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Abstract

Bidirectional long short-term memory
(BLSTM) recurrent neural network (RNN)
has been successfully applied in many tagging
tasks. BLSTM-RNN relies on the distributed
representation of words, which implies that
the former can be futhermore improved
through learning the latter better. In this
work, we propose a novel approach to learn
distributed word representations by training
BLSTM-RNN on a specially designed task
which only relies on unlabeled data. Our
experimental results show that the proposed
approach learns useful distributed word
representations, as the trained representations
significantly elevate the performance of
BLSTM-RNN on three tagging tasks: part-of-
speech tagging, chunking and named entity
recognition, surpassing word representations
trained by other published methods.

1 Introduction

Distributed word representations represent word
with a real valued vector, which is also referred to
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as word embedding. Well learned distributed word
representations have been shown capable of captur-
ing semantic and syntactic regularities (Pennington
et al., 2014a; Mikolov et al., 2013c) and enhanc-
ing neural network model by being used as features
(Collobert and Weston, 2008; Bengio and Heigold,
2014; Wang et al., 2015).

Sequence tagging is a basic structure learning task
for natural language processing. Many primary pro-
cessing tasks over sentence such as word segmen-
tation, named entity recognition and part-of-speech
tagging can be formalized as a tagging task (Zhao
et al., 2006; Huang and Zhao, 2007; Zhao and Kit,
2008b; Zhao and Kit, 2008a; Zhao et al., 2010; Zhao
and Kit, 2011). Recently, many state-of-the-art sys-
tems of tagging related tasks are implemented with
bidirectional long short-term memory (BLSTM) re-
current neural network (RNN), for example, slot
filling (Mesnil et al., 2013), part-of-speech tagging
(Huang et al., 2015), and dependency parsing (Dyer
et al., 2015) etc. All of these systems use distributed
representation of words to involve word level infor-
mation. Better trained word representations would
further improve the state-of-the-art performance of
these tasks which makes it worthy to research the
training methods of word representations.

The existing training methods of word represen-
tation can generally be divided into two classes: 1)
Matrix factorization methods. These methods uti-
lize low-rank approximation to decompose a large
matrix that contains corpus statistics. One typical
work is the latent semantic analysis (LSA) (Deer-
wester et al., 1990) in which the matrix records
“term-document” information, i.e., the rows cor-
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respond to words, and the columns correspond to
different documents in the corpus. Another work
is hyperspace analogue to language (HAL) (Lund
and Burgess, 1996) which decomposes the matrix
recording “term-term” information, i.e., the rows
correspond to words and columns correspond to the
number of times that a word occurs in the given
context. 2) Window-based methods. This type of
methods learn representations by training a neural
network model to make prediction within local con-
text windows. For example, (Bengio et al., 2003)
learns word representation through a feedforward
neural network language model which predicts a
word given its previous several words. (Collobert
et al., 2011) trains a neural network to judge the va-
lidity of a given context. (Mikolov et al., 2013a)
proposes skip-gram and continuous bag-of-words
(CBOW) models based on a single-layer network ar-
chitecture. The objective of skip-gram model is to
predict the context given the word itself, while the
objective of CBOW is to predict a word given its
context. Aside from these two sets of methods, dis-
tributed representation can also be obtained by train-
ing recurrent neural network (RNN) language model
proposed by (Mikolov et al., 2010) or GloVe model
proposed by (Pennington et al., 2014a) which trains
a log-bilinear model on word-word co-occurrence
counts.

All of these methods suffer from shortcomings
that might limit the quality of trained word distri-
butions. The matrix factorization family only uses
the statistics of co-occurrence counts, disregarding
of the position of word in sentence and word or-
der. The window-based methods only consider local
context, which is incapable of involving information
outside the context window. While RNN language
model theoretically considers all information of the
previous sequence, but fails to involve the informa-
tion of the posterior sequence. The word-word co-
occurence counts that GloVe model relies on also
only include information within a limited sized con-
text window.

In this paper, we propose a novel method to ob-
tain word representation by training BLSTM-RNN
model on a specifically designed tagging task. Since
BLSTM-RNN theoretically involves all information
of input sentence, our approach avoids those short-
ages suffered by most current methods.

We firstly introduce the structure of BLSTM-
RNN used to learn word representations in section
2. Then the tagging task for training BLSTM-RNN
is described in section 3. Experiments are presented
in section 4, followed by conclusion.

2 Model Structure

The structure of BLSTM-RNN to train word rep-
resentation is illustrated in Figure 1. Each input is
composed of a word identity x1

i and additional real-
valued features x2

i . x1
i is represented with one-hot

representation which is a binary vector with dimen-
sion |V |where V is the vocabulary. The input vector
Ii of the network is computed as:

Ii = W1x
1
i + W2x

2
i

where W1 and W2 are weight matrixes connecting
two layers and are updated with the neural network
during training. W1x

1
i is also known as the dis-

tributed representation of word or word embedding
which is a real-valued vector usually with a much
smaller dimension than x1

i . Distributed represen-
tation trained in other tasks can be easily incorpo-
rated by initializing W1 with these external repre-
sentations.

