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Abstract
We introduce a bootstrapping algorithm for re-
gression that exploits word embedding mod-
els. We use it to infer four psycholinguis-
tic properties of words: Familiarity, Age of
Acquisition, Concreteness and Imagery and
further populate the MRC Psycholinguistic
Database with these properties. The ap-
proach achieves 0.88 correlation with human-
produced values and the inferred psycholin-
guistic features lead to state-of-the-art results
when used in a Lexical Simplification task.

1 Introduction

Throughout the last three decades, much has been
found on how the psycholinguistic properties of
words influence cognitive processes in the human
brain when a subject is presented with either writ-
ten or spoken forms. A word’s Age of Acquisition
is an example. The findings in (Carroll and White,
1973) reveal that objects whose names are learned
earlier in life can be named faster in later stages of
life. Zevin and Seidenberg (2002) show that words
learned in early ages are orthographically or phono-
logically very distinct from those learned in adult
life.

Other examples of psycholinguistic properties,
such as Familiarity and Concreteness, influence
one’s proficiency in word recognition and text com-
prehension. The experiments in (Connine et al.,
1990; Morrel-Samuels and Krauss, 1992) show that
words with high Familiarity yield lower reaction
times in both visual and auditory lexical decision,
and require less hand gesticulation in order to be de-
scribed. Begg and Paivio (1969) found that humans

are less sensitive to changes in wording made to sen-
tences with high Concreteness words.

When quantified, these aspects can be used as
features for various Natural Language Processing
(NLP) tasks. The Lexical Simplification approach
in (Jauhar and Specia, 2012) is an example. By
combining various collocational features and psy-
cholinguistic measures extracted from the MRC
Psycholinguistic Database (Coltheart, 1981), they
trained a ranker (Joachims, 2002) that reached first
place in the English Lexical Simplification task
at SemEval 2012. Semantic Classification tasks
have also benefited from the use of such features:
by combining Concreteness with other features,
(Hill and Korhonen, 2014) reached the state-of-the-
art performance in Semantic Composition (denota-
tive/connotative) and Semantic Modification (inter-
sective/subsective) prediction.

Despite the evident usefulness of psycholinguis-
tic properties of words, resources describing such
properties are rare. The most extensively developed
resource for English is the MRC Psycholinguistic
Database (Section 2). However, it is far from com-
plete, most likely due to the inherent cost of manu-
ally entering such properties. In this paper we pro-
pose a method to automatically infer these missing
properties. We train regressors by performing boot-
strapping (Yarowsky, 1995) over the existing fea-
tures in the MRC database, exploiting word em-
bedding models and other linguistic resources for
that (Section 3). This approach outperform various
strong baselines (Section 4) and the resulting prop-
erties lead to significant improvements when used in
Lexical Simplification models (Section 5).
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2 The MRC Psycholinguistic Database

Introduced by Coltheart (1981), the MRC (Machine
Readable Dictionary) Psycholinguistic Database is
a digital compilation of lexical, morphological and
psycholinguistic properties for 150,837 words. The
27 psycholinguistic properties in the resource range
from simple frequency measures (Rudell, 1993) to
elaborate measures estimated by humans, such as
Age of Acquisition and Imagery (Gilhooly and Lo-
gie, 1980). However, despite various efforts to pop-
ulate the MRC Database, these properties are only
available for small subsets of the 150,837 words.

We focus on four manually estimated psycholin-
guistic properties in the MRC Database:

• Familiarity: The frequency with which a word
is seen, heard or used daily. Available for 9,392
words.

• Age of Acquisition: The age at which a word is
believed to be learned. Available for 3,503 words.

• Concreteness: How “palpable” the object the
word refers to is. Available for 8, 228 words.

• Imagery: The intensity with which a word
arouses images. Available for 9,240 words.

All four properties are real values, determined
based on different quantifiable metrics. We focus
on these properties since they have been proven use-
ful and are some of the most scarce in the MRC
Database. As we discussed in Section 1, these prop-
erties have been successfully used in various ap-
proaches for Lexical Simplification and Semantic
Classification, and yet are available for no more than
6% of the words in the MRC Database.

