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Abstract

We introduce several probabilistic models for
learning the lexicon of a semantic parser. Lex-
icon learning is the first step of training a se-
mantic parser for a new application domain
and the quality of the learned lexicon signifi-
cantly affects both the accuracy and efficiency
of the final semantic parser. Existing work
on lexicon learning has focused on heuris-
tic methods that lack convergence guarantees
and require significant human input in the
form of lexicon templates or annotated logi-
cal forms. In contrast, our probabilistic mod-
els are trained directly from question/answer
pairs using EM and our simplest model has a
concave objective that guarantees convergence
to a global optimum. An experimental evalu-
ation on a set of 4th grade science questions
demonstrates that our models improve seman-
tic parser accuracy (35-70% error reduction)
and efficiency (4-25x more sentences per sec-
ond) relative to prior work despite using less
human input. Our models also obtain compet-
itive results on GEO880 without any dataset-
specific engineering.

1 Introduction

Semantic parsing has recently gained popularity as
a technique for mapping from natural language to a
formal meaning representation language, e.g., in or-
der to answer questions against a database (Zelle and
Mooney, 1993; Zettlemoyer and Collins, 2005). In
order to train a semantic parser, one must first pro-
vide a lexicon, which is a mapping from words in the
language to statements in the meaning representa-
tion language. This mapping defines the grammar of
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Lexicon Entries:
predator := N/NP : λf.λx.EATS(x, f)
bass := NP : BASS

Figure 1: Parse tree of a training example and the lexicon en-

tries derived from it.

the parser and thereby determines the set of meaning
representations that can be produced for any given
sentence. Therefore, a good lexicon is necessary to
achieve both high accuracy and parsing speed. How-
ever, the lexicon is unobserved in real semantic pars-
ing applications, leading us to ask: how do we learn
a lexicon for a semantic parser?

This paper presents several novel probabilistic
models for learning a semantic parser lexicon. Ex-
isting lexicon learning algorithms are heuristic in na-
ture and require either annotated logical forms or
manually-specified lexicon entry templates during
training. In contrast, our models do not require such
templates and can be trained from question/answer
pairs and other forms of weak supervision. Train-
ing consists of optimizing an objective function with
Expectation Maximization (EM), thereby guaran-
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teeing convergence to a local optimum. Further-
more, the objective function for our simplest model
is concave, guaranteeing convergence to a global
optimum. Our approach generates a probabilis-
tic context-free grammar that represents the space
of correct semantic parses for each question; once
trained, our approach derives lexicon entries from
the most likely parse of each question (Figure 1).

We present an experimental evaluation of our lex-
icon learning models on a data set of food chain
questions from a 4th grade science domain. These
questions concern relations between organisms in
an ecosystem and have challenging lexical diversity
and question length. Our models improve semantic
parser accuracy (35-70% error reduction) over prior
work despite using less human input. Furthermore,
our best model produces a lexicon that contains 40x
fewer entries than the most accurate baseline, result-
ing in a semantic parser that is 4x faster. Our models
also obtain competitive results on GEO880 without
any dataset-specific engineering.

2 Prior Work

Work on lexicon learning falls into two categories:
Pipelined approaches build a lexicon before

training the parser, either by manually defining it
(Lee et al., 2014; Angeli et al., 2012) or by us-
ing a collection of heuristics. The heuristics of-
ten take the form of lexicon templates, which are
rules that create lexicon entries by pattern-matching
training examples (Liang et al., 2011; Krishna-
murthy and Mitchell, 2012; Krishnamurthy and Kol-
lar, 2013). These approaches require new lexi-
con templates for each application. More complex
heuristic algorithms have been proposed based on
word alignments (Wong and Mooney, 2006; Wong
and Mooney, 2007) or common substructures in the
meaning representation (Chen and Mooney, 2011);
these algorithms all require annotated logical forms.

Joint approaches simultaneously learn a lexicon
and the parameters of a semantic parser. Typically,
these algorithms use lexicon templates to generate a
set of lexicon entries for each example, then heuristi-
cally select a subset of these entries to include in the
global lexicon while training the parser (Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007;
Artzi and Zettlemoyer, 2013b; Artzi et al., 2014).

UBL takes a different approach that performs top-
down, iterative splits of an annotated logical form
for each training example (Kwiatkowski et al., 2010;
Kwiatkowski et al., 2011). Artzi et al. (2015) com-
bine templates with top-down splitting. The heuris-
tic search performed by these algorithms can be dif-
ficult to control and we empirically found that these
algorithms often selected overly-specific lexicon en-
tries (see Section 4.4).

