
Proceedings of NAACL-HLT 2015, pages 41–45,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Ckylark: A More Robust PCFG-LA Parser

Yusuke Oda Graham Neubig Sakriani Sakti Tomoki Toda Satoshi Nakamura
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{oda.yusuke.on9, neubig, ssakti, tomoki, s-nakamura}@is.naist.jp

Abstract

This paper describes Ckylark, a PCFG-LA
style phrase structure parser that is more ro-
bust than other parsers in the genre. PCFG-LA
parsers are known to achieve highly competi-
tive performance, but sometimes the parsing
process fails completely, and no parses can be
generated. Ckylark introduces three new tech-
niques that prevent possible causes for parsing
failure: outputting intermediate results when
coarse-to-fine analysis fails, smoothing lexi-
con probabilities, and scaling probabilities to
avoid underflow. An experiment shows that
this allows millions of sentences can be parsed
without any failures, in contrast to other pub-
licly available PCFG-LA parsers. Ckylark is
implemented in C++, and is available open-
source under the LGPL license.1

1 Introduction

Parsing accuracy is important. Parsing accuracy has
been shown to have a significant effect on down-
stream applications such as textual entailment (Yuret
et al., 2010) and machine translation (Neubig and
Duh, 2014), and most work on parsing evaluates ac-
curacy to some extent. However, one element that is
equally, or perhaps even more, important from the
view of downstream applications is parser robust-
ness, or the ability to return at least some parse re-
gardless of the input. Every failed parse is a sen-
tence for which downstream applications have no
chance of even performing processing in the nor-
mal way, and application developers must perform

1http://github.com/odashi/ckylark

special checks that detect these sentences and either
give up entirely, or fall back to some alternative pro-
cessing scheme.

Among the various methods for phrase-structure
parsing, the probabilistic context free grammar with
latent annotations (PCFG-LA, (Matsuzaki et al.,
2005; Petrov et al., 2006)) framework is among the
most popular for several reasons. The first is that it
boasts competitive accuracy, both in intrisinic mea-
sures such as F1-score on the Penn Treebank (Mar-
cus et al., 1993), and extrinsic measures (it achieved
the highest textual entailment and machine transla-
tion accuracy in the papers cited above). The second
is the availablity of easy-to-use tools, most notably
the Berkeley Parser,2 but also including Egret,3 and
BUBS Parser.4

However, from the point of view of robustness,
existing tools for PCFG-LA parsing leave something
to be desired; to our knowledge, all existing tools
produce a certain number of failed parses when run
on large data sets. In this paper, we introduce Ck-
ylark, a new PCFG-LA parser specifically designed
for robustness. Specifically, Ckylark makes the fol-
lowing contributions:

• Based on our analysis of three reasons why
conventional PCFG-LA parsing models fail
(Section 2), Ckylark implements three im-
provements over the conventional PCFG-LA
parsing method to remedy these problems (Sec-
tion 3).

2https://code.google.com/p/berkeleyparser/
3https://code.google.com/p/egret-parser/
4https://code.google.com/p/bubs-parser/

41

• An experimental evaluation (Section 4) shows
that Ckylark achieves competitive accuracy
with other PCFG-LA parsers, and can robustly
parse large datasets where other parsers fail.

• Ckylark is implemented in C++, and released
under the LGPL license, allowing for free re-
search or commercial use. It is also available
in library format, which means that it can be
incorporated directly into other programs.

2 Failure of PCFG-LA Parsing

The basic idea behind PCFG-LA parsing is that tra-
ditional tags in the Penn Treebank are too coarse,
and more accurate grammars can be achieved by
automatically splitting tags into finer latent classes.
For example, the English words “a” and “the” are
classified as determiners (DT), but these words are
used in different contexts, so can be assigned differ-
ent latent classes. The most widely used method to
discover these classes uses the EM algorithm to esti-
mate latent classes in stages (Petrov et al., 2006).
This method generates hierarchical grammars in-
cluding relationships between each latent class in a
tree structure, and the number of latent classes in-
creases exponentially for each level of the grammar.
The standard search method for PCFG grammars is
based on the CKY algorithm. However, simply ap-
plying CKY directly to the “finest” grammar is not
realistic, as the complexity of CKY is propotional
to the polynomial of the number of latent classes.
To avoid this problem, Petrov et al. (2006) start
the analysis with the “coarse” grammar and apply
pruning to reduce the amount of computation. This
method is called coarse-to-fine analysis. However,
this method is not guaranteed to successfully return
a parse tree. We describe three reasons why PCFG-
LA parsing fails below.

Failure of pruning in coarse-to-fine analysis
Coarse-to-fine analysis prunes away candidate
paths in the parse graph when their probability
is less than a specific threshold ϵ. This pruning
can cause problems in the case that all possible
paths are pruned and the parser cannot generate
any parse tree at the next step.