3 Bootstrapping with Word Embeddings

In order to automatically estimate missing psy-
cholinguistic properties in the MRC Database, we
resort to bootstrapping. We base our approach on
that by (Yarowsky, 1995), a bootstrapping algorithm
which aims to learn a classifier over a reduced set of
annotated training instances (or “seeds”). It does so
by performing the following five steps:

1. Initialise training set S with the seeds available.

2. Train a classifier over S.

3. Predict values for a set of unlabelled instances U .

4. Add to S all instances from U for which the pre-
diction confidence c is equal or greater than ζ.

5. If at least one instance was added to S, go to step
2, otherwise, return the resulting classifier.

One critical difference between this approach and
ours is that our task requires regression algorithms
instead of classifiers. In classification, the predic-
tion confidence c is often calculated as the maxi-
mum signed distance between an instance and the
estimated hyperplanes. There is, however, no analo-
gous confidence estimation technique for regression
problems. We address this problem by using word
embedding models.

Embedding models have been proved effective in
capturing linguistic regularities of words (Mikolov
et al., 2013b). In order to exploit these regularities,
we assume that the quality of a regressor’s prediction
on an instance is directly proportional to how similar
the instance is to the ones in the labelled set. Since
the input for the regressors are words, we compute
the similarity between a test word and the words in
the labelled dataset as the maximum cosine similar-
ity between the test word’s vector and the vectors in
the labelled set.

Let M be an embeddings model trained over vo-
cabulary V , S a set of training seeds, ζ a minimum
confidence threshold, sim(w, S,M) the maximum
cosine similarity between wordw and S with respect
to model M , R a regression model, and R(w) its
prediction for word w. Our bootstrapping algorithm
is depicted in Algorithm 1.

Algorithm 1: Regression Bootstrapping
input: M, V, S, ζ;
output: R;

repeat
Train R over S;
for w∈V −S do

if sim(w, S,M)≥ζ then
Add 〈w,R(w)〉 to S;

end
end

until ‖S‖ converges ;
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We found that 64,895 out of the 150,837 words in
the MRC database were not present in either Word-
Net or our word embedding models. Since our boot-
strappers use features extracted from both these re-
sources, we were only able to predict the Familiarity,
Age of Acquisition, Concreteness and Imagery val-
ues of the remaining 85,942 words in MRC.

4 Evaluation

Since we were not able to find previous work for this
task, in these experiments, we compare the perfor-
mance of our bootstrapping strategy to various base-
lines. For training, we use the Ridge regression algo-
rithm (Tikhonov, 1963). As features, our regressor
uses the word’s raw embedding values, along with
the following 15 lexical features:

• Word’s length and number of syllables, as deter-
mined by the Morph Adorner module of LEXen-
stein (Paetzold and Specia, 2015).

• Word’s frequency in the Brown (Francis and
Kucera, 1979), SUBTLEX (Brysbaert and New,
2009), SubIMDB (Paetzold and Specia, 2016),
Wikipedia and Simple Wikipedia (Kauchak,
2013) corpora.

• Number of senses, synonyms, hypernyms and hy-
ponyms for word in WordNet (Fellbaum, 1998).

• Minimum, maximum and average distance be-
tween the word’s senses in WordNet and the the-
saurus’ root sense.

• Number of images found for word in the Getty
Images database1.

We train our embedding models using word2vec
(Mikolov et al., 2013a) over a corpus of 7 billion
words composed by the SubIMDB corpus, UMBC
webbase2, News Crawl3, SUBTLEX (Brysbaert
and New, 2009), Wikipedia and Simple Wikipedia
(Kauchak, 2013). We use 5-fold cross-validation to
optimise parameters: ζ, embeddings model architec-
ture (CBOW or Skip-Gram), and word vector size
(from 300 to 2,500 in intervals of 200). We include
four strong baseline systems in the comparison:

1http://developers.gettyimages.com/
2http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task.html

• Max. Similarity: Test word is assigned the prop-
erty value of the closest word in the training set,
i.e. the word with the highest cosine similarity
according to the word embeddings model.

