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Abstract

The neural network joint model of transla-
tion or NNJM (Devlin et al., 2014) combines
source and target context to produce a power-
ful translation feature. However, its softmax
layer necessitates a sum over the entire output
vocabulary, which results in very slow max-
imum likelihood (MLE) training. This has
led some groups to train using Noise Con-
trastive Estimation (NCE), which side-steps
this sum. We carry out the first direct compar-
ison of MLE and NCE training objectives for
the NNJM, showing that NCE is significantly
outperformed by MLE on large-scale Arabic-
English and Chinese-English translation tasks.
We also show that this drop can be avoided
by using a recently proposed translation noise
distribution.

1 Introduction

The Neural Network Joint Model of Translation,
or NNJM (Devlin et al., 2014), is a strong feature
for statistical machine translation. The NNJM uses
both target and source tokens as context for a feed-
forward neural network language model (LM). Un-
fortunately, its softmax layer requires a sum over the
entire output vocabulary, which slows the calcula-
tion of LM probabilities and the maximum likeli-
hood estimation (MLE) of model parameters.

Devlin et al. (2014) address this problem at run-
time only with a self-normalized MLE objective.
Others advocate the use of Noise Contrastive Esti-
mation (NCE) to train NNJMs and similar mono-
lingual LMs (Mnih and Teh, 2012; Vaswani et al.,
2013; Baltescu and Blunsom, 2015; Zhang et al.,

2015). NCE avoids the sum over the output vo-
cabulary at both train- and run-time by wrapping
the NNJM inside a classifier that attempts to sep-
arate real data from sampled noise, greatly im-
proving training speed. The training efficiency of
NCE is well-documented, and will not be evaluated
here. However, the experimental evidence that NCE
matches MLE in terms of resulting model quality is
all on monolingual language modeling tasks (Mnih
and Teh, 2012). Since cross-lingual contexts pro-
vide substantially stronger signals than monolingual
ones, there is reason to suspect these results may not
carry over to NNJMs.

To our knowledge there is no published work that
directly compares MLE and NCE in the context of
an NNJM; this paper fills that gap as its primary con-
tribution. We measure model likelihood and trans-
lation quality in large-scale Arabic-to-English and
Chinese-to-English translation tasks. We also test a
recently-proposed translation noise distribution for
NCE (Zhang et al., 2015), along with a mixture of
noise distributions. Finally, we test a widely known,
but apparently undocumented, technique for domain
adaptation of NNJMs, demonstrating its utility, as
well as its impact on the MLE-NCE comparison.

2 Methods

The NNJM adds a bilingual context window to the
machinery of feed-forward neural network language
models, or NNLMs (Bengio et al., 2003). An
NNLM calculates the probability p(ei|ei−1

i−n+1) of a
word ei given its n − 1 preceding words, while an
NNJM assumes access to a source sentence F and an
aligned source index ai that points to the most influ-
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ential source word for the next translation choice. It
calculates p(ei|ei−1

i−n+1, f
ai+m
ai−m ), which accounts for

2m + 1 words of source context, centered around
fai . The two models differ only in their definition of
the conditioning context, which we will generalize
with the variable ci = ei−1

i−n+1, f
ai+m
ai−m . When unam-

biguous, we drop the subscript i from e and c.
The feed-forward neural network that powers

both models takes a context sequence c as input to
its network, which includes an embedding layer, one
or more hidden layers, and a top-level softmax layer
that assigns probabilities to each word in the vocabu-
lary V . Let sc(e) represent the unnormalized neural
network score for the word e. The softmax layer first
calculates Zc =

∑
e′∈V exp sc(e′), which allows it

to then normalize the score into a log probability
log p(e|c) = sc(e) − logZc. Given a training set of
word-context pairs, MLE training of NNJMs mini-
mizes the negative log likelihood

∑
e,c− log p(e|c).

The problem with this objective is that calculat-
ing Zc requires a sum over the entire vocabulary,
which is very expensive. This problem has received
much recent study, but Devlin et al. (2014) pro-
posed a novel solution for their NNJM, which we
refer to as self-normalization. Assume we are will-
ing to incur the cost of calculating Zc during train-
ing, which might be mitigated by special-purpose
hardware such as graphical processing units (GPUs).
One can modify the MLE objective to encourage
logZc to be small, so that the term can be safely
dropped at run-time:∑

e,c

[
− log p(e|c) + α (logZc)

2
]

where α trades self-normalization against model
likelihood. Devlin et al. (2014) have shown that self-
normalization has minimal impact on model quality
and a tremendous impact on run-time efficiency.

