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Abstract

Information Extraction (IE) has become an in-
dispensable tool in our quest to handle the data
deluge of the information age. IE can broadly
be classified into Named-entity Recognition
(NER) and Relation Extraction (RE). In this
thesis, we view the task of IE as finding pat-
terns in unstructured data, which can either
take the form of features and/or be specified
by constraints. In NER, we study the cate-
gorization of complex relational1 features and
outline methods to learn feature combinations
through induction. We demonstrate the effi-
cacy of induction techniques in learning : i)
rules for the identification of named entities in
text – the novelty is the application of induc-
tion techniques to learn in a very expressive
declarative rule language ii) a richer sequence
labeling model – enabling optimal learning of
discriminative features. In RE, our investiga-
tions are in the paradigm of distant supervi-
sion, which facilitates the creation of large al-
beit noisy training data. We devise an infer-
ence framework in which constraints can be
easily specified in learning relation extractors.
In addition, we reformulate the learning ob-
jective in a max-margin framework. To the
best of our knowledge, our formulation is the
first to optimize multi-variate non-linear per-
formance measures such as Fβ for a latent
variable structure prediction task.

1 Introduction

Most of the content that we come across in the
digital media in the form of emails, blogs, web-
pages, enterprise data and so on are authored in nat-
ural language and have very little structure to them.
With the dawn of the information age, we produce a
colossal amount of unstructured data everyday. This

1Terminology is borrowed from logic, where relational logic
is more powerful than propositional logic with the inclusion of
quantifiers, but is a subset of first-order logic

presents an enormous challenge for machines to pro-
cess, curate, search and reason in such data.

The process of automatically identifying and dis-
ambiguating entities, their attributes and relation-
ships in unstructured data sources is termed as In-
formation Extraction (IE). IE facilitates a rich and
structured representation of data, enabling down-
stream applications to process unstructured docu-
ments like a standard database. The richness present
in natural language text, presupposition of world
knowledge and the rapid rate of content creation
makes IE a highly challenging task. As a result,
it has been a very active area of research in the
computational linguistics community for over two
decades (Sarawagi, 2008).

A few of the challenges faced when performing
information extraction: (i) Entity Disambiguation:
Jeff Bezos and Bezos refer to the same en-
tity. Washington could be either a city, a state,
or a person depending on the context. (ii) Scope
Resolution: Certain Entities such as Washington
in “Washington Post” should not be labeled
as a location name because the entire textual span
is an organization name (iii) Type Disambiguation:
In the sentence, “ England beat Australia 2 - 0”.
England and Australia are sports organiza-
tions. (iv) Relation mention detection: The co-
occurrence of Obama and US in a sentence is not
a sure indication that the President relation (ob-
tained from a database of facts) is expressed in it.

1.1 Contributions of the thesis
The problem of Information Extraction can be
viewed as that of finding patterns in the data. These
patterns can either take the form of features or can
be specified as constraints on the search space.

Data-driven Patterns : Feature Combinations
Let us suppose that we are given a set of basic fea-

tures (e.g. Caps - a capitalized token; LastName -
occurrence in a dictionary of last-names). Named-
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Figure 1: Patterns as Feature Combinations
Figure 2: Patterns as Constraints

entities can be discovered by learning combinations
of such features. For instance, “if a span of text con-
tains two tokens, Caps followed by LastName, then
it is most probably a person named entity”. We con-
sider the previous statement as a pattern, leading to
a named-entity.

Figure 1 depicts some of the basic features, a
number of patterns (basic feature combinations) and
the entities in text that can potentially match with
these patterns. Named-entity recognition (NER)
can immensely benefit from such patterns, some
of which are domain-specific and others, domain-
independent. Several patterns are non-trivial com-
binations of basic features. For instance, “if a
location name overlaps with an organization,
then it is not a location named-entity”. (e.g.
Washington in Washington Post).

These patterns are very large in number and we
could define them as feature classes. The set of fea-
tures defined by them form a feature space. Since
the number patterns are many and we are not sure
which ones are triggered in a given piece of text, we
would like to learn / induce such patterns.

In this thesis, we study the categorization of the
feature classes. We also define various methods to
learn feature combinations through induction. The
features induced are consumed by a rule-based NER
system to learn compact and “interpretable” rules
that have a reasonable accuracy. We also demon-
strate the use of these features in max-margin based
sequence labeling models.

User-Specified Patterns : Constraints

Consider the problem of identifying relationships
between entities in text. Here we can look at pat-
terns as constraints that need to be enforced on rela-
tions extracted. Some of these are listed in Figure 2.
They are few compared to the entity recognition case
and can be specified by the user to restrict the search
space.