Other work has avoided the lexicon learning prob-
lem altogether by searching over all possible mean-
ing representations (Kate and Mooney, 2006; Clarke
et al., 2010; Goldwasser et al., 2011; Berant and
Liang, 2014; Pasupat and Liang, 2015; Reddy et
al., 2014). The challenge of this approach is that
the space of meaning representations for a sentence
can be very large, making parsing less efficient and
learning more difficult. A practical compromise is to
combine a (possibly minimal) lexicon with flexible
parsing operations (Liang et al., 2011; Zettlemoyer
and Collins, 2007; Poon, 2013; Parikh et al., 2015).

Our lexicon learning models are closely related to
machine translation word alignment models (Brown
et al., 1993) – our key insight is that lexicon learning
is equivalent to word alignment where the tokeniza-
tion of one of the sentences is unobserved. Thus, our
models simultaneously “tokenize” the logical form –
using a splitting process similar to UBL – and align
the resulting logical form “tokens” to words.

3 Probabilistic Models for Lexicon
Learning

This section describes our lexicon learning models.
For concreteness, we focus on learning a lexicon for
a Combinatory Categorial Grammar (CCG) seman-
tic parser with lambda calculus logical forms as the
meaning representation; however, our models are
applicable to other semantic parsing formalisms and
meaning representation languages.

Our models learn a CCG lexicon from a data set of
question/label pairs {(wi, Li)}ni=1. Each question is
a sequence of words, wi = [wi1, w

i
2, ...], and each la-

bel is a set of logical forms, Li = {`i1, ...}. Labeling
each question with a set of logical forms generalizes
many weak supervision settings, including ambigu-
ous supervision (Kate and Mooney, 2007) and ques-
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Training Example:
w = What is the predator of bass ?
L = {λx.EATS(x, BASS),

λx.CAUSE(INCREASE(BASS), INCREASE(x)),
...}

Generated Grammar:
Unary rules:
L � λx.EATS(x, BASS)
L � λx.CAUSE(INCREASE(BASS), INCREASE(x))

Nonterminal rules:
λx.EATS(x, BASS) � BASS λf.λx.EATS(x, f)
λx.EATS(x, BASS) � λf.λx.EATS(x, f) BASS
BASS � SKIP BASS
...

Terminal rules:
λx.EATS(x, BASS) � what
λx.EATS(x, BASS) � is
SKIP � what
...

Figure 2: Training example (top) and several of the rules in its

logical form derivation grammar (bottom).

tion/answer pairs (Liang et al., 2011).1 The output of
learning is a collection of lexicon entries w := C : `
mapping word w to syntactic category C and logical
form `.

Our models are generative models of questions
given a label, P (w|L). The key component of
each model is a probabilistic context-free grammar
(PCFG) over correct logical form derivations. A
parse tree in this grammar simultaneously represents
(1) the choice of a logical form ` ∈ L, (2) the way `
is constructed from smaller parts, and (3) the align-
ment between these parts and words in the question.
Training each model amounts to learning the rule
probabilities of this grammar, including which logi-
cal forms are likely to generate which words. Pars-
ing an example with the trained grammar produces
an alignment between words and logical forms that
is used to construct a lexicon.

3.1 Logical Form Derivation Grammar
The logical form derivation grammar is a PCFG con-
structed to represent the set of correct logical form
derivations – i.e., correct semantic parses – of each

1In the second case, the set L can be generated by enumer-
ating logical forms and evaluating each one to determine if it
produces the correct answer. See Section 5 for a discussion of
the benefits and limitations of this process.

training example. The grammar’s nonterminals are
logical forms and its binary production rules repre-
sent ways that pairs of logical forms can combine in
the semantic parser. The grammar’s terminals are
words and its terminal production rules represent
lexicon entries. The complete grammar is a union
of many smaller grammars, each of which is con-
structed to represent the logical form derivations of
a single example. Figure 2 shows a training exam-
ple and a portion of the grammar generated for it,
and Figure 1 shows a parse tree in the grammar.

