WOLFE: An NLP-friendly Declarative Machine Learning Stack

Tim Rocktischel”
University of Washington
Seattle WA
sameer @cs.washington.edu

Sameer Singh'

Abstract

Developing machine learning algorithms for
natural language processing (NLP) applica-
tions is inherently an iterative process, involv-
ing a continuous refinement of the choice of
model, engineering of features, selection of in-
ference algorithms, search for the right hyper-
parameters, and error analysis. Existing proba-
bilistic program languages (PPLs) only provide
partial solutions; most of them do not support
commonly used models such as matrix factor-
ization or neural networks, and do not facilitate
interactive and iterative programming that is
crucial for rapid development of these models.

In this demo we introduce WOLFE, a stack de-
signed to facilitate the development of NLP ap-
plications: (1) the WOLFE language allows the
user to concisely define complex models, en-
abling easy modification and extension, (2) the
WOLFE interpreter transforms declarative ma-
chine learning code into automatically differ-
entiable terms or, where applicable, into factor
graphs that allow for complex models to be
applied to real-world applications, and (3) the
WOLFE IDE provides a number of different
visual and interactive elements, allowing intu-
itive exploration and editing of the data rep-
resentations, the underlying graphical models,
and the execution of the inference algorithms.

1 Introduction

Machine learning has become a critical component
of practical NLP systems, however designing and
training an appropriate, accurate model is an itera-
tive and time-consuming process for a number of rea-
sons. First, initial intuitions that inform model design

61

Luke Hewitt*

Jason Naradowsky*
*University College London
London UK

{t.rocktaschel,luke.hewitt.10,j.narad,s.riedel } @cs.ucl.ac.uk

(such as which features to use) are often inaccurate,
requiring incremental model tweaking based on per-
formance. Even if the model is accurate, the final
performance depends quite critically on the choice of
the algorithms and their hyper-parameters. Further,
bugs that are introduced by the user may not even be
reflected directly in the performance (such as a fea-
ture computation bug may not degrade performance).
All these concerns are further compounded due to the
variety of approaches commonly used in NLP, such
as conditional random fields (Sutton and McCallum,
2007), Markov random networks (Poon and Domin-
gos, 2007), Bayesian networks (Haghighi and Klein,
2010), matrix factorization (Riedel et al., 2013), and
Deep learning (Socher et al., 2013).

Probabilistic programming languages (PPLs), by
closing the gap between traditional programming
and probabilistic modeling, go a long way in aiding
quick design and modification of expressive models'.
However, creating accurate machine learning models
using these languages remains challenging. Of the
probabilistic programming languages that exist today,
no language can easily express the variety of models
used in NLP, focusing instead on a restricted set of
modeling paradigms, for example, Markov logic net-
works can be models by Alchemy (Richardson and
Domingos, 2006), Bayesian generative networks by
Church (Goodman et al., 2008), undirected graphi-
cal models by Factorie (McCallum et al., 2009), and
so on. Further, these toolkits are only restricted to
model design and inference execution, and do not
provide the appropriate debugging and interactive

'For a comprehensive list of PPLs, see http://
probabilistic-programming.org/.

Proceedings of NAACL-HLT 2015, pages 61-65,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics

Sebastian Riedel*

[User J
REPL Interface I

w[Language J [Visualization]
[l 77777777777777 A

Interpreter

!

[Efficient Implementation J

Figure 1: Overview of the WOLFE Stack.

visualization tools required for developing such mod-
els in practice. Due to these concerns, probabilis-
tic programming has not found significant adoption
in natural language processing, and application of
machine learning to NLP still consists either of ar-
duously designing, debugging, and iterating over a
variety of models, or more commonly, giving up and
using the first model that is “good enough”.

In this demo, we introduce our probabilistic pro-
gramming toolkit WOLFE (Riedel et al., 2014) that
aids in the iterative design of machine learning mod-
els for NLP applications. The underlying proba-
bilistic programming language can be used to con-
cisely express a wide range of models, including
undirected graphical models, matrix factorization,
Bayesian networks, neural networks, and further, its
modular nature allows combinations of these model-
ing paradigms. We additionally present an easy-to-
use IDE for the interactive designing of NLP models,
consisting of an interactive and visual presentation
of structured data, graphical models, and inference
execution. Using the WOLFE language and IDE can
thus enable the users to quickly create, debug, and
iterate on complex models and inference.