For instance, we would like to enforce the follow-
ing constraint: For a Prime-minister relation,
the first argument has to be a person and the sec-
ond argument has to be a country .

In this thesis, we look at a specific paradigm of
relation extraction called distant supervision (Mintz
et al., 2009). The goal is to learn relation extrac-
tion models by aligning facts in a database (Figure 2)
to sentences in a large unlabeled corpus. Since the
individual sentences are not hand labeled, the facts
in the database act as “weak” or “distant” labels,
and hence, the learning scenario is termed as dis-
tantly supervised. We look at ways in which con-
straints can be specified while learning relation ex-
tractors in this setting. We formulate an integer lin-
ear programming-based framework to facilitate the
addition of constraints.

Existing distant supervision-based systems are of-
ten trained by optimizing performance measures
(such as conditional log-likelihood or error rate) that
are not directly related to the task-specific non-linear
performance measure, e.g., the F1-score. We present
a novel max-margin learning approach to optimize
non-linear performance measures for distantly su-
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pervised relation extraction models.

2 Learning for Named-Entity Extraction

Several problems in Machine Learning are im-
mensely benefited from a rich structural representa-
tion of the data (Flach and Lachiche, 1999; Roth and
Yih, 2001). Specifically, the tasks in Information
Extraction are relation-intensive and the usage of re-
lational features has been shown to be quite effective
in practice (Califf, 1998; Roth and Yih, 2001). In
this section, we define categories of predicates and
discuss the complexity-based classification of rela-
tional features followed by techniques to induce fea-
tures in several of these categories.

Feature Space Categorization
The relational features are in a language that is
similar in expressive power as first order definite
clauses (Horn, 1951). Predicates are defined on tex-
tual spans. The head predicate is the class label of a
textual span.

We define two types of body predicates, namely,
relation and basic feature predicates. A rela-
tion predicate is a binary predicate that represents
the relationship between two spans of text. E.g.
overlaps(X,Y). A basic feature predicate is an as-
sertion of a situation or a property of a span or a sub-
span. For example, FirstName(X) states that the
span of text X occurs in a dictionary of first names.
We illustrate each of these feature classes with an
example of a typical definite clause belonging to the
feature class.

1. Simple Conjuncts (SCs):
Org(X) :- OrgGazeteer(X),CapsWord(X).
e.g. Microsoft

2. Candidate Definition Features (CDs) : These con-
sist of the two following feature classes.

(a) Absolute Features (AFs): non-overlapping
evidence predicates chained by relation
predicates.
person-AF(X) :- contains(X, X1),

FirstNameDict(X1), CapsWord(X1),

before(X1,X2), contains(X, X2),

CapsWord(X2). e.g.: Sachin Tendulkar
(b) Composite Features (CFs): Defined as a

conjunction of two AFs that share the same
head predicate.
person(X) :- person-AF (X),

leftContext(X, 1, L2),

Salutation(L2). e.g.: Mr. Sachin
Tendulkar (note the presence of contextual
clues such as salutation)

3. Candidate Refinement Features (CRs): The body
of the clause is defined by head predicates that
belong to different class labels, and can contain
negations in the body (hence, not a definite clause)
Loc(X) :- Loc1(X),org1(Y),¬overlaps(X,Y).
A span of text is a location, “if it matches a location
feature and does not overlap with an organization
feature”. e.g.: Washington in “Washington Post”
will not be marked as a location, due to this feature.

2.1 Feature Induction in a Rule-based Setting

Rule-based systems for NER achieve state-of-the-art
accuracies (Chiticariu et al., 2010). However, man-
ually building and customizing rules is a complex
and labor-intensive process. In this work, we outline
an approach that facilitates the process of building
customizable rules for NER through rule induction.
Given a set of basic feature predicates and an an-
notated document collection, our goal is to gener-
ate with reasonable accuracy an initial set of rules
that are interpretable and thus can be easily refined
by a human developer. Our contributions include (i)
an efficient rule induction process in a declarative
rule language, (ii) usage of induction biases to en-
hance rule interpretability, and (iii) definition of ex-
tractor complexity as a first step to quantify the inter-
pretability of an extractor. We present initial promis-
ing results with our system and study the effect of in-
duction bias and customization of basic features on
the accuracy and complexity of induced rules. We
demonstrate through experiments that the induced
rules have good accuracy and low complexity, ac-
cording to our complexity measure.