2.1 Noise Contrastive Estimation
Introduced by Gutmann and Hyvärinen (2010) and
first applied to language modeling by Mnih and Teh
(2012), NCE allows one to train self-normalized
models without calculating Z. It does so by defin-
ing a noise distribution q over words in V , which
is typically a unigram noise distribution qu. It
samples k noise words êk1 for each training word
e, and wraps the NNJM inside a binary classifier

that attempts to separate true data from noise. Let
D be a binary variable that is 1 for true data and
0 for noise. We know the joint noise probability
p(D = 0, e|c) = k

k+1q(e), and we can approximate
the joint data probability using our neural network
p(D = 1, e|c) ≈ 1

k+1p(e|c) ≈ 1
k+1 exp sc(e). Note

that the final approximation dropsZc from the calcu-
lation, improving efficiency and forcing the model to
self-normalize. With these two terms in place, and
a few manipulations of conditional probability, the
NCE training objective can be given as:

−
∑
e,c

log p(D = 1|e, c) +
k∑

j=1

log p(D = 0|êj , c)


which measures the probability that data is recog-
nized as data, and noise is recognized as noise.

Note that q ignores the context c. Previous work
on monolingual language modeling indicates that a
unigram proposal distribution is sufficient for NCE
training (Mnih and Teh, 2012). But for bilingual
NNJMs, Zhang et al. (2015) have shown that it is
beneficial to have q condition on source context. Re-
call that ci = ei−1

i−n+1, f
ai+m
ai−m . We experiment with

a translation noise distribution qt(ê|fai). We esti-
mate qt by relative frequency from our training cor-
pus, which implicitly provides us with one ei, fai

pair for each training point ei, ci. Conditioning on
fai drastically reduces the entropy of the noise dis-
tribution, focusing training on the task of differenti-
ating between likely translation candidates.

As our experiments will show, under NCE with
translation noise, the NNJM no longer provides
meaningful scores for the entire vocabulary. There-
fore, we also experiment with a novel mixture noise
distribution: qm(ê|fai) = 0.5qu(ê) + 0.5qt(ê|fai).

3 Implementation details

We implement our NNJM and all candidate train-
ing objectives described above in a shared codebase
in Theano (Bergstra et al., 2010). To ensure a fair
comparison between MLE and NCE, the various
systems share code for model structures and algo-
rithms, differing only in their training objectives. A
GeForce GTX TITAN GPU enables efficient MLE
training. Following Devlin et al. (2014), all NNJMs
use 3 tokens for target context, a source context win-
dow with m = 5, and a 192-node embedding layer.
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We deviate from their configuration by using a sin-
gle 512-node hidden layer, motivated by our inter-
nal development experiments. All NCE variants use
k = 100 noise samples.

NNJM training data is pre-processed to limit vo-
cabularies to 16K types for source or target inputs,
and 32K types for target outputs. We build 400
deterministic word clusters for each corpus using
mkcls (Och, 1999). Any word not among the 16K /
32K most frequent words is replaced with its cluster.

We train our models with mini-batch stochastic
gradient descent, with a batch size of 128 words,
and an initial learning rate of 0.3. We check our
training objective on the development set every 20K
batches, and if it fails to improve for two consec-
utive checks, the learning rate is halved. Training
stops after 5 consecutive failed checks or after 60
checks. As NCE may take longer to converge than
MLE, we occasionally let NCE models train to 90
checks, but this never resulted in improved perfor-
mance. Finally, after training finishes on the com-
plete training data, we use that model to initialize a
second training run, on a smaller in-domain training
set known to better match the test conditions.1 This
in-domain pass uses a lower initial learning rate of
0.03.

Our translation system is a multi-stack phrase-
based decoder that is quite similar to Moses (Koehn
et al., 2007). Its features include standard phrase
table probabilities, KN-smoothed language mod-
els including a 6-gram model trained on the En-
glish Gigaword and a 4-gram model trained on the
target side of the parallel training data, domain-
adapted phrase tables and language models (Fos-
ter and Kuhn, 2007), a hierarchical lexicalized re-
ordering model (Galley and Manning, 2008), and
sparse features drawn from Hopkins and May (2011)
and Cherry (2013). It is tuned with a batch-lattice
variant of hope-fear MIRA (Chiang et al., 2008;
Cherry and Foster, 2012).

