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Abstract

Automatic event schema induction (AESI)
means to extract meta-event from raw text,
in other words, to find out what types (tem-
plates) of event may exist in the raw text and
what roles (slots) may exist in each event type.
In this paper, we propose a joint entity-driven
model to learn templates and slots simultane-
ously based on the constraints of templates
and slots in the same sentence. In addition,
the entities’ semantic information is also con-
sidered for the inner connectivity of the enti-
ties. We borrow the normalized cut criteria in
image segmentation to divide the entities into
more accurate template clusters and slot clus-
ters. The experiment shows that our model
gains a relatively higher result than previous
work.

1 Introduction

Event schema is a high-level representation of a
bunch of similar events. It is very useful for the tra-
ditional information extraction (IE)(Sagayam et al.,
2012) task. An example of event schema is shown in
Table 1. Given the bombing schema, we only need
to find proper words to fill the slots when extracting
a bombing event.

There are two main approaches for AESI task.
Both of them use the idea of clustering the poten-
tial event arguments to find the event schema. One
of them is probabilistic graphical model (Chamber-
s, 2013; Cheung, 2013). By incorporating tem-
plates and slots as latent topics, probabilistic graphi-
cal models learns those templates and slots that best
explains the text. However, the graphical models

Bombing Template
Perpetrator: person
Victim: person
Target: public
Instrument: bomb

Table 1: The event schema of bombing event in MUC-4, it has

a bombing template and four main slots

considers the entities independently and do not take
the interrelationship between entities into account.
Another method relies on ad-hoc clustering algo-
rithms (Filatova et al., 2006; Sekine, 2006; Cham-
bers and Jurafsky, 2011). (Chambers and Jurafsky,
2011) is a pipelined approach. In the first step, it us-
es pointwise mutual information(PMI) between any
two clauses in the same document to learn events,
and then learns syntactic patterns as fillers. How-
ever, the pipelined approach suffers from the error
propagation problem, which means the errors in the
template clustering can lead to more errors in the s-
lot clustering.

This paper proposes an entity-driven model which
jointly learns templates and slots for event schema
induction. The main contribution of this paper are
as follows:

• To better model the inner connectivity between
entities, we borrow the normalized cut in image
segmentation as the clustering criteria.

• We use constraints between templates and be-
tween slots in one sentence to improve AESI
result.
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Sentence
A car bomb exploded in front of the U.S. embassy residence 

in the Peruvian capital

entity 1 entity 2entity 1

entity 3

Entity Representation

Entity 1: h=bomb, p=explode, d=subject,
    f={hyper={explosive, weaponry...} sentence=5, passage=41}

Entity 2: h=residence, p=explode, d=prep_in_front_of,
    f={hyper={diplomatic building...} sentence=5, passage=41}

Entity 3: h=capital, p=explode, d=prep_in,
    f={hyper={center, federal government...} sentence=5, 
         passage=41}

Figure 1: An entity example

2 Task Definition

Our model is an entity-driven model. This mod-
el represents a document d as a series of entities
Ed = {ei|i = 1, 2, · · · }. Each entity is a quadruple
e = (h, p, d, f). Here, h represents the head word
of an entity, p represents its predicate, and d repre-
sents the dependency path between the predicate and
the head word, f contains the features of the entity
(such as the direct hypernyms of the head word),
the sentence id where e occurred and the document
id where e occurred. A simple example is Fig 1.

Our ultimate goal is to assign two labels, a slot
variable s and a template variable t, to each entity.
After that, we can summarize all of them to get event
schemas.

3 Automatic Event Schema Induction

3.1 Inner Connectivity Between Entities
We focus on two types of inner connectivity: (1) the
likelihood of two entities to belong to the same tem-
plate; (2) the likelihood of two entities to belong to
the same slot;

3.1.1 Template Level Connectivity
It is easy to understand that entities occurred n-

ear each other are more likely to belong to the same
template. Therefore, (Chambers and Jurafsky, 2011)
uses PMI to measure the correlation of two words
in the same document, but it cannot put two words
from different documents together. In the Bayesian
model of (Chambers, 2013), p(predicate) is the key
factor to decide the template, but it ignores the fact
that entities occurring nearby should belong to the

same template. In this paper, we try to put two mea-
sures together. That is, if two entities occurred n-
earby, they can belong to the same template; if they
have similar meaning, they can also belong to the
same template. We use PMI to measure the distance
similarity and use word vector (Mikolov et al., 2013)
to calculate the semantic similarity.

