with one supervised model for projecting
upper ones to lower ones These strategies make it
possible to spot active regions or ones that contribute
the most to the final classification decision.

(3) Generation: This group of work generates im-
ages in a specific class from a sketch guided by al-
ready trained neural models (Szegedy et al., 2013;
Nguyen et al., 2014). Models begin with an image
whose pixels are randomly initialized and mutated
at each step. The specific layers that are activated
at different stages of image construction can help in
interpretation.

While the above strategies inspire the work we
present in this paper, there are fundamental differ-
ences between vision and NLP. In NLP words func-
tion as basic units, and hence (word) vectors rather
than single pixels are the basic units. Sequences of
words (e.g., phrases and sentences) are also presented
in a more structured way than arrangements of pixels.
In parallel to our research, independent researches
(Karpathy et al., 2015) have been conducted to ex-
plore similar direction from an error-analysis point of
view, by analyzing predictions and errors from a re-
current neural models. Other distantly relevant works
include: Murphy et al. (2012; Fyshe et al. (2015) used
an manual task to quantify the interpretability of se-
mantic dimensions by presetting human users with a
list of words and ask them to choose the one that does
not belong to the list. Faruqui et al. (2015). Similar
strategy is adopted in (Faruqui et al., 2015) by ex-
tracting top-ranked words in each vector dimension.

3 Datasets and Neural Models

We explored two datasets on which neural models
are trained, one of which is of relatively small scale
and the other of large scale.

3.1 Stanford Sentiment Treebank

Stanford Sentiment Treebank is a benchmark dataset
widely used for neural model evaluations. The
dataset contains gold-standard sentiment labels for
every parse tree constituent, from sentences to
phrases to individual words, for 215,154 phrases in
11,855 sentences. The task is to perform both fine-
grained (very positive, positive, neutral, negative and
very negative) and coarse-grained (positive vs neg-
ative) classification at both the phrase and sentence
level. For more details about the dataset, please refer

682

to Socher et al. (2013).
While many studies on this dataset use recursive

parse-tree models, in this work we employ only stan-
dard sequence models (RNNs and LSTMs) since
these are the most widely used current neural models,
and sequential visualization is more straightforward.
We therefore first transform each parse tree node to
a sequence of tokens. The sequence is first mapped
to a phrase/sentence representation and fed into a
softmax classifier. Phrase/sentence representations
are built with the following three models: Standard
Recurrent Sequence with TANH activation functions,
LSTMs and Bidirectional LSTMs. For details about
the three models, please refer to Appendix.

Training AdaGrad with mini-batch was used for
training, with parameters (L2 penalty, learning rate,
mini batch size) tuned on the development set. The
number of iterations is treated as a variable to tune
and parameters are harvested based on the best per-
formance on the dev set. The number of dimensions
for the word and hidden layer are set to 60 with 0.1
dropout rate. Parameters are tuned on the dev set.
The standard recurrent model achieves 0.429 (fine
grained) and 0.850 (coarse grained) accuracy at the
sentence level; LSTM achieves 0.469 and 0.870, and
Bidirectional LSTM 0.488 and 0.878, respectively.

3.2 Sequence-to-Sequence Models

SEQ2SEQ are neural models aiming at generating
a sequence of output texts given inputs. Theoreti-
cally, SEQ2SEQ models can be adapted to NLP tasks
that can be formalized as predicting outputs given in-
puts and serve for different purposes due to different
inputs and outputs, e.g., machine translation where
inputs correspond to source sentences and outputs to
target sentences (Sutskever et al., 2014; Luong et al.,
2014); conversational response generation if inputs
correspond to messages and outputs correspond to
responses (Vinyals and Le, 2015; Li et al., 2015).
SEQ2SEQ need to be trained on massive amount of
data for implicitly semantic and syntactic relations
between pairs to be learned.

SEQ2SEQ models map an input sequence to a vec-
tor representation using LSTM models and then se-
quentially predicts tokens based on the pre-obtained
representation. The model defines a distribution over
outputs (Y) and sequentially predicts tokens given

inputs (X) using a softmax function.

