
Proceedings of NAACL-HLT 2015, pages 6–10,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Analyzing and Visualizing Coreference Resolution Errors

Sebastian Martschat1, Thierry Göckel2 and Michael Strube1

1Heidelberg Institute for Theoretical Studies gGmbH, Heidelberg, Germany
(sebastian.martschat|michael.strube)@h-its.org

2iQser GmbH, Walldorf, Germany
thierry.goeckel@iqser.com

Abstract

We present a toolkit for coreference resolution
error analysis. It implements a recently pro-
posed analysis framework and contains rich
components for analyzing and visualizing re-
call and precision errors.

1 Introduction

Coreference resolution is the task of determining
which mentions in a text refer to the same en-
tity. Both the natural language processing engineer
(who needs a coreference resolution system for the
problem at hand) and the coreference resolution re-
searcher need tools to facilitate and support system
development, comparison and analysis.

In Martschat and Strube (2014), we propose a
framework for error analysis for coreference resolu-
tion. In this paper, we present cort1, an implementa-
tion of this framework, and show how it can be use-
ful for engineers and researchers. cort is released as
open source and is available for download2.

2 Error Analysis Framework

Due to the set-based nature of coreference resolu-
tion, it is not clear how to extract errors when an
entity is not correctly identified. The idea underly-
ing the analysis framework of Martschat and Strube
(2014) is to employ spanning trees in a graph-based
entity representation.

1Short for coreference resolution toolkit.
2http://smartschat.de/software

Figure 1 summarizes their approach. They repre-
sent reference and system entities as complete one-
directional graphs (Figures 1a and 1b). To extract
recall errors, they compute a spanning tree of the
reference entity (Figure 1a). All edges in the span-
ning tree which do not appear in the system output
are extracted as recall errors (Figure 1c). For ex-
tracting precision errors, the roles of reference and
system entities are switched.

The analysis algorithm is parametrized only by
the spanning tree algorithm employed: different al-
gorithms lead to different notions of errors. In
Martschat and Strube (2014), we propose an algo-
rithm based on Ariel’s accessibility theory (Ariel,
1990) for reference entities. For system entity span-
ning trees, we take each output pair as an edge.

3 Architecture

Our toolkit is available as a Python library. It
consists of three modules: the core module pro-
vides mention extraction and preprocessing, the
coreference module implements features for
and approaches to coreference resolution, and the
analysis module implements the error analysis
framework described above and ships with other
analysis and visualization utilities.

3.1 core

All input and output must conform to the format of
the CoNLL-2012 shared task on coreference resolu-
tion (Pradhan et al., 2012). We employ a rule-based
mention extractor, which also computes a rich set of
mention attributes, including tokens, head, part-of-
speech tags, named entity tags, gender, number, se-

6



(a)
m1

Obama

m2

he

m3

the president

m4

his

(b)
m1

m2

m3

the president

m4

n1 n2n3

(c)
m1

m3

the president

Figure 1: (a) a reference entity r (represented as a complete one-directional graph) and its spanning tree Tr, (b) a set
S of three system entities, (c) the errors: all edges in Tr which are not in S.

mantic class, grammatical function, coarse mention
type and fine-grained mention type.

3.2 coreference

cort ships with two coreference resolution ap-
proaches. First, it includes multigraph, which is a
deterministic approach using a few strong features
(Martschat and Strube, 2014). Second, it includes
a mention-pair approach (Soon et al., 2001) with
a large feature set, trained via a perceptron on the
CoNLL’12 English training data.

System MUC B3 CEAFe Average

StanfordSieve 64.96 54.49 51.24 56.90
BerkeleyCoref 70.27 59.29 56.11 61.89

multigraph 69.13 58.61 56.06 61.28
mention-pair 69.09 57.84 53.56 60.16

Table 1: Comparison of systems on CoNLL’12 English
development data.

In Table 1, we compare both approaches with
StanfordSieve (Lee et al., 2013), the winner of the
CoNLL-2011 shared task, and BerkeleyCoref (Dur-
rett and Klein, 2013), a state-of-the-art structured
machine learning approach. The systems are eval-
uated via the CoNLL scorer (Pradhan et al., 2014).