A word vector can well represent the meaning of
a word. So we concatenate the word vector of the
j-th entity’s head word and its predicate, denoted as
vechp(i). We use the cosine distance coshp(i, j) to
measure the difference of two vectors.

Then we can get the template level connectivity
formula as shown in Eq 1. The PMI(i, j) is cal-
culated by the head words of entity mention i and
j.

WT (i, j) = PMI(i, j) + coshp(i, j) (1)

3.1.2 Slot Level Connectivity
If two entities can play similar role in an event,

they are likely to fill the same slot. We know that if
two entities can play similar role, their head words
may have the same hypernyms. We only consider
the direct hypernyms here. Also, their predicates
may have similar meaning and the entities may have
the same dependency path to their predicate. There-
fore, we give the factors equal weights and add them
together to get the slot level similarity.

WS(i, j) = cosp(i, j) + δ(dependi = dependj)
+ δ(hypernymi ∩ hypernymj ̸= ϕ)

(2)
Here, the δ(·) has value 1 when the inner expression
is true and 0 otherwise. The “hypernym” is derived
from Wordnet(Miller, 1995), so it is a set of direct
hypernyms. If two entities’ head words have at least
one common direct hypernym, then they may belong
to the same slot. And again cosp(i, j) represents the
cosine distance between the predicates’ word vector
of entity i and entity j.

3.2 Template and Slot Clustering Using
Normalized Cut

Normalized cut intend to maximize the intra-class
similarity while minimize the inter class similarity,
which deals well with the connectivity between en-
tities.

We represent each entity as a point in a high-
dimension space. The edge weight between two
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points is their template level similarity / slot level
similarity. Then the larger the similarity value is,
the more likely the two entities (point) belong to the
same template / slot, which is also our basis intu-
ition.

For simplicity, denote the entity set as E =
{e1, · · · , e|E|}, and the template set as T . We
use the |E| × |T | partition matrix XT to repre-
sent the template clustering result. Let XT =
[XT1 , · · · , XT|T | ], where XTl

is a binary indicator
for template l(Tl).

XT (i, l) =

{
1 ei ∈ Tl

0 otherwise
(3)

Usually, we define the degree matrix DT as:
DT (i, i) =

∑
j∈E WT (i, j), i = 1, · · · , |E|. Obvi-

ously, DT is a diagonal matrix. It contains infor-
mation about the weight sum of edges attached to
each vertex. Then we have the template clustering
optimization as shown in Eq 4 according to (Shi and
Malik, 2000).

max ε1(XT ) =
1
|T |

|T |∑
l=1

XT
Tl

WT XTl

XT
Tl

DT XTl

s.t. XT ∈ {0, 1}|E|×|T | XT 1|T | = 1|E|

(4)

where 1|E| represents the |E| × 1 vector of all 1’s.
For the slot clustering, we have a similar opti-

mization as shown in Eq 5.

max ε2(XS) =
1
|S|

|S|∑
l=1

XT
Sl

WSXSl

XT
Sl

DSXSl

s.t. XS ∈ {0, 1}|E|×|S| XS1|S| = 1|E|

(5)

where S represents the slot set, XS is the slot clus-
tering result with XS = [XS1 , · · · , XS|S| ], where
XSl

is a binary indicator for slot l(Sl).

XS(i, l) =

{
1 ei ∈ Sl

0 otherwise
(6)

3.3 Joint Model With Sentence Constraints
For event schema induction, we find an important
property and we name it “Sentence constraint”. The
entities in one sentence often belong to one template
but different slots.

The sentence constraint contains two types of
constraint, “template constraint” and “slot constrain-
t”.

1. Template constraint: Entities in the same sen-
tence are usually in the same template. Hence
we should make the templates taken by a sen-
tence as few as possible.

2. Slot constraint: Entities in the same sentence
are usually in different slots. Hence we should
make the slots taken by a sentence as many as
possible.