Our algorithm for constructing the PCFG for a
training example (w, L) uses a top-down approach
that iteratively splits logical forms in L. Assume we
are given a procedure SPLIT(f) that outputs a list of
ways to split f into a pair of logical forms (g, h).
Grammar generation performs the following steps:

1. Model weak supervision. Add L to the gram-
mar as a nonterminal and add a unary rule
L � ` for all ` ∈ L.

2. Enumerate logical form splits. For all ` ∈ L,
perform a depth-first search over logical forms
starting at `. To explore a logical form f during
the search, use SPLIT(f) to produce a collec-
tion of g, h pairs. For each g, h pair, add the
binary rules f � g h and f � h g to the gram-
mar, then add g and h to the search queue for
later exploration.

3. Create lexicon entries. Add a terminal rule
f � w to G for every word in the question,
w ∈ w, and logical form f encountered during
the search above.

4. Allow word skipping. Add a special SKIP non-
terminal, along with the rules f � f SKIP,
f � SKIP f and SKIP � w for all logical forms
f and words w ∈ w.

The SPLIT procedure required above depends
on the meaning representation language, but is
application-independent. For our lambda calculus
representation, SPLIT(f) returns a list of logical
forms g, h such that f = g(h). We use similar
constraints as Kwiatkowski et al. (2011) to keep
the number of splits manageable. Note that SPLIT

could also include composition by returning g, h
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pairs such that f = λx.g(h(x)); however, we did
not explore this possibility in this paper.

An important property of this grammar is that it
excludes many logical form derivations that cannot
lead to the label. For example, the grammar in Fig-
ure 2 does not let us apply λx.EATS(x, BASS) to
BASS – even though this operation would be per-
mitted by CCG – because there is no way to reach
the label L from the result EATS(BASS, BASS). This
property reduces the number of possible parses of
a question relative to a CCG parser with the same
lexicon entries, making parsing more efficient.

The logical form derivation grammar G is con-
structed by applying the above process to every ex-
ample in the data set. Let P (t|L; θ) denote the prob-
ability of generating tree t from G given ROOT(t) =
L and parameters θ. This probability factors into a
product of production rule probabilities:

P (t|L; θ) =
∏

(f�g h)∈tP (f � g h; θ)×
∏

(f�w)∈t
P (f � w; θ)

In the above equation, P (f � g h; θ) and P (f �
w; θ) represent the conditional probability of select-
ing a production rule given the nonterminal f . We
use P (w, t|L; θ) to denote P (t|L; θ) where the ter-
minals of t are equal to the question w. In the fol-
lowing, sums over trees t are implicitly over all trees
permitted by G.

3.2 Independent Model
The independent model assumes that each word wj
of a question w is generated independently from a
parse tree t chosen uniformly at random given the
label L. This simple model allows two words in the
same question to be generated by different trees. The
probability of a question given a label is:

P (w|L; θ) =
|w|∏
j=1

∑
f

P (f � wj ; θ)#(f, j, L, |w|)

The final term #(f, j, L, |w|) is the fraction of
trees with root L and |w| terminals where the jth
terminal symbol is generated by nonterminal f . This

term appears due to the assumption that trees are
drawn uniformly at random. The parameters θ of
this model are the terminal production rule probabil-
ities, which are modeled as a conditional probability
table: P (f � w; θ) = θf,w where

∑
w θf,w = 1.

The independent model is a generalization of IBM
Model 1 (Brown et al., 1993) to the lexicon learning
problem, and – like IBM Model 1 – its loglikelihood
function is concave (see Appendix A). Therefore,
the EM algorithm will converge to a global optimum
of the data loglikelihood under this model.

3.3 Coupled Model
The coupled model generates the entire question w
from a single parse tree t that is generated given L.
This model removes the previous model’s naı̈ve as-
sumption that each word is generated independently.
The probability of a question given a label under this
model is:

P (w|L; θ) =
∑
t

P (w, t|L; θ)

Theoretically, we could learn both of the produc-
tion rule distributions that compose P (w, t|L; θ) in
this formulation. However, in practice, the large
number of nonterminals makes it challenging to
learn a conditional probability table for the binary
production rules. Therefore, we again assume the
trees are drawn uniformly at random and only learn
a conditional probability table for the terminal pro-
duction rules.

3.4 Coupled Loglinear Model
The coupled loglinear model replaces the con-
ditional probability tables of the coupled model
with loglinear models. Loglinear models can
share parameters across different – but intuitively
similar – production rules. For example, both
λx.EATS(x, BASS) and λx.EATS(x, FROG) should
have similar distributions over production rules
when BASS is appropriately replaced by FROG. We
can produce this effect with loglinear models by as-
signing similar feature vectors to these rules.