4 Experiments

We test two translation scenarios drawn from the
recent BOLT evaluations: Arabic-to-English and
Chinese-to-English. The vital statistics for our cor-
pora are given in Table 1. The training set mixes

1Recommended by Jacob Devlin, personal communication.

Lang. Train In-dom Dev Test1 Test2
Arabic 38.6M 1.8M 72K 38K 40K
Chinese 29.2M 1.9M 77K 38K 36K

Table 1: Corpus sizes in terms of number of target tokens. Dev

and Test sets have 3 references for Arabic and 5 for Chinese.

NIST data with BOLT-specific informal genres. The
development and test sets are focused specifically
on the web-forum genre, as is the in-domain sub-
set of the training data (In-dom). The Arabic was
segmented with MADA-ARZ (Habash et al., 2013),
while the Chinese was segmented with a lexicon-
based approach. All data was word-aligned with
IBM-4 in GIZA++ (Och and Ney, 2003), with grow-
diag-final-and symmetrization (Koehn et al., 2003).

4.1 Comparing Training Objectives
Our main experiment is designed to answer two
questions: (1) does training NNJMs with NCE im-
pact translation quality? and (2) can any reduction
be mitigated through alternate noise distributions?
To this end, we train four NNJMs.

• MLE: Maximum likelihood training with self-
normalization α = 0.1
• NCE-U: NCE with unigram noise
• NCE-T: NCE with translation noise
• NCE-M: NCE with mixture noise

and compare their performance to that of a system
with no NNJM. Each NNJM was trained as de-
scribed in Section 3, varying only the learning ob-
jective.2 To measure intrinsic NNJM quality, we
report average negative log likelihoods (NLL) and
average | logZ|, both calculated on Dev. Lower
NLL scores indicate better prediction accuracy,
while lower | logZ| values indicate more effec-
tive self-normalization. We also provide average
BLEU scores and standard deviations for Test1 and
Test2, each calculated over 5 random tuning repli-
cations. Statistical significance is calculated with
MultEval (Clark et al., 2011).

Our results are shown in Table 2. By comparing
MLE to no NNJM, we can confirm that the NNJM
is a very effective translation feature, showing large

2The only exception was the Arabic NCE-M system, which
showed some instability during optimization, leading us to re-
duce its initial learning rate to 0.2.
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Arabic-English Chinese-English
Method NLL | logZ| test1 std test2 std NLL | logZ| test1 std test2 std
No NNJM – – 39.2 0.1 39.9 0.1 – – 31.6 0.2 27.8 0.1
MLE 1.76 0.50 41.7 0.1 42.0 0.1 2.35 0.49 32.9 0.0 29.1 0.0
NCE-U 1.85 0.42 40.9 0.2 41.5 0.1 2.54 0.42 32.2 0.1 28.3 0.1
NCE-T 3.87 2.36 41.6 0.1 42.4 0.2 3.93 1.70 32.7 0.1 28.7 0.2
NCE-M 1.85 0.30 41.4 0.1 42.1 0.1 2.40 0.30 32.6 0.1 28.8 0.1

Table 2: Comparing various NNJM training objectives on two translation scenarios. BLEU results that are statistically better than

NCE-U are underlined (p ≤ 0.05). Those statistically equivalent to or better than MLE are in bold (p ≤ 0.05).

BLEU improvements on all tests. By comparing
MLE to NCE-U, we can see that NCE training does
reduce translation quality. NCE-U outperforms hav-
ing no NNJM, but lags behind MLE considerably,
resulting in significantly worse performance on all
tests. This is mitigated with translation noise: NCE-
T and NCE-M both perform significantly better than
NCE-U. Furthermore, in 3 out of 4 tests, NCE-T
matches or exceeds the performance of MLE. The
one Arabic-to-English case where NCE-T exceeds
the performance of MLE is particularly intriguing,
and warrants further study.

Though NCE-T performs very well as a trans-
lation feature, it is relatively lousy as a language
model, with abnormally large values for both NLL
and | logZ|. This indicates that NCE-T is only good
at predicting the next word from a pool of reasonable
translation candidates. Scores for words drawn from
the larger vocabulary are less accurate. However,
the BLEU results for NCE-T show that this does not
matter for translation performance. If model like-
lihoods over the complete vocabulary are needed,
one can repair these estimates by mixing in uni-
gram noise, as shown by NCE-M, which achieves
the same or better likelihoods than NCE-U, with
comparable BLEU scores to those of NCE-T.