P (Y |X) =
ny∏
t=1

p(yt|x1, x2, ..., xt, y1, y2, ..., yt−1)

=
ny∏
t=1

exp(f(ht−1, eyt))∑
y′ exp(f(ht−1, ey′))

where f(ht−1, eyt) denotes the activation function be-
tween ht−1 and eyt , where ht−1 is the representation
output from the LSTM at time t− 1. For each time
step in word prediction, SEQ2SEQ models combine
the current token with previously built embeddings
for next-step word prediction.

For easy visualization purposes, we turn to the
most straightforward task—autoencoder— where in-
puts and outputs are identical. The goal of an autoen-
coder is to reconstruct inputs from the pre-obtained
representation. We would like to see how individual
input tokens affect the overall sentence representa-
tion and each of the tokens to predict in outputs. We
trained the auto-encoder on a subset of WMT’14 cor-
pus containing 4 million english sentences with an
average length of 22.5 words. We followed training
protocols described in (Sutskever et al., 2014).

4 Representation Plotting

We begin with simple plots of representations to shed
light on local compositions using Stanford Sentiment
Treebank.

Local Composition Figure 1 shows a 60d heat-
map vector for the representation of selected
words/phrases/sentences, with an emphasis on extent
modifications (adverbial and adjectival) and negation.
Embeddings for phrases or sentences are attained by
composing word representations from the pretrained
model.

The intensification part of Figure 1 shows sugges-
tive patterns where values for a few dimensions are
strengthened by modifiers like “a lot” (the red bar
in the first example) “so much” (the red bar in the
second example), and “incredibly”. Though the pat-
terns for negations are not as clear, there is still a
consistent reversal for some dimensions, visible as a
shift between blue and red for dimensions boxed on
the left.

We then visualize words and phrases using t-sne
(Van der Maaten and Hinton, 2008) in Figure 2, de-

683

Intensification

Negation

Figure 1: Visualizing intensification and negation. Each
vertical bar shows the value of one dimension in the final
sentence/phrase representation after compositions. Em-
beddings for phrases or sentences are attained by compos-
ing word representations from the pretrained model.

liberately adding in some random words for com-
parative purposes. As can be seen, neural models
nicely learn the properties of local compositionally,
clustering negation+positive words (‘not nice’, ’not
good’) together with negative words. Note also the
asymmetry of negation: “not bad” is clustered more
with the negative than the positive words (as shown
both in Figure 1 and 2). This asymmetry has been
widely discussed in linguistics, for example as aris-
ing from markedness, since ‘good’ is the unmarked
direction of the scale (0; Horn, 1989; Fraenkel and
Schul, 2008). This suggests that although the model
does seem to focus on certain units for negation in
Figure 1, the neural model is not just learning to ap-
ply a fixed transform for ‘not’ but is able to capture

the subtle differences in the composition of different
words.

Concessive Sentences In concessive sentences,
two clauses have opposite polarities, usually related
by a contrary-to-expectation implicature. We plot
evolving representations over time for two conces-
sives in Figure 3. The plots suggest:

1. For tasks like sentiment analysis whose goal is
to predict a specific semantic dimension (as opposed
to general tasks like language model word predic-
tion), too large a dimensionality leads to many dimen-
sions non-functional (with values close to 0), causing
two sentences of opposite sentiment to differ only in a
few dimensions. This may explain why more dimen-
sions don’t necessarily lead to better performance on
such tasks (For example, as reported in (Socher et al.,
2013), optimal performance is achieved when word
dimensionality is set to between 25 and 35).

2. Both sentences contain two clauses connected
by the conjunction “though”. Such two-clause sen-
tences might either work collaboratively— models
would remember the word “though” and make the
second clause share the same sentiment orientation
as first—or competitively, with the stronger one dom-
inating. The region within dotted line in Figure 3(a)
favors the second assumption: the difference between
the two sentences is diluted when the final words (“in-
teresting” and “boring”) appear.

Clause Composition In Figure 4 we explore this
clause composition in more detail. Representations
move closer to the negative sentiment region by
adding negative clauses like “although it had bad
acting” or “but it is too long” to the end of a simply
positive “I like the movie”. By contrast, adding a
concessive clause to a negative clause does not move
toward the positive; “I hate X but ...” is still very
negative, not that different than “I hate X”. This dif-
ference again suggests the model is able to capture
negative asymmetry (0; Horn, 1989; Fraenkel and
Schul, 2008).