This model uses three locally-normalized loglin-
ear models to parameterize the distribution over pro-
duction rules. First, a rule model decides whether or
not to apply a terminal production rule. Next, given
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this model’s response, a second loglinear model de-
cides which of the chosen kind of rules to apply.
This approach ensures that each nonterminal sym-
bol has a proper conditional probability distribution
over rules. The production rule distributions are pa-
rameterized as:

P (f � w; θ) =
exp(θTr φr(f) + θTt φt(f, w))

ZrZt(f)

P (f � g h; θ) =
exp(θTnφn(f, g, h))

ZrZn(f)

In the above equation, the r, t and n subscripts
indicate terms of the rule, terminal and nontermi-
nal models, respectively. The Zr, Zt(f) and Zn(f)
terms denote the partition functions of each model,
and φr, φn and φt are functions mapping nontermi-
nals and production rules to feature vectors. We use
indicator features for logical form patterns, where
each pattern is produced by replacing all of a logi-
cal form’s subexpressions below a certain depth with
their types.

3.5 Training with Expectation Maximization

We train all three models by maximizing data log-
likelihood with EM (Dempster et al., 1977). Train-
ing the independent model is equivalent to training
a mixture of multinomials where each word of each
question has its own prior over cluster assignments.
Let θm represent the model parameters on the mth
training iteration. The E-step calculates expected
count of each terminal production rule:

Ef,w � ∑
i,j:wi

j=w

P (f � wij ; θ
m)#(f, j, Li, |wi|)

The term #(f, j, Li, |wi|) – representing the frac-
tion of trees where nonterminal f generates the jth
word of question i – can be calculated by parsing
each example once using the inside/outside algo-
rithm. The M-step re-estimates the terminal produc-
tion rule probabilities using these expected counts:

θm+1
f,w � Ef,w∑

w′ Ef,w′

Training the coupled models is a standard appli-
cation of EM to learning the parameters of a la-
tent probabilistic CFG. The E-step calculates the ex-
pected number of occurrences of each production
rule in each example:

Ef,g,h � ∑
i,t

#(f � g h, t)P (t|wi, Li; θm)

Ef,w � ∑
i,t

#(f � w, t)P (t|wi, Li; θm)

In the above equation, the function #(f � w; t)
returns the number of occurrences of f � w in t.
These expected counts can be computed efficiently
using the inside/outside algorithm.2 The M-step of
the coupled model is the same as that of the indepen-
dent model above. The M-step of the coupled log-
linear model solves an optimization problem to fit
the loglinear models to the computed expectations
(Berg-Kirkpatrick et al., 2010):

θm+1 � arg max
θ

∑
f,w

Ef,w logP (f � w; θ)+

∑
f,g,h

Ef,g,h logP (f � g h; θ)

This problem factors into three separate optimiza-
tion problems: a binary logistic regression for the
rule model, and estimating two conditional distri-
butions over nonterminal and terminal production
rules. We use L-BFGS to solve these problems.

3.6 Producing a Lexicon
Given parameters θ and a data set {(wi, Li)}ni=1, we
produce a CCG lexicon from the terminal produc-
tion rules of the most probable parse of each exam-
ple. First, we parse each question wi conditioning
on the parse tree root being Li. Second, we gen-
erate lexicon entries from the highest scoring parse
tree for each example. We identify the nonterminal
f that generates each word w ∈ w and, if f 6= SKIP,
create a lexicon entry w := C : f . As in previous
work, we derive the syntactic category C from the
semantic type of the logical form (Kwiatkowski et

2A further efficiency improvement is to note that, when pars-
ing an example, it is sufficient to use the subset of G that was
generated for it.
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w: Which organism in the diagram is eaten by the
blackbird?

`: λx.EATS(BLACKBIRD, x)
c: sun � grains � blackbird � hawk � falcon
a: grains

w: The is neither a producer or a consumer.
`: λx.NOT(ANIMAL(x) ∨ PLANT(x)),
c: sun � grasses � hartebeest � lion
a: sun

w: If the sun is blocked by clouds for a long period of
time, which animal will be most quickly threatened
by starvation?