• Avg. Similarity: Test word is assigned the aver-
age property value of the n closest words in the
training set, i.e. the words with the highest co-
sine similarity according to the word embeddings
model. The value of n is decided through 5-fold
cross validation.

• Simple SVM: Test word is assigned the prop-
erty value as predicted by an SVM regressor
(Smola and Vapnik, 1997) with a polynomial ker-
nel trained with the 15 aforementioned lexical
features.

• Simple Ridge: Test word is assigned the property
value as predicted by a Ridge regressor trained
with the 15 aforementioned lexical features.

• Super Ridge: Identical to Simple Ridge, the only
difference being that it also includes the words
embeddings in the feature set. We note that this
baseline uses the exact same features and regres-
sion algorithm as our bootstrapped regressors.

The parameters of all baseline systems are opti-
mised following the same method as with our ap-
proach. We also measure the correlation between
each of the aforementioned lexical features and the
psycholinguistic properties. For each psycholinguis-
tic property, we create a training and a test set by
splitting the labelled instances available in the MRC
Database in two equally sized portions. All train-
ing instances are used as seeds in our approach. As
evaluation metrics, we use Spearman’s (ρ) and Pear-
son’s (r) correlation. Pearson’s correlation is the
most important indicator of performance: an effec-
tive regressor would predict values that change lin-
early with a given psycholinguistic property.

The results are illustrated in Table 1. While the
similarity-based approaches tend to perform well for
Concreteness and Imagery, typical regressors cap-
ture Familiarity and Age of Acquisition more effec-
tively. Our approach, on the other hand, is con-
sistently superior for all psycholinguistic proper-
ties, with both Spearman’s and Pearson’s correlation
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Familiarity Age of Acquisition Concreteness Imagery
System ρ r ρ r ρ r ρ r

Word Length -0.238 -0.171 0.501 0.497 -0.170 -0.195 -0.190 -0.193
Syllables -0.168 -0.114 0.464 0.458 -0.207 -0.238 -0.218 -0.224
Freq: SubIMDB 0.798 0.725 -0.679 -0.699 0.048 0.003 0.208 0.170
Freq: SUBTLEX 0.827 0.462 -0.646 -0.251 0.028 0.137 0.187 0.265
Freq: SimpleWiki 0.725 0.488 -0.453 -0.306 0.015 0.145 0.119 0.247
Freq: Wikipedia 0.694 0.283 -0.349 -0.112 -0.076 0.081 0.027 0.134
Freq: Brown 0.706 0.608 -0.380 -0.395 -0.155 -0.214 -0.054 -0.107
Sense Count 0.471 0.363 -0.429 -0.391 0.020 -0.017 0.119 0.059
Synonym Count 0.411 0.336 -0.381 -0.357 -0.036 -0.047 0.070 0.035
Hypernym Count 0.307 0.295 -0.411 -0.387 0.167 0.088 0.268 0.160
Hyponym Count 0.379 0.245 -0.324 -0.196 0.120 0.002 0.196 0.023
Min. Sense Depth -0.347 -0.072 0.366 0.055 0.151 -0.185 0.127 -0.224
Max. Sense Depth -0.021 -0.008 -0.197 -0.196 0.447 0.455 0.415 0.414
Avg. Sense Depth -0.295 -0.256 0.215 0.183 0.400 0.428 0.345 0.347
Img. Search Count 0.544 0.145 -0.325 -0.033 -0.037 -0.073 0.117 -0.059
Max. Similarity 0.406 0.402 0.445 0.443 0.742 0.743 0.618 0.605
Avg. Similarity 0.528 0.527 0.536 0.535 0.826 0.819 0.733 0.707
Simple SVM 0.835 0.815 0.778 0.770 0.548 0.477 0.555 0.528
Simple Ridge 0.832 0.815 0.785 0.778 0.603 0.591 0.620 0.613
Super Ridge 0.847 0.833 0.827 0.820 0.859 0.852 0.813 0.800
Bootstrapping 0.863 0.846 0.871 0.862 0.876 0.869 0.835 0.823

Table 1: Regression correlation scores. In bold are the highest scores within a group (features, baselines, proposed approach), and

underlined the highest scores overall.

scores varying between 0.82 and 0.88. The differ-
ence in performance between the Super Ridge base-
line and our approach confirm that our bootstrapping
algorithm can in fact improve on the performance of
a regressor.