Based on these consideration, we can add an extra
item to the optimization object. Let Nsentence be the
number of sentences. Define Nsentence × |E| matrix
J as the sentence constraint matrix, the entries of J
is as following:

J(i, j) =

{
1 ei ∈ Sentencej

0 otherwise
(7)

Easy to show, the product GT = JT XT represents
the relation between sentences and templates. In ma-
trix GT , the (i, j)-th entry represents how many en-
tities in sentence i are belong to Tj .

Using GT , we can construct our objective. To rep-
resent the two constraints, the best objective we have
found is the trace value: tr(GT GT

T ). Each entry on
the diagonal of matrix GT GT

T is the square sum of
all the entries in the corresponding line in GT , and
the larger the trace value is, the less templates the
sentence would taken. Since tr(GT GT

T ) is the sum
of the diagonal elements, we only need to maximize
the value tr(GT GT

T ) to meet the template constraint.
For the same reason, we need to minimize the value
tr(GSGT

S ) to meet the slot constraint.
Generally, we have the following optimization ob-

jective:

ε3(XT , XS) =
tr

(
XT

T JJT XT

)
tr

(
XT

S JJT XS

) (8)

The whole joint model is shown in Eq 9. The de-

430



tailed derivation1 is shown in the supplement file.

XT , XS = argmax
XT ,XS

ε1(XT ) + ε2(XS) + ε3(XT , XS)

s.t. XT ∈ {0, 1}|E|×|T | XT 1|T | = 1|E|
XS ∈ {0, 1}|E|×|S| XS1|S| = 1|E|

(9)

4 Experiment

4.1 Dataset

In this paper, we use MUC-4(Sundheim, 1991) as
our dataset, which is the same as previous works
(Chambers and Jurafsky, 2011; Chambers, 2013).
MUC-4 corpus contains 1300 documents in the
training set, 200 in development set (TS1, TS2) and
200 in testing set (TS3, TS4) about Latin American
news of terrorism events. We ran several times on
the 1500 documents (training/dev set) and choose
the best |T | and |S| as |T | = 6, |S| = 4. Then
we report the performance of test set. For each doc-
ument, it provides a series of hand-constructed even-
t schemas, which are called gold schemas. With
these gold schemas we can evaluate our results.
The MUC-4 corpus contains six template types:
Attack, Kidnapping, Bombing, Arson, Robbery,
and Forced Work Stoppage, and for each template,
there are 25 slots. Since most previous works do not
evaluate their performance on all the 25 slots, they
instead focus on 4 main slots like Table 1, we will
also focus on these four slots. We use the Stanford
CoreNLP toolkit to parse the MUC-4 corpus.

4.2 Performance

Fig 2 shows two examples of our learned schemas:
Bombing and Attacking. The five words in each s-
lot are the five randomly picked entities from the
mapped slots. The templates and slots that were
joint learned seem reasonable.

Induced schemas need to map to gold schemas
before evaluation. Previous works used two meth-
ods of mapping. The first ignores the schema type,
and simply finds the best performing slot for each
gold template slot. For instance, a perpetrator of a
bombing and a perpetrator of an attack are treated

1At https://github.com/shalei120/ESI 1 2 can the code be
found.

Bombing

Perpetrator Victim Target Instrument

Attack

Perpetrator Victim Target Instrument

El salvador

The guerrillas

The drag mafia

Drug traffickers

The Atlacatl battalion

The police chief

Students

The Peruvian embassy

The diplomat

soldiers

ministry

The embassy

The police station

organization

bridge

explosives

car bomb

dynamite

incendiary bomb

vehicle bomb

troops

criminals

combat

murder

person

driver

soldiers

children

civilians

journalists

organization 

helicopter

person

livestock ministray building

vehicles

rifles

weapons

gun

explosives

machinegun

Figure 2: Part of the result

Prec Recall F1
C&J (2011) 0.48 0.25 0.33
Cheung (2013) 0.32 0.37 0.34
Chambers (2013) 0.41 0.41 0.41
Nguyen et al. (2015) 0.36 0.54 0.43
Our Model-SC 0.38 0.68 0.49
Our Model 0.39 0.70 0.50

Table 2: Slot-only mapping comparison to state-of-the-art un-

supervised systems, “-SC” means without sentence constraint

the same. We call this the slot-only mapping eval-
uation. The second approach is to map each tem-
plate t to the best gold template g, and limit the slot
mapping so that only the slots under t can map to
slots under g. We call this the strict template map-
ping evaluation. The slot-only mapping can result in
higher scores since it is not constrained to preserve
schema structure in the mapping.