`: λx.CAUSE(DECREASE(SUN), DECREASE(x))
c: sun � algae � shrimp � smelt � salmon
a: algae

w: If the seals were killed off, the population of pen-
guin would most likely

`: λf.CAUSE(DECREASE(SEAL), f(PENGUIN))
c: sun � algae � squid � penguin � seal
a: increase

Figure 3: Examples from FOODCHAINS. Each example con-

sists of a question w, logical form `, food chain c and answer

a.

al., 2011). The argument directions of C are deter-
mined by walking up the tree and noting the relative
position of each of its arguments. Figure 1 shows
an example of a predicted parse tree and the lexicon
entries generated from it.

4 Evaluation

We compare our lexicon learning models against
several baselines on two data sets: FOODCHAINS,
containing 4th grade science food chain ques-
tions, and GEO880, containing geography questions.
These data sets each present different challenges for
lexicon learning: FOODCHAINS has more difficult
language – long questions and more lexical vari-
ation – while GEO880 has more complex logical
forms. Our results demonstrate that our models per-
form better than several baselines with difficult lan-
guage while simultaneously performing reasonably
well with complex logical forms.

Code, data and other supplementary
material for this paper is available at
http://www.allenai.org/paper-appendix/

naacl2016-lexicon.

FOODCHAINS GEO880

Examples 774 880
Word types 446 279
Word types w/o entity names 357 157
Tokens per question 11.6 7.56
Predicates in ontology 15 38
Constants per logical form 4.0 7.7

Table 1: Data statistics for FOODCHAINS and GEO880.

4.1 Data
We collected a new data set, FOODCHAINS, that con-
tains 774 food chain questions designed to imitate
actual questions from the New York State Grade 4
Regents Exam. Each example in the data set con-
sists of a natural language question and a food chain,
which is a list of organisms that eat each other. The
questions are multiple choice and the answer options
are either animals from the food chain or a direction
of change, e.g., “increase.” Each question also has a
logical form annotated by the first author, which is
necessary to train some of the baseline systems. The
denotation of each predicate – and therefore logical
form – is a deterministic function of the food chain.
Figure 3 shows some examples from this data set.

FOODCHAINS was created using Mechanical
Turk. We first manually created 25 distinct food
chains of various lengths containing different organ-
isms and a set of question templates – questions with
a blank – based on real Regents questions. In the
first task, Turk workers were shown a randomly-
selected food chain, question template, and answer,
and were asked to complete the question by filling in
the blank. In the second task, workers paraphrased
questions from the first task, thereby eliminating the
templated structure and increasing lexical variation
(similar to Wang et al., (2015)). In the third task, a
worker validated each question by answering it.

Statistics of FOODCHAINS are presented in Ta-
ble 1 alongside corresponding statistics of GEO880
(Zelle and Mooney, 1996; Tang and Mooney, 2001;
Zettlemoyer and Collins, 2005). FOODCHAINS dif-
fers from GEO880 in two significant and interesting
ways. First, although the data set contains relatively
few predicates, there are many ways to reference
each predicate – for example, consider the diversity
in references to DECREASE in Figure 3. Second, the
questions are long but contain many uninformative
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Model Accuracy

Independent Model (§3.2) 78.7%
Coupled Model (§3.3) 79.0%
Coupled Loglinear Model (§3.4) 81.7%

Table 2: Comparison of semantic parser accuracy on FOOD-

CHAINS when trained using our three proposed probabilistic

models for lexicon learning.

words that can safely be ignored by the parser.

4.2 Methodology

We compare lexicon learning algorithms by per-
forming an end-to-end evaluation, measuring the
question answering accuracy of a CCG semantic
parser trained with the learned lexicon. The parser
has a rich set of features, including lexicon entry
features, dependency features, and dependency dis-
tance features. The parser is also permitted to skip
words in the question for a learned per-word cost.
We train the parser by optimizing data loglikelihood
with 100 epochs of stochastic gradient descent.

All experiments on FOODCHAINS are performed
using 5-fold cross validation. All questions about a
single food chain appear in the same fold, ensuring
that the questions in the held-out fold reference un-
seen food chains.

4.3 Comparing Probabilistic Models

Our initial experiment compares the three proba-
bilistic models proposed in Section 3 on FOOD-
CHAINS. We generated three lexicons by training
each model using 10 iterations of EM. We used a
smoothing parameter of 0.1 when estimating con-
ditional probability tables, and an L2 regularization
parameter of 10−6 when estimating loglinear mod-
els. We also initialized the coupled model with the
optimum of the independent model. All of these
models are trained without labeled logical forms, in-
stead using an automatically enumerated set of logi-
cal forms that evaluate to the correct answer.