5 First-Derivative Saliency

In this section, we describe another strategy which
is is inspired by the back-propagation strategy in
vision (Erhan et al., 2009; Simonyan et al., 2013). It
measures how much each input unit contributes to

684

Figure 2: t-SNE Visualization on latent representations for modifications and negations.

the final decision, which can be approximated by first
derivatives.

More formally, for a classification model, an input
E is associated with a gold-standard class label c.
(Depending on the NLP task, an input could be the
embedding for a word or a sequence of words, while
labels could be POS tags, sentiment labels, the next
word index to predict etc.) Given embeddings E for
input words with the associated gold class label c, the
trained model associates the pair (E, c) with a score
Sc(E). The goal is to decide which units of E make
the most significant contribution to Sc(e), and thus
the decision, the choice of class label c.

In the case of deep neural models, the class score
Sc(e) is a highly non-linear function. We approxi-
mate Sc(e) with a linear function of e by computing
the first-order Taylor expansion

Sc(e) ≈ w(e)T e+ b (1)

where w(e) is the derivative of Sc with respect to the
embedding e.

w(e) =
∂(Sc)
∂e

|e (2)

The magnitude (absolute value) of the derivative in-
dicates the sensitiveness of the final decision to the
change in one particular dimension, telling us how
much one specific dimension of the word embedding
contributes to the final decision. The saliency score
is given by

S(e) = |w(e)| (3)

5.1 Results on Stanford Sentiment Treebank

We first illustrate results on Stanford Treebank. We
plot in Figures 5, 6 and 7 the saliency scores (the
absolute value of the derivative of the loss function
with respect to each dimension of all word inputs) for
three sentences, applying the trained model to each
sentence. Each row corresponds to saliency score
for the correspondent word representation with each
grid representing each dimension. The examples are
based on the clear sentiment indicator “hate” that
lends them all negative sentiment.

“I hate the movie” All three models assign high
saliency to “hate” and dampen the influence of other
tokens. LSTM offers a clearer focus on “hate” than
the standard recurrent model, but the bi-directional
LSTM shows the clearest focus, attaching almost
zero emphasis on words other than “hate”. This is
presumably due to the gates structures in LSTMs and
Bi-LSTMs that controls information flow, making
these architectures better at filtering out less relevant
information.

“I hate the movie that I saw last night” All three
models assign the correct sentiment. The simple
recurrent models again do poorly at filtering out ir-
relevant information, assigning too much salience to
words unrelated to sentiment. However none of the
models suffer from the gradient vanishing problems
despite this sentence being longer; the salience of
“hate” still stands out after 7-8 following convolu-
tional operations.

685

Figure 3: Representations over time from LSTMs. Each
column corresponds to outputs from LSTM at each time-
step (representations obtained after combining current
word embedding with previous build embeddings). Each
grid from the column corresponds to each dimension of
current time-step representation. The last rows correspond
to absolute differences for each time step between two
sequences.

“I hate the movie though the plot is interesting”
The simple recurrent model emphasizes only the sec-
ond clause “the plot is interesting”, assigning no
credit to the first clause “I hate the movie”. This
might seem to be caused by a vanishing gradient, yet
the model correctly classifies the sentence as very
negative, suggesting that it is successfully incorpo-
rating information from the first negative clause. We
separately tested the individual clause “though the
plot is interesting”. The standard recurrent model
confidently labels it as positive. Thus despite the
lower saliency scores for words in the first clause,
the simple recurrent system manages to rely on that

clause and downplay the information from the latter
positive clause—despite the higher saliency scores
of the later words. This illustrates a limitation of
saliency visualization. first-order derivatives don’t
capture all the information we would like to visualize,
perhaps because they are only a rough approximate
to individual contributions and might not suffice to
deal with highly non-linear cases. By contrast, the
LSTM emphasizes the first clause, sharply dampen-
ing the influence from the second clause, while the
Bi-LSTM focuses on both “hate the movie” and “plot
is interesting”.

5.2 Results on Sequence-to-Sequence
Autoencoder

Figure 9 represents saliency heatmap for auto-
encoder in terms of predicting correspondent token
at each time step. We compute first-derivatives for
each preceding word through back-propagation as de-
coding goes on. Each grid corresponds to magnitude
of average saliency value for each 1000-dimensional
word vector. The heatmaps give clear overview about
the behavior of neural models during decoding. Ob-
servations can be summarized as follows:

1. For each time step of word prediction, SEQ2SEQ

models manage to link word to predict back to cor-
respondent region at the inputs (automatically learn
alignments), e.g., input region centering around to-
ken “hate” exerts more impact when token “hate” is
to be predicted, similar cases with tokens “movie”,
“plot” and “boring”.