2 Overview of the WOLFE Stack

The overall goal of the demo will be to guide users
in creating complex graphical models using an easy-
to-use mathematical language for defining models,
and in performing learning and inference for the cre-
ated model using an IDE. Figure 1 summarizes the
overview of the WOLFE stack, consisting of the lan-
guage and the visualization that form the user-facing
interface, with the interpreter and efficient learning
and inference engine as the back-end.

62

def F(t: Thetas.Term)(cell: Cells.Term)

t.rels(cell.rel) dot t.pairs(cell.pair)
def E(t: Thetas.Term)(cell: Cells.Term)
t.slots1(cell.relSlotl) dot t.argls(cell.argl))
t.slots2(cell.relSlot2) dot t.arg2s(cell.arg2))
def FE(t: Thetas.Term)(cell: Cells.Term)
F(t) (cell) + E(t)(cell)
def Tucker2(t: Thetas.Term)(cell: Cells.Term)
(t.relMatrices(cell.rel) + t.argls(cell.argl)) dot t.arg2s(cell.arg2)
def TransE(t: Thetas.Term)(cell: Cells.Term)
12(t.argls(cell.argl) + t.rels(cell.rel), t.arg2s(cell.arg2))
def bpr(pos: DoubleTerm, neg: DoubleTerm)
log(sigm(pos - neg))
def 11(pos: DoubleTerm, neg: DoubleTerm)
log(sigm(pos)) - log(sigm(neg))

def bprFEObjective(t: Thetas.Term)(pos: Cells.Term, neg: Cells.Term)
bpr(FE(t) (pos), FE(t)(neg))

Figure 2: Implementation of various matrix and ten-
sor factorization models in WOLFE.

2.1 Declarative Modeling Language

Existing PPLs primarily focus on a single represen-
tation for the probabilistic models, and either do not
support, or provide only inefficient implementations
for other kinds of machine learning models. Thus a
practitioner either has to write her own customized
implementation of the models she is trying to explore,
or decide apriori on the family of models she will be
restricted to; both undesirable options. Instead, we
introduce a probabilistic programming language that
is universal in its expression of models, yet allows
for efficient implementations of these models.

The design of the WOLFE language is inspired
by the observation that most machine learning algo-
rithms can be formulated in terms of scalar functions
(such as distributions and objectives/losses), search
spaces (such as the universe of possible labels) and a
small set of mathematical operations such as maxi-
mization, summation and expectations that operate
on these functions and spaces. Using this insight, a
program in WOLFE consists of a declarative descrip-
tion of the machine learning algorithm in terms of
implementations of these scalar functions, definitions
of the search spaces, and the use of appropriate opera-
tors on these. For example, named-entity recognition
tagging using conditional random fields consists of
a scalar function that defines the model score using
a dot product between the parameters and the sum
of node and edge features, while inference using this
model involves finding the label sequence that has
the maximum model score over all label sequences.

The focus on scalar functions as building blocks
allows for rapid prototyping of a large range of ma-

chine learning models. For instance, there exist a
variety of matrix and tensor factorization methods for
knowledge base population that have a succinct, uni-
fied mathematical formulation (Nickel et al., 2015).
In WOLFE these models can be easily implemented
with a few lines of code. See Figure 2 for examples
of a Tucker2 decomposition, TransE (Bordes et al.,
2013), and Riedel et al. (2013)’s feature model (F),
entity model (E), and combination of the two (FE),
either based on a log likelihood or Bayesian Person-
alized Ranking (Rendle et al., 2009) objective.

2.2 Interpreter, and Efficient Implementations

In WOLFE users write models using a domain-
specific-language that supports a wide range of math-
ematical expressions. The WOLFE interpreter then
evaluates these expressions. This is non-trivial as
expressions usually contain operators such as the
argmax functions which are, in general, intractable
to compute. For efficient evaluation of WOLFE pro-
grams our interpreter compiles WOLFE expressions
into representations that enable efficient computa-
tion in many cases. For example, for terms that in-
volve maximization over continuous search spaces
WOLFE generates a computation tree that supports
efficient forward and back-propagation for automatic
differentiation. Likewise, when maximizing over dis-
crete search spaces, WOLFE constructs factor graphs
that support efficient message passing algorithm such
as Max-Product or Dual Decomposition. Crucially,
due to the compositional nature of WOLFE, discrete
and continuous optimization problems can be nested
to support a rich class of structured prediction ob-
jectives. In such cases the interpreter constructs
nested computational structures, such as a factor
graph within a back-propagation graph.