Table 2 presents the result of this evaluation. All
three models perform roughly similarly, with the
coupled loglinear model slightly outperforming the
others. The competitive performance of the inde-
pendent model is interesting because its concave ob-
jective function is easy to optimize. The remaining
experiments compare against the coupled loglinear

Logical Lexicon PAL
Model forms? Templates? Accuracy % Err. Red.

PAL No No 81.7% –

POS No Yes 70.5% 38.0%
UBL Yes No 40.6% 69.1%
ZC2007 Yes Yes 49.4% 63.8%
ADP2014 No Yes 32.4% 72.9%

Table 3: Semantic parser accuracy comparison for several lex-

icon learning algorithms on FOODCHAINS. The middle two

columns note the human input required by each algorithm and

the final column notes the relative error reduction of PAL over

each baseline.

model, which we dub PAL, short for “Probabilistic
Alignments for Lexicon learning.”

4.4 Lexicon Learning Baselines

Our second experiment compares PAL with four
baseline lexicon learning algorithms. The first base-
line, POS, defines a set of lexicon entries for each
word in the training set based on its part-of-speech
tag (Liang et al., 2011). We iteratively developed
these templates to cover the data set, and the lexi-
con generated by these templates can correctly parse
96% of the examples in FOODCHAINS. The re-
maining three baselines, ZC2007 (Zettlemoyer and
Collins, 2007), UBL (Kwiatkowski et al., 2011),
and ADP2014 (Artzi et al., 2014), are joint lexi-
con and parameter learning algorithms. We used the
UW SPF (Artzi and Zettlemoyer, 2013a) implemen-
tations of UBL and ZC2007. For these two models,
we trained our parser using the learned lexicon to en-
sure consistency of implementation details.3 We ini-
tialized UBL’s parameters using GIZA++ (Och and
Ney, 2003) as in the original paper. The lexicon en-
try templates for ZC2007 and ADP2014 are derived
from the POS templates to ensure coverage of the
questions; these algorithms allow each template to
apply to 1-4 word phrases.

Table 3 compares the accuracy of semantic
parsers trained with these baseline approaches to
PAL. Our model outperforms all of the baselines,
beating the most accurate baseline, POS, by more

3We also postprocessed the lexicon entries to improve per-
formance, for example, by removing lexicon entries that skip
words. In both cases, our parser was more accurate than the
UW SPF parser.
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Model Lexicon Size Parse Time (ms)

POS 4,282 7.8
UBL 3,356 14.9
ZC2007 2,949 43.4
ADP2014 401 1.1

Independent Model 410 6.7
Coupled Model 318 3.1
PAL 184 1.8

Table 4: Lexicon size excluding entity names and parse time

per question on FOODCHAINS averaged across folds per model.

Our models produce smaller lexicons that lead to faster seman-

tic parsers.

than 10 points. Note that all of these baselines also
use more human input than our model, either in the
form of lexicon templates or logical forms. Table 4
compares the average number of lexicon entries and
semantic parser speed of the baselines with our mod-
els. PAL produces the most compact lexicon and sec-
ond fastest parser, which is 4x faster than POS, the
baseline with the highest accuracy. The correlation
between lexicon size and parse time is imperfect due
to word frequency and co-occurrence effects.

The three joint lexicon and parameter learning al-
gorithms perform poorly on our data set for two rea-
sons. First, the long question length increases the
difficulty of finding good lexicon entries. The algo-
rithms with lexicon templates were frequently un-
able to find a correct parse for long questions, even
with a large beam size – we ran ADP2014 with a
beam size of 10000. (Note that POS does not suf-
fer from this problem because it only generates lex-
icon entries for a few parts of speech, so most of the
words in a question are ignored by default.) Sec-
ond, these algorithms’ discriminative objectives in-
herently prefer lexicon entries with highly specific
word sequences. This preference interacts poorly
with the uninformative words in the data set, leading
these algorithms to produce many lexicon entries for
long phrases that do not generalize well. The lexi-
con sizes in Table 4 are suggestive of this problem
for ZC2007 and UBL; ADP2014 also has this prob-
lem, but its voting mechanism prunes lexicon entries
much more aggressively. We tried to solve this prob-
lem for ZC2007 and ADP2014 by restricting lexicon
templates to apply to at most 1 word, but this change
actually reduced accuracy. An investigation of this

Model Accuracy

UBL (Kwiatkowski et al., 2011) 88.6%
ZC2007 (Zettlemoyer and Collins, 2007) 86.1%

PAL 81.8%
w/ factored lexicon 85.4%

Table 5: Logical form accuracy on GEO880 compared to previ-

ously reported CCG parsing results. Both UBL and ZC2007 use

special CCG extensions to improve performance; adding one of

these to PAL brings its accuracy near that of these systems.

phenomenon found that reducing the length of the
templates made it even more difficult for these mod-
els to find correct parses for long questions.