2. Neural decoding combines the previously built
representation with the word predicted at the cur-
rent step. As decoding proceeds, the influence of
the initial input on decoding (i.e., tokens in source
sentences) gradually diminishes as more previously-
predicted words are encoded in the vector representa-
tions. Meanwhile, the influence of language model
gradually dominates: when word “boring” is to be
predicted, models attach more weight to earlier pre-
dicted tokens “plot” and “is” but less to correspon-
dent regions in the inputs, i.e., the word “boring” in
inputs.

6 Average and Variance

For settings where word embeddings are treated as
parameters to optimize from scratch (as opposed to
using pre-trained embeddings), we propose a second,

686

Figure 4: t-SNE Visualization for clause composition.

Figure 5: Saliency heatmap for for “I hate the movie .” Each row corresponds to saliency scores for the correspondent
word representation with each grid representing each dimension.

Figure 6: Saliency heatmap for “I hate the movie I saw last night .” .

surprisingly easy and direct way to visualize impor-
tant indicators. We first compute the average of the
word embeddings for all the words within the sen-
tences. The measure of salience or influence for a
word is its deviation from this average. The idea is
that during training, models would learn to render
indicators different from non-indicator words, en-

abling them to stand out even after many layers of
computation.

Figure 8 shows a map of variance; each grid cor-
responds to the value of ||ei,j − 1

NS

∑
i′∈NS

ei′j ||2
where ei,j denotes the value for j th dimension of
word i and N denotes the number of token within the
sentences.

687

Figure 7: Saliency heatmap for “I hate the movie though the plot is interesting .” .

Figure 8: Variance visualization.

As the figure shows, the variance-based salience
measure also does a good job of emphasizing the rel-
evant sentiment words. The model does have short-
comings: (1) it can only be used in to scenarios where
word embeddings are parameters to learn (2) it’s clear
how well the model is able to visualize local compo-
sitionality.

7 Conclusion

In this paper, we offer several methods to help vi-
sualize and interpret neural models, to understand
how neural models are able to compose meanings,

demonstrating asymmetries of negation and explain
some aspects of the strong performance of LSTMs at
these tasks.

Though our attempts only touch superficial points
in neural models, and each method has its pros and
cons, together they may offer some insights into the
behaviors of neural models in language based tasks,
marking one initial step toward understanding how
they achieve meaning composition in natural lan-
guage processing. Our future work includes using
results of the visualization be used to perform error
analysis, and understanding strengths limitations of

688

Figure 9: Saliency heatmap for SEQ2SEQ auto-encoder in
terms of predicting correspondent token at each time step.

different neural models.

8 Acknowledgement

The authors want to thank Sam Bowman, Percy
Liang, Will Monroe, Sida Wang, Chris Manning and
other members of the Stanford NLP group, as well
as anonymous reviewers for their helpful advice on
various aspects of this work. This work partially sup-
ported by NSF Award IIS-1514268. Jiwei Li is sup-
ported by Facebook fellowship, which we gratefully
acknowledge. Any opinions, findings, and conclu-

sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of NSF or Facebook.

References
Herbert H. Clark and Eve V. Clark. 1977. Psychology

and language: An introduction to psycholinguistics.
Harcourt Brace Jovanovich.

Navneet Dalal and Bill Triggs. 2005. Histograms of ori-
ented gradients for human detection. In Computer Vi-
sion and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 886–
893. IEEE.

Jeffrey L. Elman. 1989. Representation and structure in
connectionist models. Technical Report 8903, Center
for Research in Language, University of California, San
Diego.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. 2009. Visualizing higher-layer features
of a deep network. Dept. IRO, Université de Montréal,
Tech. Rep.

Manaal Faruqui and Chris Dyer. 2014. Improving vector
space word representations using multilingual correla-
tion. In Proceedings of EACL, volume 2014.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Tamar Fraenkel and Yaacov Schul. 2008. The meaning of
negated adjectives. Intercultural Pragmatics, 5(4):517–
540.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian Mur-
phy, and Tom M Mitchell. 2015. A compositional
and interpretable semantic space. Proceedings of the
NAACL-HLT, Denver, USA.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. 2014. Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 580–587. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Laurence R. Horn. 1989. A natural history of negation,
volume 960. University of Chicago Press Chicago.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation
learning for text-level discourse parsing. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics, volume 1, pages 13–24.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

689

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objective
function for neural conversation models. arXiv preprint
arXiv:1510.03055.