Inconsistency between model and target If we
parse sentences with syntax that diverges from

the training data, the parser may fail because
the parser needs rules which are not included
in the grammar. For example, symbols “(”
and “)” become a part of phrase “PRN” only
if both of them and some phrase “X” exist
with the order “(X).” One approach for this
problem is to use smoothed grammars (Petrov
et al., 2006), but this increases the size of
the probability table needed to save such a
grammar.

Underflow of probabilities Parsers calculate joint
probabilities of each parse tree, and this value
decreases exponentially according to the length
of the input sequence. As a result, numerical
underflow sometimes occurs if the parser tries
to parse longer sentences. Using calculations in
logarithmic space is one approach to avoid un-
derflow. However, this approach requires log
and exponent operations, which are more com-
putationally expensive than sums or products.

The failure of pruning is a unique problem for
PCFG-LA, and the others are general problems of
parsing methods based on PCFG. In the next sec-
tion, we describe three improvements over the basic
PCFG-LA method that Ckylark uses to avoid these
problems.

3 Improvements of the Parsing Method

3.1 Early Stopping in Coarse-to-fine Analysis

While coarse-to-fine analysis generally uses the
parsing result of the finest grammar as output, in-
termediate grammars also can generate parse trees.
Thus, we can use these intermediate results instead
of the finest result when parsing fails at later stages.
Algorithm 1 shows this “stopping” approach. This
approach can avoid all errors due to coarse-to-fine
pruning, except in the case of failure during the pars-
ing with the first grammar due to problems of the
model itself.

3.2 Lexicon Smoothing

Next, we introduce lexicon smoothing using the
probabilities of unknown words at parsing time.
This approach not only reduces the size of the gram-
mar, but also allows for treatment of any word as

42

Algorithm 1 Stopping coarse-to-fine analysis
Require: w: input sentence
Require: G0, · · · , GL: coarse-to-fine grammars

T−1 ← nil
P0 ← {} ▷ pruned pathes
for l← 0 .. L do

Tl, Pl+1 ← parse and prune(w; Gl, Pl)
if Tl = nil then ▷ parsing failed

return Tl−1 ▷ return intermediate result
end if

end for
return TL ▷ parsing succeeded

“unknown” if the word appears in an unknown syn-
tactic content. Equation (1) shows the smoothed lex-
icon probability:

P ′(X → w) ≡ (1− λ)P (X → w) +
λP (X → wunk), (1)

where X is any pre-terminal (part-of-speech) sym-
bol in the grammar, w is any word, and wunk is
the unknown word. λ is an interpolation factor be-
tween w and wunk, and should be small enough to
cause no effect when the parser can generate the re-
sult without interpolation. Our implementation uses
λ = 10−10.

3.3 Probability Scaling

To solve the problem of underflow, we modify
model probabilities as Equations (2) to (4) to avoid
underflow without other expensive operations:

Q(X → w) ≡ P ′(X → w)/sl(w), (2)

Q(X → Y) ≡ P (X → Y), (3)

Q(X → Y Z) ≡ P (X → Y Z)/sg, (4)

where X, Y, Z are any non-terminal symbols (in-
cluding pre-terminals) in the grammar, and w is any
word. The result of parsing using Q is guaranteed to
be the same as using original probabilities P and P ′,
because Q maintains the same ordering of P and P ′

despite the fact that Q is not a probability. Values
of Q are closer to 1 than the original values, reduc-
ing the risk of underflow. sl(w) is a scaling factor
of a word w defined as the geometric mean of lexi-
con probabilities that generate w, P ′(X → w), as in

Table 1: Dataset Summaries.
Type #sent #word

WSJ-train/dev 41.5 k 990 k
WSJ-test 2.42 k 56.7 k
NTCIR 3.08 M 99.0 M

Equation (5):

sl(w) ≡ exp
∑
X

P (X) log P ′(X → w), (5)

and sg is the scaling factor of binary rules defined as
the geometric mean of all binary rules in the gram-
mar P (X → Y Z) as in Equation (6):

sg ≡ exp
∑
X

P (X)H(X), (6)

H(X) ≡
∑
Y,Z

P (X → Y Z) log P (X → Y Z). (7)

Calculating P (X) is not trivial, but we can retrieve
these values using the graph propagation algorithm
proposed by Petrov and Klein (2007).

4 Experiments

We evaluated parsing accuracies of our parser Ck-
ylark and conventional PCFG-LA parsers: Berke-
ley Parser and Egret. Berkeley Parser is a conven-
tional PCFG-LA parser written in Java with some
additional optimization techniques. Egret is also a
conventional PCFG-LA parser in C++ which can
generate a parsing forest that can be used in down-
stream application such forest based machine trans-
lation (Mi et al., 2008).

4.1 Dataset and Tools
Table 1 shows summaries of each dataset.

We used GrammarTrainer in the Berkeley Parser
to train a PCFG-LA grammar with the Penn Tree-
bank WSJ dataset section 2 to 22 (WSJ-train/dev).
Egret and Ckylark can use the same model as the
Berkeley Parser so we can evaluate only the perfor-
mance of the parsers using the same grammar. Each
parser is run on a Debian 7.1 machine with an Intel
Core i7 CPU (3.40GHz, 4 cores, 8MB caches) and
4GB RAM.