In contrast to these baselines, our models do not
suffer from either of these problems because the
logical form derivation grammar restricts the search
to correct derivations and our generative objective
prefers frequently-occurring lexicon entries. Our
models actually consider a larger space of possible
lexicon entries than ZC2007 and ADP2014 with 1
word templates, yet find better lexicon entries.

4.5 Geo880 Evaluation

We performed an additional evaluation on GEO880
to demonstrate that our models can work with more
complex logical forms. GEO880 is a good data set
for this evaluation because its logical forms contain,
on average, about twice as many constants as FOOD-
CHAINS. We applied PAL to generate a lexicon for
this data set using its included logical form labels,
then trained a CCG semantic parser with this lexi-
con. Table 5 compares the accuracy of this parser
with previous CCG lexicon learning results on this
data set using the standard 600/280 train/test split.
The comparison to PAL is inexact because both prior
systems use CCG parsers with special extensions
that improve performance on this data set. UBL
uses factored lexicon entries that generalize better
to certain infrequent entries, and ZC2007 includes
relaxed parsing operators that fix common parsing
errors. Examining the errors made by our parser,
we found many cases where these extensions would
help. We therefore trained another CCG parser us-
ing a lexicon generated by postprocessing PAL’s lex-
icon to include factored lexicon entries. This parser
achieves an accuracy close to previous work.
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5 Discussion

We introduce several probabilistic models for learn-
ing a semantic parser lexicon that can be trained
from question/answer pairs and other forms of weak
supervision. Our experimental results demonstrate
that our models improve semantic parser accuracy
and efficiency relative to prior work on data sets with
more challenging language, despite using less hu-
man input. Furthermore, we find that our indepen-
dent model is nearly as effective as more complex
models, but has a concave objective function that
guarantees training converges to a global optimum.

A possible complaint about our approach is that,
when training from question/answer pairs, it is not
practical to enumerate all logical forms that pro-
duce the correct answer. We believe this complaint
is misguided because enumerating logical forms is
unavoidable in the question/answer setting. Every
algorithm uses an enumerate-and-test approach to
identify correct logical forms; this process occurs in
the gradient computation of semantic parser train-
ing and in template-based lexicon learning algo-
rithms such as ADP2014. The critical question is not
whether enumeration is used, but rather how logical
forms are enumerated. Many strategies are possible
and different strategies are likely to be effective on
different data sets. In fact, the failure of template-
based algorithms on FOODCHAINS is largely a fail-
ure of their template-guided enumeration strategy to
find correct logical forms. Choosing an enumeration
strategy and related questions – e.g., does semantic
parser parameter learning affect the enumeration? –
are empirical questions that must be decided on a
task-specific basis.

A recent trend in semantic parsing has been to
avoid lexicon learning, instead directly searching the
space of all possible logical forms. However, we
think that lexicon learning still serves a valuable pur-
pose. Fundamentally, a lexicon constrains the space
of logical forms searched by a semantic parser; these
constraints improve efficiency and can improve ac-
curacy as long as they do not exclude correct logi-
cal forms. Thus, a promising approach to building
a semantic parser is to automatically learn a lexicon
using one of our models, then (perhaps) manually
specify new parsing operations to correct any prob-
lems with the learned lexicon. We plan to apply this

approach in the future to construct semantic parsers
for more challenging tasks.
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Appendix A: Proof of Concavity

The loglikelihoodO(θ) of the independent model is:

O(θ) =
n∑
i=1

logP (wi|Li; θ)

=
n∑
i=1

|wi|∑
j=1

log
∑
f

θf,wi
j
#(f, j, Li, |wi|)

Each log term above is concave in θ because log is a
concave function applied to an affine function of θ.
(Note that the #(f, j, Li, |wi|) terms do not depend
on θ.) Finally, O(θ) is concave because it is a sum
of concave functions.
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