Devlin et al. (2014) suggest that one drawback of
NCE with respect to self-normalized MLE is NCE’s
lack of an α hyper-parameter to control the objec-
tive’s emphasis on self-normalization. However, the
| logZ| values for NCE-U are only slightly lower
than those of MLE, and are larger than those of the
superior NCE-M. This suggests that we could not
have improved NCE-U’s performance by adjusting
its emphasis on self-normalization.

General Adapted
Method BLEU ∆ BLEU ∆
No NNJM 39.6 -1.4 39.6 -2.2
MLE 41.0 — 41.8 —
NCE-U 40.7 -0.3 41.2 -0.6
NCE-T 41.0 0.0 42.0 +0.2
NCE-M 40.9 -0.1 41.7 -0.1

Table 3: Comparing NNJM training objectives with and with-

out a domain adaptation step for Arabic-to-English task.

4.2 Impact of the Domain Adaptation Pass

We began this project with the hypothesis that NCE
may harm NNJM performance. But NCE-U per-
formed worse than we expected. In particular, the
differences between NCE-U and NCE-T are larger
than those reported by Zhang et al. (2015). This led
us to investigate the domain adaptation pass, which
was used in our experiments but not those of Zhang
et al. This step refines the model with a second train-
ing pass on an in-domain subset of the training data.
We repeated our comparison for Arabic without do-
main adaptation, reporting BLEU averaged over two
test sets and across 5 tuning replications. We also re-
port each system’s BLEU differential ∆ with respect
to MLE. The results are shown under General in Ta-
ble 3, while Adapted summarizes our results from
Table 2 in the same format.

The domain adaptation step magnifies the differ-
ences between training objectives, perhaps because
it increases performance over-all. The spread be-
tween the worst and best NNJM is only 0.3 BLEU
under General, while it is 0.8 BLEU under Adapted.
Therefore, groups training unadapted models may
not see as large drops from NCE-U as we have re-
ported above. Note that we experimented with sev-
eral configurations that account specifically for this
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domain-adaptation pass (noise distributions based
on general versus in-domain corpora, alternate stop-
ping criteria), so that NCE-U would be presented
in the most positive possible light. Perhaps most
importantly, Table 3 shows that the domain adapta-
tion pass is quite effective, producing large improve-
ments for all NNJMs.

4.3 Impact on Speed

MLE and NCE both produce self-normalized mod-
els, so they both have the same impact on decoding
speed. With the optimizations described by Devlin
et al. (2014), the impact of any single-hidden-layer
NNJM is negligible.

For training, the main benefit of NCE is that it
reduces the cost of the network’s output layer, re-
placing a term that was linear in the vocabulary
size with one that is linear in the sample size. In
our experiments, this is a reduction from 32K to
100. The actual benefit from this reduction is highly
implementation- and architecture-dependent. It is
difficult to get a substantial speedup from NCE us-
ing Theano on GPU hardware, as both reward dense
matrix operations, and NCE demands sparse vector
operations (Jean et al., 2015). Therefore, our deci-
sion to implement all methods in a shared codebase,
which ensured a fair comparison of model quality,
also prevented us from providing a meaningful eval-
uation of training speed, as the code and architec-
ture were implicitly optimized to favour the most de-
manding method (MLE). Fortunately, there is ample
evidence that NCE can provide large improvements
to per-batch training speeds for NNLMs, ranging
from a 2× speed-up for 20K-word vocabularies on
a GPU (Chen et al., 2015) to more than 10× for
70K-word vocabularies on a CPU (Vaswani et al.,
2013). Meanwhile, our experiments show that 1.2M
batches are sufficient for MLE, NCE-T and NCE-M
to achieve very high quality; that is, none of these
methods made use of early stopping during their
main training pass. This indicates that per-batch
speed is the most important factor when comparing
the training times of these NNJMs.

5 Conclusions

We have shown that NCE training with a unigram
noise distribution does reduce NNJM performance

with respect to MLE training, both in terms of model
likelihoods and downstream translation quality. This
performance drop can be avoided if NCE uses a
translation-aware noise distribution. We have em-
phasized the importance of a domain-specific train-
ing pass, and we have shown that this pass magni-
fies the differences between the various NNJM train-
ing objectives. In a few cases, NCE with transla-
tion noise actually outperformed MLE. This sug-
gests that there is value in only considering plausi-
ble translation candidates during training. It would
be interesting to explore methods to improve MLE
with this intuition.
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