We chose 2 datasets to evaluate the performances
of each parser. First, WSJ-test, the Penn Tree-
bank WSJ dataset section 23, is a standard dataset

43

Table 2: Bracketing F1 scores of each parser.

Parser F1 (all) F1 (|w| ≤ 40)
Berkeley Parser 89.98 90.54
Egret 89.05 89.70
Ckylark (10−5) 89.44 90.07
Ckylark (10−7) 89.85 90.39

Table 3: Tagging accuracies of each parser.

Parser Acc (all) Acc (|w| ≤ 40)
Berkeley Parser 97.39 97.37
Egret 97.33 97.28
Ckylark (10−5) 97.37 97.35
Ckylark (10−7) 97.39 97.38

to evaluate parsing accuracy including about 2000
sentences. Second, we use NTCIR, a large English
corpus including more than 3 million sentences, ex-
tracted from the NTCIR-8 patent translation task
(Yamamoto and Shimohata, 2010).

Input sentences of each parser must be tokenized
in advance, so we used a tokenization algorithm
equivalent to the Stanford Tokenizer5 for tokenizing
the NTCIR dataset.

4.2 Results

Table 2 shows the bracketing F1 scores6 of parse
trees for each parser on the WSJ-test dataset and Ta-
ble 3 also shows the part-of-speech tagging accura-
cies. We show 2 results for Ckylark with pruning
threshold ϵ as 10−5 and 10−7. These tables show
that the result of Ckylark with ϵ = 10−7 achieves
nearly the same parsing accuracy as the Berkeley
Parser.

Table 4 shows calculation times of each parser on
the WSJ-test dataset. When the pruning threshold ϵ
is smaller, parsing takes longer, but in all cases Ck-
ylark is faster than Egret while achieving higher ac-
curacy. Berkeley Parser is the fastest of all parsers, a
result of optimizations not included in the standard
PCFG-LA parsing algorithm. Incorporating these
techniques into Ckylark is future work.

Table 5 shows the number of parsing failures of
each parser. All parsers generate no failure in the
WSJ-test dataset, however, in the NTCIR dataset,

5http://nlp.stanford.edu/software/tokenizer.shtml
6http://nlp.cs.nyu.edu/evalb/

Table 4: Calculation times of each parser.

Parser Time [s]
Berkeley Parser 278
Egret 3378
Ckylark (10−5) 923
Ckylark (10−7) 2157

Table 5: Frequencies of parsing failure of each parser.

Failure
Parser WSJ-test NTCIR

(#) (%) (#) (%)
Berkeley Parser 0 0 419 0.0136
Egret 0 0 17287 0.561
Ckylark (10−5) 0 0 0 0

Table 6: Number of failures of each coarse-to-fine level.
Smooth Failure level

0 1 2 3 4 5 6
λ = 0 1741 135 24 11 5 57 1405
λ = 10−10 0 130 19 8 4 51 1389

0.01% and 0.5% of sentences could not be parsed
with the Berkeley Parser and Egret respectively. In
contrast, our parser does not fail a single time.

Table 6 shows the number of failures of Ckylark
with ϵ = 10−5 and without the stopping approach; if
the parser failed at the level l analysis then it returns
the result of the l − 1 level. Thus, the stopping ap-
proach will never generate any failure, unless failure
occurs at the initial level. The reason for failure at
the initial level is only due to model mismatch, as
no pruning has been performed. These errors can be
prevented by lexicon smoothing at parsing time as
shown in the case of level 0 with λ = 10−10 in the
table.

5 Conclusion

In this paper, we introduce Ckylark, a parser that
makes three improvements over standard PCFG-LA
style parsing to prevent parsing failure. Experiments
show that Ckylark can parse robustly where other
PCFG-LA style parsers (Berkeley Parser and Egret)
fail. In the future, we plan to further speed up Ck-
ylark, support forest output, and create interfaces to
other programming languages.

44

Acknowledgement

Part of this work was supported by JSPS’s Research
Fellowship for Young Scientists.

References
Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-

rice Santorini. 1993. Building a large annotated cor-
pus of english: The Penn Treebank. Computational
linguistics, 19(2).

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. ACL.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proc. ACL-HLT.

Graham Neubig and Kevin Duh. 2014. On the elements
of an accurate tree-to-string machine translation sys-
tem. In Proc. ACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proc. NAACL-HLT.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proc. COLING-ACL.

Atsushi Fujii Masao Utiyama Mikio Yamamoto and Say-
ori Shimohata. 2010. Overview of the patent transla-
tion task at the NTCIR-8 workshop. In Proc. NTCIR-
8.

Deniz Yuret, Aydin Han, and Zehra Turgut. 2010.
Semeval-2010 task 12: Parser evaluation using textual
entailments. In Proc. SemEval.

45