David G Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International journal of com-
puter vision, 60(2):91–110.

Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals,
and Wojciech Zaremba. 2014. Addressing the rare
word problem in neural machine translation. arXiv
preprint arXiv:1410.8206.

Aravindh Mahendran and Andrea Vedaldi. 2014. Under-
standing deep image representations by inverting them.
arXiv preprint arXiv:1412.0035.

Brian Murphy, Partha Pratim Talukdar, and Tom M
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embedding.
In COLING, pages 1933–1950.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2014. Deep
neural networks are easily fooled: High confidence
predictions for unrecognizable images. arXiv preprint
arXiv:1412.1897.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional
recurrent neural networks. Signal Processing, IEEE
Transactions on, 45(11):2673–2681.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of the conference on empirical methods in
natural language processing (EMNLP), volume 1631,
page 1642. Citeseer.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems,
pages 3104–3112.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-sne. Journal of Machine Learn-
ing Research, 9(2579-2605):85.

Oriol Vinyals and Quoc Le. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, and
Antonio Torralba. 2013. Hoggles: Visualizing object
detection features. In Computer Vision (ICCV), 2013
IEEE International Conference on, pages 1–8. IEEE.

Philippe Weinzaepfel, Hervé Jégou, and Patrick Pérez.
2011. Reconstructing an image from its local descrip-
tors. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 337–344.
IEEE.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and
understanding convolutional networks. In Computer
Vision–ECCV 2014, pages 818–833. Springer.

Appendix

Recurrent Models A recurrent network succes-
sively takes word wt at step t, combines its vector
representation et with previously built hidden vector
ht−1 from time t− 1, calculates the resulting current
embedding ht, and passes it to the next step. The
embedding ht for the current time t is thus:

ht = f(W · ht−1 + V · et) (4)

where W and V denote compositional matrices. If
Ns denote the length of the sequence, hNs represents
the whole sequence S. hNs is used as input a softmax
function for classification tasks.

Multi-layer Recurrent Models Multi-layer recur-
rent models extend one-layer recurrent structure by
operation on a deep neural architecture that enables
more expressivity and flexibly. The model associates
each time step for each layer with a hidden represen-
tation hl,t, where l ∈ [1, L] denotes the index of layer
and t denote the index of time step. hl,t is given by:

ht,l = f(W · ht−1,l + V · ht,l−1) (5)

where ht,0 = et, which is the original word embed-
ding input at current time step.

Long-short Term Memory LSTM model, first
proposed in (Hochreiter and Schmidhuber, 1997),
maps an input sequence to a fixed-sized vector by se-
quentially convoluting the current representation with
the output representation of the previous step. LSTM
associates each time epoch with an input, control and
memory gate, and tries to minimize the impact of
unrelated information. it, ft and ot denote to gate

690

states at time t. ht denotes the hidden vector out-
putted from LSTM model at time t and et denotes
the word embedding input at time t. We have

it = σ(Wi · et + Vi · ht−1)
ft = σ(Wf · et + Vf · ht−1)
ot = σ(Wo · et + Vo · ht−1)
lt = tanh(Wl · et + Vl · ht−1)
ct = ft · ct−1 + it × lt
ht = ot ·mt

(6)

where σ denotes the sigmoid function. it, ft and
ot are scalars within the range of [0,1]. × denotes
pairwise dot.

A multi-layer LSTM models works in the same
way as multi-layer recurrent models by enable multi-
layer’s compositions.

Bidirectional Models (Schuster and Paliwal,
1997) add bidirectionality to the recurrent framework
where embeddings for each time are calculated both
forwardly and backwardly:

h→t = f(W→ · h→t−1 + V→ · et)
h←t = f(W← · h←t+1 + V← · et)

(7)

Normally, bidirectional models feed the concatena-
tion vector calculated from both directions [e←1 , e→NS

]
to the classifier. Bidirectional models can be simi-
larly extended to both multi-layer neural model and
LSTM version.

691