The parameters used by our bootstrappers, which
are reported below, highlight the importance of pa-
rameter optimization in out bootstrapping strategy:
its performance peaked with very different configu-
rations for most psycholinguistic properties:

• Familiarity: 300 word vector dimensions with a
Skip-Gram model, and ζ=0.9.

• Age of Acquisition: 700 word vector dimensions
with a CBOW model, and ζ=0.7.

• Concreteness: 1,100 word vector dimensions
with a Skip-Gram model, and ζ=0.7.

• Imagery: 1,100 word vector dimensions with a
Skip-Gram model, and ζ=0.7.

Interestingly, frequency in the SubIMDB corpus4,
composed of over 7 million sentences extracted from
subtitles of “family” movies and series, has good lin-
ear correlation with Familiarity and Age of Acquisi-
tion, much higher than any other feature. For Con-
creteness and Imagery, on the other hand, the results
suggest something different: the further a word is
from the root of a thesaurus, the most likely it is to
refer to a physical object or entity.

5 Psycholinguistic Features for LS

Here we assess the effectiveness of our bootstrap-
pers in the task of Lexical Simplification (LS). As
shown in (Jauhar and Specia, 2012), psycholinguis-
tic features can help supervised ranking algorithms
capture word simplicity. Using the parameters de-
scribed in Section 4, we train bootstrappers for
these two properties using all instances in the MRC
Database as seeds. We then train three rankers with
(W) and without (W/O) psycholinguistic features:

4http://ghpaetzold.github.io/subimdb
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• Horn (Horn et al., 2014): Uses an SVM ranker
trained on various n-gram probability features.

• Glavas (Glavaš and Štajner, 2015): Ranks can-
didates using various collocational and semantic
metrics, and then re-ranks them according to their
average rankings.

• Paetzold (Paetzold and Specia, 2015): Ranks
words according to their distance to a decision
boundary learned from a classification setup in-
ferred from ranking examples. Uses n-gram fre-
quencies as features.

We use data from the English Lexical Simplifica-
tion task of SemEval 2012 to assess systems’ per-
formance. The goal of the task is to rank words
in different contexts according to their simplicity.
The training and test sets contain 300 and 1,710 in-
stances, respectively. The official metric from the
task – TRank (Specia et al., 2012) – is used to mea-
sure systems’ performance. As discussed in (Paet-
zold, 2015), this metric best represents LS perfor-
mance in practice. The results in Table 2 show that
the addition of our features lead to performance in-
creases with all rankers. Performing F-tests over the
rankings estimated for the simplest candidate in each
instance, we have found these differences to be sta-
tistically significant (p < 0.05). Using our features,
the Paetzold ranker reaches the best published re-
sults for the dataset, significantly superior to the best
system in SemEval (Jauhar and Specia, 2012).

TRank
Ranker W/O W
Best SemEval - 0.602
Horn 0.625 0.635
Glavas 0.623 0.636
Paetzold 0.653 0.657

Table 2: Results on SemEval 2012 LS task dataset

6 Conclusions

Overall, the proposed bootstrapping strategy for re-
gression has led to very positive results, despite
its simplicity. It is therefore a cheap and reliable
alternative to manually producing psycholinguistic
properties of words. Word embedding models have
proven to be very useful in bootstrapping, both as

surrogates for confidence predictors and as regres-
sion features. Our findings also indicate the use-
fulness of individual features and resources: word
frequencies in the SubIMDB corpus have a much
stronger correlation with Familiarity and Age of Ac-
quisition than previously used corpora, while the
depth of a word’s in a thesaurus hierarchy correlates
well with both its Concreteness and Imagery.

In future work we plan to employ our boot-
strapping solution in other regression problems, and
to further explore potential uses of automatically
learned psycholinguistic features.

The updated version of the MRC resource can be
downloaded from http://ghpaetzold.github.io/data/
BootstrappedMRC.zip.
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