3 Learning Representation

According to the structure shown in Figure 1, W1

is a matrix of weights that is updated during train-
ing, thus the distributed representations contained
in W1 are learned simultaneously with the train-
ing of BLSTM-RNN on any supervised learning
tasks. However, all such tasks for BLSTM-RNN,
to the best of our knowledge, require labeled data
which is usually too small in size and hard to ob-
tain. In this section, we propose a tagging task spe-
cially for BLSTM-RNN to train distributed repre-
sentations with unlabeled data.

In this method, BLSTM-RNN is applied to per-
form a tagging task with only two types of tags to
predict: incorrect/correct. The input is a sequence
of words which is a normal sentence with several
words replaced by words randomly chosen from vo-
cabulary. The words to be replaced are chosen ran-
domly from the sentence. In practice, we generate a
random number for each word, and a word is chosen
to be replaced if the number is lower than a given
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Figure 1: BLSTM-RNN for training word representation.

threshold. For those replaced words, their tags are 0
(incorrect) and for those that are not replaced, their
tags are 1 (correct). A simple sample of constructed
corpus is shown in Figure 2. Although it is possible
that some replaced words are also reasonable in the
sentence, they are still considered “incorrect”. Then
BLSTM-RNN is trained to judge which words have
been replaced by minimizing the binary classifica-
tion error on the training corpus. When the network
is trained, W1 contains all trained word representa-
tions. In our experiments, to reduce the vocabulary
V , each letter of input word is transferred to its low-
ercase. The upper case information is kept in an
additional features x2

i which in practice is a three-
dimensional binary vector to indicate if x1

i is full
lowercase, full uppercase or leading with a capital
letter.

Our approach is similar to (Collobert and We-
ston, 2008) and (Gutmann and Hyvärinen, 2012;
Mnih and Teh, 2012; Vaswani et al., 2013). All of
these works introduce randomly sampled words and
train a neural network on a binary classification task,
while (Collobert and Weston, 2008) learns represen-
tations for a feedforward network and (Gutmann and
Hyvärinen, 2012; Mnih and Teh, 2012; Vaswani et
al., 2013) learns normalization parameters instead of
representations.

4 Experiments

4.1 Experimental setup

To construct corpus for training word representa-
tions, we use North American news (Graff, 2008)
which contains about 536 million words as un-
labeled data. The North American news data is
first tokenized with the Penn Treebank tokenizer

script 1. Consecutive digits occurring within a word
are replaced with the symbol “#” . For example,
both words “tel92” and “tel6” are converted into
“tel#”. The vocabulary is limited to the most fre-
quent 100,000 words in North American news cor-
pus (Graff, 2008), plus one single “UNK” sym-
bol for replacing all out of vocabulary words. The
threshold to determine whether a word is replaced is
0.2, which means about 20% tokens in corpus are re-
placed with tokens randomly selected from vocabu-
lary. BLSTM-RNN is implemented based on CUR-
RENNT (Weninger et al., 2014), an open source
GPU-based toolkit of BLSTM-RNN. The dimension
of word representation as well as input layer size of
BLSTM-RNN is 100 and hidden layer size is 128.

Three published methods for training word repre-
sentations are compared: Skip-gram (Mikolov et al.,
2013a), CBOW (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014a). They are reported su-
perior in capturing meaningful latent structures than
other previous works in (Mikolov et al., 2013a; Pen-
nington et al., 2014a), thus are regarded as the state-
of-the-art approach of training word representations.
We train the Skip-gram and CBOW model using the
word2vec tool (Mikolov et al., 2013b) with a con-
text window size of 10 and 10 negative samples. For
training GloVe, we use the GloVe tool (Pennington
et al., 2014b) with a context window size 10. These
configurations are set by following (Pennington et
al., 2014a). Training corpus, vocabulary and dimen-
sion of word representations are set the same as that
in experiment for training word representations with
BLSTM-RNN2.

1https://www.cis.upenn.edu/˜treebank/
tokenization.html

2Our experimental setup are released at: https://
github.com/PeiluWang/naacl2016_blstmwe
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Original Sentence:
They seem to be prepared to make . . .

Input Sentence:
They beast to be austere to make . . .

Tag Sequence:
1 0 1 1 0 1 1 . . .

Figure 2: Sample of constructed corpus for training word representations. Two words “seem” and “prepared”
are replaced with words randomly chosen from vocabulary.