Our induction system is modeled on a four-stage
manual rule development process since the overall
structure of the induced rules must be similar in
spirit to that which a developer who follows best
practices would write. The stages of rule develop-
ment and the corresponding phases of induction are
summarized in Figure 3. In our system, we combine
several induction techniques such as least general
generalization (LGG), iterative clustering, proposi-
tional rule learning in order to induce NER rules
in a declarative rule language known as Annotation
Query Language (AQL). A brief overview of the
salient aspects of our induction system is presented
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Figure 3: Correspondence between Manual Rule devel-
opment and Rule Induction

Figure 4: Relative Least General Generalization

in the following paragraphs.
Background Knowledge. We represent each exam-
ple in the form of first order definite clauses, in con-
junction with relevant background knowledge. This
background knowledge will serve as input to our in-
duction system.
Clustering and RLGG. The first phase of induc-
tion uses a combination of clustering and rel-
ative least general generalization (RLGG) tech-
niques (Nienhuys-Cheng and Wolf, 1997; Muggle-
ton and Feng, 1992). Using clustering, we group
the examples based on the similarity of their back-
ground knowledge. This process is interleaved by
RLGG where we take a set of examples and find
their generalization that is analogous to the least up-
per bound. We recursively find pairwise-RLGGs of
all examples in a cluster. At the end of this phase,
we have a number of CD features.
The representation of an example and the RLGG
procedure is shown in Figure 4.
Propositional Rule Learning. In the second phase,
we begin by forming a structure known as the span-
view table. Broadly speaking, this is an attribute-
value table formed by all the features induced in the
first phase along with the textual spans generated by
them. The attribute-value table is used as input to a

propositional rule learner such as JRIP to learn accu-
rate compositions of a useful (as determined by the
learning algorithm) subset of the CD features. This
forms the second phase of our system. The rules
learnt from this phase are in the space of CR fea-
tures.

Induction Biases. At various phases, several in-
duction biases are introduced to enhance the inter-
pretability of rules. These biases capture the exper-
tise gleaned from manual rule development and con-
strain the search space in our induction system.

Extractor Complexity. Since our goal is to gener-
ate extractors with manageable complexity, we must
introduce a quantitative measure of extractor com-
plexity, in order to (1) judge the complexity of the
extractors generated by our system, and (2) reduce
the search space considered by the induction system.
To this end, we define a simple complexity score that
is a function of the number of rules, and the number
of predicates in the body of each rule of the extrac-
tor. Our simple notion of rule length is motivated by
existing literature in the area of database systems.

AQL and SystemT : Advantages. The hypothesis
language of our induction system is AQL, and we
employ SystemT as the theorem prover. SystemT
provides a very fast rule execution engine and is cru-
cial to our induction system because we test multi-
ple hypotheses in the search for the more promising
ones. AQL provides a very expressive rule repre-
sentation language that has proven to be capable of
encoding all the paradigms that any rule-based rep-
resentation can encode. The dual advantages of rich
rule-representation and execution efficiency are the
main motivations behind our choice.

We experimented with three different starting sets
of basic feature predicates (with increasing accu-
racy and complexity) and observed that the com-
plexity of the final set of induced rules is directly
proportional to that of the initial set, both in terms
of accuracy and complexity. We compared our in-
duced set of rules with the manual rules. We achieve
upto 75% accuracy of the state-of-the-art manual
rules with a decrease in extractor complexity of upto
61%. For a more detailed exposition of the system
and discussion of experiments, please refer to our
work (Nagesh et al., 2012).
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2.2 Feature Induction in a Max-margin Setting

In this piece of work, we view the problem of NER
from the perspective of sequence labeling. The goal
is to investigate the effectiveness of using relational
features in the input space of a max-margin based se-
quence labeling model. Our work is based on Struc-
tHKL (Nair et al., 2012) and standard StructSVM
formulations. We propose two techniques to learn a
richer sequence labeling model by using relational
features discussed above.

In one technique, we leverage an existing system
that is known to learn optimal feature conjunctions
(SCs) in order to learn relational features such as
AFs and CFs. To achieve this, we propose a two-
step process : (i) enumerate a good set of AFs using
existing induction techniques (ii) use the StructHKL
framework, which learns optimal conjunctions to
learn CFs.

In the other technique, we leverage the
StructSVM framework. We define a subse-
quence kernel to implicitly capture the relational
features and reformulate the training objective.

Our experiments in sequence labeling tasks rein-
force the importance of induction bias and the need
for interpretability to achieve high-quality NER
rules, as observed in the experiments of our previ-
ous work on rule induction.