2.3 Visual and Interactive IDE

In this demonstration, we present an integrated de-
veloping, debugging and visualization toolkit for ma-
chine learning for NLP. The IDE is based on the read-
eval-print loop (REPL) to allow quick iterations of
writing and debugging, and consists of the following
elements: (1) Editor (read): Users define the model
and inference in the declarative, math-like language
described in Section 2.1 using a syntax highlighted
code editor. (2) Build Automation (eval): The use of
the interpreter as described in the previous section

63

to provide efficient code that is executed. (3) De-
bugging/Visualization (print): Our tool presents the
underlying factor graph as an interactive Ul element
that supports clicking, drag and drop, hover, etc. to
explore the structure and the factors of the model.
We visualize the results of inference in a graphical
manner that adapts to the type of the result (bar charts
for simple distributions, shaded maps for matrix-like
objects, circles/arrows for NLP data types, etc.). For
further fine-grained debugging, we can also surface
intermediate results from inference, for example, vi-
sualizing the messages in belief propagation for each
edge in the factor graph.

3 Demo Outline

The overall objective of the demo is for users to de-
sign, debug, and modify a machine learning model
for an NLP application, starting from scratch. The
demo takes the user through all the steps of loading
data, creating an initial model, observing the out-
put errors, modifying the model accordingly, and
rerunning to see the errors fixed: the complete set of
steps often involved in real-life application of ML for
NLP. We provide pre-built functions for the menial
tasks, such as data loading and feature computation
functions, leaving the more interesting aspects of
model design to the user. Further, we include an
“open-ended” option for interested users to develop
arbitrary models. Based on their interest or area of ex-
pertise, the user has an option of investigating any (or
all) of the following applications: (1) sequence tag-
ging using CRFs, (2) relational learning using MLN,
(3) matrix factorization for relation extraction, and
(4) dependency parsing (for advanced users). Each
of these are similar in the overall “script”, differing
in the data, models, and inference algorithms used;
we describe the steps of the demo using the CRF
example. All of the demo applications are available
online at http://wolfe.ml/demos/nlp.

1. The first step of the demo allows the user to
read as input a standard dataset of the task, and
visualize instances in an easy-to-read manner. In
Figure 3a for example, we show two sentences
read for the purpose of sequence tagging.

2. The user then defines an initial model for the
task, which is visualized as a factor graph for

def skip(x: Inputs.Term)(y: Outputs.Term)
sum(x.matches) {p 2.0 * I(y(p._1) y(p._2))}

import ml.wolfe.examples.SkipChainUtil._ @
val doc = TokenSplitter(SentenceSplitter(

"John Denver is a Songwriter. Throughout his life, Denver produced many recor
BratRenderer. bratIg(doc)

def skipChain(t: Thetas.Term)(x: Inputs.Term)(y: Outputs.Term)
crf(t) (x)(y) + skip(x)(y)

John Denver is a Songwriter.
Throughout his life, Denver produced many records.

val prediction = argmax(Labels)(skipChain(thetaStar)(doc.words))
factorGraphURL@FactorGraphBuffer)

(a) Data Loading

def feats(words: SeqTerm[Word])(labels: SeqTerm[Labell): VectorTerm @

sum(@ until words.size) { i
oneHot (ner(i))
oneHot (words (i) labels(i))
oneHot (' lowercase labels(i), I(words(i).head.isLower))
oneHot (' firstName labels(i), I(firstNames(words(i))))
oneHot (' lastName labels(i), I(lastNames(words(i))))
oneHot(' location labels(i), I(locations(words(i))))
oneHot('punct labels(i), I(puncts(words(i)))) }

sum(® until words.size - 1) { i
oneHot (labels (i) labels(i)}

def crf(t: Thetas.Term)(words: SeqTerm[Word])(labels: SeqTerm[Labell)
t.weights dot feats(words)(labels)

val predict = argmax(Labels) { 1 crf(thetaStar) (doc.words) (1) }
factorGraphURLmFactorGraphBuffer)

(a) Modify the Model (add skip edge)

BratRenderer.bratIE(appendMentions(doc, prediction))

(i)
John Denver s a Songwriter.

i)
Throughout his lfe, Denver produced many records.