Sys POS(Acc.) CHUNK(F1) NER(F1)
BLSTM 96.60 91.71 82.52

BLSTM+CBOW 96.73 92.14 84.37
BLSTM+Skip 96.85 92.45 85.80

BLSTM+GloVe 97.02 93.01 87.33
BLSTM+BLSTMWE 97.26 94.44 88.38

Table 1: Performance of BLSTM-RNN with different representations on three tagging tasks

4.2 Evaluation

The quality of trained distributed representation
is evaluated by the performance of BLSTM-RNN
which uses the trained representations on practical
tasks. The representations which lead to better per-
formance are considered containing more useful la-
tent information and are judged better. The struc-
ture of BLSTM-RNN to test word representations is
the same as that in Figure1. To use trained repre-
sentation, we initialize the weight matrix W1 with
these external representations. For words without
corresponding external representations, their repre-
sentations are initialized with uniformly distributed
random values, ranging from -0.1 to 0.1. Three typ-
ical tagging tasks are used for the evaluation: part-
of-speech tagging (POS), chunking (CHUNK) and
named entity recognition (NER).

• The POS tagging experiment is conducted on
the Wall Street Journal data from Penn Tree-
bank III (Marcus et al., 1993). Training, devel-
opment and test sets are split according to in
(Collins, 2002). Performance is evaluated by
the accuracy of predicted tags on test set.

• CHUNK experiment is conducted on the data
of CoNLL-2000 shared task (Sang and Buch-
holz, 2000). Performance is assessed by the
F1 score computed by the evaluation script re-

leased by the CoNLL-2000 shared task3.

• NER experiment is conducted on the CoNLL-
2003 shared task (Tjong Kim Sang and
De Meulder, 2003). Performance is measured
by the F1 score calculated by the evaluation
script of the CoNLL-2003 shared task 4.

To focus on the effect of word representation, for
all tasks, we use the network with the same hid-
den structure and input features. The size of input
layer is 100, size of BLSTM hidden layer is 128
and output layer size is set as the number of tag
types according to the specific tagging task. Input
features are composed of word identity and three-
dimensional binary vector to indicate if the word is
full lowercase, full uppercase or leading with a cap-
ital letter.

Table 1 presents the performance of BLSTM-
RNN with different distributed representations on
these three tasks. BLSTM is the baseline sys-
tem that does not involve external word representa-
tions. Among all representations, BLSTMWE which
is trained by our approach gets the best performance
on all three tasks. It shows our approach is more
helpful for BLSTM-RNN. Besides, all of the three
published word representations also significantly en-

3http://www.cnts.ua.ac.be/conll2000/
chunking

4http://www.cnts.ua.ac.be/conll2003/ner/
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Sys POS(Acc.) CHUNK(F1) NER(F1)
BLSTMWE (10M) 96.61 91.91 84.66
BLSTMWE (100M) 97.10 93.86 86.47
BLSTMWE (536M) 97.26 94.44 88.38

Table 2: Performance of BLSTMWE trained on corpora with different size

Skip-gram CBOW GloVe BLSTM RNN
Time (min.) 344 117 127 1393

Table 3: Running time of different training methods

hance BLSTM RNN. It confirms the commonly ac-
cepted notion that word representation is a useful
feature.

4.3 Analysis

Table 2 shows the performance of word rep-
resentations trained on corpora with different
size. BLSTMWE (10M), BLSTMWE (100M) and
BLSTMWE (536M) are word representations respec-
tively trained by BLSTM-RNN on the first 10 mil-
lion words, first 100 million words and all 536 mil-
lion words of the North American news corpus. As
expected, there is a monotonic increase in perfor-
mance as the corpus size increases. This observation
suggests that the result might be further improved by
using even bigger unlabeled data.

Table 3 presents running time with different meth-
ods to train word representations on 536 million
words corpus. BLSTM-RNN is trained on one
NVIDIA Tesla M2090 GPU. The other three meth-
ods are trained on a 12 core, 2.53GHz Intel Xeon
E5649 machine, using 12 threads. Though with the
help of GPU, BLSTM-RNN is still slower than the
other methods. However, it should be noted that
the speed of our approach is acceptable compared
with previous neural network language model based
methods, including (Bengio et al., 2003; Mikolov
et al., 2010; Mnih and Hinton, 2007), as our model
uses a much simpler output layer which only has two
nodes, avoiding the time consuming computation of
the big softmax output layer in language model.

5 CONCLUSION

In this paper, we propose a novel approach to
learn distributed word representations with BLSTM-

RNN. Word representations are implemented as
the layer weights and are obtained as a byproduct
of training BLSTM-RNN on a specially designed
task, thus theoretically involve information of the
whole sentence. The quality of word representations
are evaluated by the performance of BLSTM-RNN
which uses these representations on three tagging
tasks: part-of-speech tagging, chunking and named
entity recognition. In experiments, word representa-
tions trained by our approach outperform the word
representations trained by other published methods.
Our work demonstrates an alternative way to im-
prove BLSTM-RNN’s performance by learning use-
ful word representations.
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