Both implemented approaches achieve competi-
tive performance. Due to their modular implemen-
tation, both approaches are easily extensible with
new features and with training or inference schemes.
They therefore can serve as a good starting point for
system development and analysis.

3.3 analysis

The core of this module is the ErrorAnalysis
class, which extracts and manages errors extracted
from one or more systems. The user can define
own spanning tree algorithms to extract errors. We
already implemented the algorithms discussed in
Martschat and Strube (2014). Furthermore, this
module provides functionality to

• categorize and filter sets of errors,
• visualize these sets,
• compare errors of different systems, and
• display errors in document context.

Which of these features is interesting to the user de-
pends on the use case. In the following, we will
describe the popular use case of improving a coref-
erence system in detail. Our system also supports
other use cases, such as the cross-system analysis
described in Martschat and Strube (2014).

4 Use Case: Improving a Coreference
Resolution System

A natural language processing engineer might be in-
terested in improving the performance of a corefer-
ence resolution system since it is necessary for an-
other task. The needs may differ depending on the
task at hand: for some tasks proper name corefer-
ence may be of utmost importance, while other tasks
need mostly pronoun coreference. Through model
and feature redesign, the engineer wants to improve
the system with respect to a certain error class.

The user will start with a baseline system, which
can be one of the implemented systems in our toolkit
or a third-party system. We now describe how cort
facilitates improving the system.

7



4.1 Initial Analysis

To get an initial assessment, the user can extract all
errors made by the system and then make use of the
plotting component to compare these errors with the
maximum possible number of errors3.

For a meaningful analysis, we have to find a suit-
able error categorization. Suppose the user is inter-
ested in improving recall for non-pronominal coref-
erence. Hence, following Martschat and Strube
(2014), we categorize all errors by coarse mention
type of anaphor and antecedent (proper name, noun,
pronoun, demonstrative pronoun or verb)4.

Both name Noun-Name Name-Noun Both noun
Category

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r 

o
f 

e
rr

o
rs

Recall Errors
maximum

multigraph

Figure 2: Recall errors of the multigraph baseline.

Figure 2 compares the recall error numbers of
the multigraph system with the maximum possible
number of errors for the categories of interest to
the engineer. The plot was created by our toolkit
via matplotlib (Hunter, 2007). We can see that the
model performs very well for proper name pairs.
Relative to the maximum number of errors, there are
much more recall errors in the other categories. A
plot for precision errors shows that the system makes
only relatively few precision errors, especially for
proper name pairs.

After studying these plots the user decides to im-
prove recall for pairs where the anaphor is a noun
and the antecedent is a name. This is a frequent cat-
egory which is handled poorly by the system.

3For recall, the maximum number of errors are the errors
made by a system which puts each mention in its own cluster.
For precision, we take all pairwise decisions of a model.

4For a pair of mentions constituting an error, we call the
mention appearing later in the text the anaphor, the other men-
tion antecedent.

4.2 Detailed Analysis

In order to determine how to improve the system,
the user needs to perform a detailed analysis of
the noun-name errors. Our toolkit provides sev-
eral methods to do so. First of all, one can browse
through the pairwise error representations. This sug-
gests further subcategorization (for example by the
presence of token overlap). An iteration of this pro-
cess leads to a fine-grained categorization of errors.

However, this approach does not provide any doc-
ument context, which is necessary to understand
some errors. Maybe context features can help in re-
solving the error, or the error results from multiple
competing antecedents. We therefore include a visu-
alization component, which also allows to study the
interplay between recall and precision.

Figure 3 shows a screenshot of this visualiza-
tion component, which runs in a web browser using
JavaScript. The header displays the identifier of the
document in focus. The left bar contains the naviga-
tion panel, which includes

• a list of all documents in the corpus,
• a summary of all errors for the document in fo-

cus, and
• lists of reference and system entities for the

document in focus.
To the right of the navigation panel, the document in
focus is shown. When the user picks a reference or
system entity from the corresponding list, cort dis-
plays all recall and precision errors for all mentions
which are contained in the entity (as labeled red ar-
rows between mentions). Alternatively, the user can
choose an error category from the error summary. In
that case, all errors of that category are displayed.