(b) Fixed Prediction

Figure 4: Debugging Loop: The remaining steps of the
iterative development, consisting of modification of the
model to fix the error from Figure 3c by adding a skip-
factor to the original model, and confirming the inference
in the skip-chain model results in the correct prediction.

(b) Initial Model

BratRenderer. hratIﬂ_([appendMentions (doc, first))

{PER]
John Denver is a Songwriter.

Throughout his life, Denver produced many records.

lowing the user to detect mistakes (for example,
the incorrect NER tag of location to “Denver”
in Figure 3c).

(c) Error in Prediction

Figure 3: Model Creation and Evaluation: An exam-
ple instance of the demo showing the creation steps, in-
cluding the loading and visualization of the sentences,
designing and presentation of a linear chain CRF, and
Viterbi decoding for the sentences.

4. The user then modifies the model (adding a skip-
factor in Figure 4a) that will likely correct the
mistake. The modified model is then visualized
to confirm it is correct. (Optionally, the user can,
at any point, visualize the execution of the in-
ference to confirm the modifications as well, for
example Figure 4a shows the state of messages
in belief propagation.)

the purpose of debugging the model definition.
The initial model for sequence tagging is a sim-
ple linear chain, defined and visualized for a

sentence in Figure 3b. .
& 5. On the execution of the model, the user con-

. The user writes the declarative definition of in-
ference, and makes predictions of the input data.
The predictions are appropriately visualized, al-

64

firms that the original error has been fixed, for
example the skip factor allows the correct tag of
person for “Denver” in Figure 4b.

4 Conclusions

This demo describes WOLFE, a language, interpreter,
and an IDE for easy, iterative development of com-
plex machine learning models for NLP applications.
The language allows concise definition of the mod-
els and inference by using universal, mathematical
syntax. The interpreter performs program analysis
on the user code to automatically generate efficient
low-level code. The easy-to-use IDE allows the user
to iteratively write and execute such programs, but
most importantly supports intuitive visualizations of
structured data, models, and inference to enable users
to understand and debug their code. The demo thus
allows a user to design, debug, evaluate, and modify
complex machine learning models for a variety of
NLP applications.

Acknowledgments

We would like to thank Larysa Visengeriyeva, Jan
Noessner, and Vivek Srikumar for contributions to
early versions of WOLFE. This work was supported
in part by Microsoft Research through its PhD Schol-
arship Programme, an Allen Distinguished Investiga-
tor Award, a Marie Curie Career Integration Grant,
and in part by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP) a Semicon-
ductor Research Corporation program sponsored by
MARCO and DARPA.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data.
In Advances in Neural Information Processing Systems,
pages 2787-2795.

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy,
Keith Bonawitz, and Joshua B. Tenenbaum. 2008.
Church: a language for generative models. In Un-
certainty in Artificial Intelligence (UAI).

Aria Haghighi and Dan Klein. 2010. Coreference reso-
lution in a modular, entity-centered model. In North
American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL
HLT), pages 385-393.

Andrew McCallum, Karl Schultz, and Sameer Singh.
2009. FACTORIE: Probabilistic programming via im-

65

peratively defined factor graphs. In Neural Information
Processing Systems (NIPS).

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of relational
machine learning for knowledge graphs: From multi-
relational link prediction to automated knowledge
graph construction. arXiv preprint arXiv:1503.00759.

Hoifung Poon and Pedro Domingos. 2007. Joint inference
in information extraction. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI "07),
pages 913-918.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2009. BPR: Bayesian per-
sonalized ranking from implicit feedback. In Uncer-
tainty in Artificial Intelligence (UAI).

Matthew Richardson and Pedro Domingos. 2006. Markov
logic networks. Machine Learning, 62(1-2):107-136.

Sebastian Riedel, Limin Yao, Benjamin M. Marlin, and
Andrew McCallum. 2013. Relation extraction with ma-
trix factorization and universal schemas. In Joint Hu-
man Language Technology Conference/Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL ’13), June.

Sebastian Riedel, Sameer Singh, Vivek Srikumar, Tim
Rocktaschel, Larysa Visengeriyeva, and Jan Noessner.
2014. Wolfe: Strength reduction and approximate pro-
gramming for probabilistic programming. In Interna-
tional Workshop on Statistical Relational Al (StarAl).

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Charles Sutton and Andrew McCallum. 2007. An intro-
duction to conditional random fields for relational learn-
ing. In Introduction to Statistical Relational Learning.