We compare our results with four works (Cham-
bers and Jurafsky, 2011; Cheung, 2013; Chambers,
2013; Nguyen et al., 2015) as is shown in Table 2
and Table 3. Our model has outperformed all of
the previous methods. The improvement of recall is
due to the normalized cut criteria, which can better
use the inner connectivity between entities. The sen-
tence constraint improves the result one step further.

Note that after adding the sentence constraint, the
slot-only performance has increased a little, but the
strict template mapping performance has increased
a lot as is shown in Table 3. This phenomenon can
be explained by the following facts: We count the
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Prec Recall F1
Chambers (2013) 0.42 0.27 0.33
Our Model-SC 0.26 0.55 0.35
Our Model 0.33 0.50 0.40

Table 3: strict template mapping comparison to state-of-the-art

unsupervised systems, “-SC” means without sentence constraint

amount of entities which has been assigned different
templates or different slots in “Our Model-SC” and
“Our Model”. Of all the 11465 entities, 2305 enti-
ties has been assigned different templates in the two
methods while only 108 entities has different slots.
This fact illustrates that the sentence constraint can
affect the assignment of templates much more than
the slots. Therefore, the sentence constraint lead-
s largely improvement to the strict mapping perfor-
mance and very little increase to the slot-only per-
formance.

5 Related Works

The traditional information extraction task is to fill
the event schema slots. Many slot filling algorithms
requires the full information of the event schemas
and the labeled corpus. Among them, there are
rule-based method (Rau et al., 1992; Chinchor et
al., 1993), supervised learning method (Baker et al.,
1998; Chieu et al., 2003; Bunescu and Mooney,
2004; Patwardhan and Riloff, 2009; Maslennikov
and Chua, 2007), bootstrapping method (Yangarber
et al., 2000) and cross-document inference method
(Ji and Grishman, 2008). Also there are many semi-
supervised solutions, which begin with unlabeled,
but clustered event-specific documents, and extrac-
t common word patterns as extractors (Riloff and
Schmelzenbach, 1998; Sudo et al., 2003; Riloff et
al., 2005; Patwardhan and Riloff, 2007; Filatova et
al., 2006; Surdeanu et al., 2006)

Other traditional information extraction task
learns binary relations and atomic facts. Models
can learn relations like “Jenny is married to Bob”
with unlabeled data (Banko et al., 2007; Etzioni et
al., 2008; Yates et al., 2007; Fader et al., 2011),
or ontology induction (dog is an animal) and at-
tribute extraction (dogs have tails) (Carlson et al.,
2010a; Carlson et al., 2010b; Huang and Riloff,
2010; Van Durme and Pasca, 2008), or rely on pre-
defined patterns (Hearst, 1992).

Shinyama and Sekine (2006) proposed an ap-
proach to learn templates with unlabeled corpus.
They use unrestricted relation discovery to discover
relations in unlabeled corpus as well as extract their
fillers. Their constraints are that they need redun-
dant documents and their relations are binary over
repeated named entities. (Chen et al., 2011) also ex-
tract binary relations using generative model.

Kasch and Oates (2010), Chambers and Jurafsky
(2008), Chambers and Jurafsky (2009), Balasubra-
manian et al. (2013) captures template-like knowl-
edge from unlabeled text by large-scale learning of
scripts and narrative schemas. However, their struc-
tures are limited to frequent topics in a large corpus.
Chambers and Jurafsky (2011) uses their idea, and
their goal is to characterize a specific domain with
limited data using a three-stage clustering algorith-
m.

Also, there are some state-of-the-art works using
probabilistic graphic model (Chambers, 2013; Che-
ung, 2013; Nguyen et al., 2015). They use the Gibbs
sampling and get good results.

6 Conclusion

This paper presented a joint entity-driven model to
induct event schemas automatically.

This model uses word embedding as well as PMI
to measure the inner connection of entities and us-
es normalized cut for more accurate clustering. Fi-
nally, our model uses sentence constraint to extract
templates and slots simultaneously. The experiment
has proved the effectiveness of our model.
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