We use color to distinguish between entities:
mentions in different entities have different back-
ground colors. Additionally mentions in reference
entities have a yellow border, while mentions in sys-
tem entities have a blue border (for example, the
mention the U.S.-backed rebels is in a reference en-
tity and in a system entity). The user can choose to
color the background of mentions either depending
on their gold entity or depending on their system en-
tity.

These visualization capabilities allow for a de-
tailed analysis of errors and enable the user to take
all document information into account.

8



Figure 3: Screenshot of the visualization component.

The result of the analysis is that almost all errors
are missed is-a relations, such as in the examples in
Figure 3 (the U.S.-backed rebels and the Contras).

4.3 Error Comparison
Motivated by this, the user can add features to the
system, for example incorporating world knowledge
from Wikipedia. The output of the changed model
can be loaded into the ErrorAnalysis object
which already manages the errors made by the base-
line system.

To compare the errors, cort implements various
functions. In particular, the user can access com-
mon errors and errors which are unique to one or
more systems. This allows for an assessment of the
qualitative usefulness of the new feature. Depend-

ing on the results of the comparison, the user can
decide between discarding, retaining and improving
the feature.

5 Related Work

Compared to our original implementation of the
error analysis framework (Martschat and Strube,
2014), we made the analysis interface more user-
friendly and provide more analysis functionality.
Furthermore, while our original implementation did
not include any visualization capabilities, we now
allow for both data visualization and document vi-
sualization.

We are aware of two other software packages for
coreference resolution error analysis. Our toolkit

9



complements these. Kummerfeld and Klein (2013)
present a toolkit which extracts errors from transfor-
mation of reference to system entities. Hence, their
definition of what an error is not rooted in a pairwise
representation, and is therefore conceptually differ-
ent from our definition. They do not provide any
visualization components.

ICE (Gärtner et al., 2014) is a toolkit for corefer-
ence visualization and corpus analysis. In particu-
lar, the toolkit visualizes recall and precision errors
in a tree-based visualization of coreference clusters.
Compared to ICE, we provide more extensive func-
tionality for error analysis and can accommodate for
different notions of errors.

6 Conclusions and Future Work

We presented cort, a toolkit for coreference reso-
lution error analysis. It implements a graph-based
analysis framework, ships with two strong coref-
erence resolution baselines and provides extensive
functionality for analysis and visualization.

We are currently investigating whether the analy-
sis framework can also be applied to structurally re-
lated tasks, such as cross-document coreference res-
olution (Singh et al., 2011) or entity linking.

Acknowledgements

This work has been funded by the Klaus Tschira
Foundation, Heidelberg, Germany. The first author
has been supported by a HITS PhD scholarship.

References

Mira Ariel. 1990. Accessing Noun Phrase Antecedents.
Routledge, London, U.K.; New York, N.Y.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, Seattle, Wash., 18–21
October 2013, pages 1971–1982.

Markus Gärtner, Anders Björkelund, Gregor Thiele,
Wolfgang Seeker, and Jonas Kuhn. 2014. Visualiza-
tion, search, and error analysis for coreference anno-
tations. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, Baltimore, Md., 22–27 June 2014,
pages 7–12.

John D. Hunter. 2007. Matplotlib: A 2D graphics
environment. Computing in Science & Engineering,
9(3):90–95.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
driven analysis of challenges in coreference resolution.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, Seattle,
Wash., 18–21 October 2013, pages 265–277.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Sebastian Martschat and Michael Strube. 2014. Recall
error analysis for coreference resolution. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, Doha, Qatar, 25–29
October 2014, pages 2070–2081.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling multilingual unrestricted
coreference in OntoNotes. In Proceedings of the
Shared Task of the 16th Conference on Computational
Natural Language Learning, Jeju Island, Korea, 12–14
July 2012, pages 1–40.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted mentions:
A reference implementation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Balti-
more, Md., 22–27 June 2014, pages 30–35.

Sameer Singh, Amarnag Subramanya, Fernando Pereira,
and Andrew McCallum. 2011. Large-scale cross-
document coreference using distributed inference and
hierarchical models. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Portland, Oreg.,
19–24 June 2011, pages 793–803.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to corefer-
ence resolution of noun phrases. Computational Lin-
guistics, 27(4):521–544.

10