3 Learning for Relation Extraction

In the second part of the thesis, we investigate
another important problem in IE, namely, rela-
tion extraction. The task of extracting relational
facts that pertains to a set of entities from natu-
ral language text is termed as relation extraction.
For example, given a natural language sentence,
“On Friday, President Barack Obama defended
his administration’s mass collection of telephone
and Internet records in the United States”, we can
infer the relation, President(Barack Obama,

United States) between the entities Barack

Obama and United States.
Our framework is motivated by distant supervi-

sion for learning relation extraction models (Mintz
et al., 2009). Prior work casts this problem as a
multi-instance multi-label learning problem (Hoff-
mann et al., 2011; Surdeanu et al., 2012). It is multi-
instance because for a given entity-pair, only the la-

bel of the bag of sentences that contains both entities
(aka mentions) is given. It is multi-label because a
bag of mentions can have multiple labels. The inter-
dependencies between relation labels and (hidden)
mention labels are modeled by a Markov Random
Field (Hoffmann et al., 2011).

3.1 Constrained Distant Supervision
Various models have been proposed in recent litera-
ture to align the facts in the database to their men-
tions in the corpus. In this work, we discuss and
critically analyze a popular alignment strategy called
the “at least one” heuristic. We provide a simple,
yet effective relaxation to this strategy.

Our work extends the work by Hoffmann et al.
(2011). We formulate the inference procedures in
training as integer linear programming (ILP) prob-
lems and implement the relaxation to the “at least
one ” heuristic through a soft constraint in this for-
mulation. This relaxation is termed as “noisy-or”.
The idea is to model the situation where a fact is
present in the database but it is not instantiated in
the text.

Additionally, our inference formulation enables
us to model additional type of constraints such as se-
lectional preferences of arguments. Empirically, we
demonstrate that this simple strategy leads to a better
performance under certain settings when compared
to the existing approaches. For additional details,
please refer to our paper (Nagesh et al., 2014).

3.2 Distant Supervision in a Max-margin
Setting

Rich models with latent variables are popular in
many problems in natural language processing. For
instance, in IE, one needs to predict the relation la-
bels that an entity-pair can take based on the hidden
relation mentions, i.e., the relation labels for occur-
rences of the entity-pair in a given corpus. These
models are often trained by optimizing performance
measures (such as conditional log-likelihood or er-
ror rate) that are not directly related to the task-
specific non-linear performance measure, e.g., the
F1-score. However, better models may be trained
by optimizing the task-specific performance mea-
sure while allowing latent variables to adapt their
values accordingly.

Large-margin methods have been shown to be a
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compelling approach to learn rich models detailing
the inter-dependencies among the output variables.
Some methods optimize loss functions decompos-
able over the training instances (Taskar et al., 2003;
Tsochantaridis et al., 2004) compared to others that
optimize non-decomposable loss functions (Ranjbar
et al., 2013; Tarlow and Zemel, 2012; Rosenfeld
et al., 2014; Keshet, 2014). They have also been
shown to be powerful when applied to latent vari-
able models when optimizing for decomposable loss
functions (Wang and Mori, 2011; Felzenszwalb et
al., 2010; Yu and Joachims, 2009).

In this work (Haffari et al., 2015), we describe
a novel max-margin learning approach to opti-
mize non-linear performance measures for distantly-
supervised relation extraction models. Our approach
can be generally used to learn latent variable mod-
els under multivariate non-linear performance mea-
sures, such as Fβ-score.

Our approach involves solving the hard-
optimization problem in learning by interleaving
Concave-Convex Procedure with dual decomposi-
tion. Dual decomposition allowed us to solve the
hard sub-problems independently. A key aspect
of our approach involves a local-search algorithm
that has led to a speed-up of 7,000 times in our
experiments over an exhustive search baseline
proposed in previous work (Ranjbar et al., 2012;
Joachims, 2005).

Our work is the first to make use of max-margin
training in distant supervision of relation extraction
models. We demonstrate the effectiveness of our
proposed method compared to two strong baseline
systems which optimize for the error rate and con-
ditional likelihood, including a state-of-the-art sys-
tem by Hoffmann et al. (2011). On several data con-
ditions, we show that our method outperforms the
baseline and results in up to 8.5% improvement in
the F1-score.

4 Conclusion

Our thesis can be summarized as shown in Figure 5.
The broad theme of each work along with its pub-
lication forum is indicated. In the entity extraction
setting, we work in the paradigm of relational fea-
ture space exploration, and in the relation extrac-
tion setting, our research has been in the paradigm

Figure 5: Thesis Summary

of learning under distant supervision.
The design of our feature induction approach is

aimed at producing accurate rules that can be un-
derstood and refined by humans, by placing special
emphasis on low complexity and efficient computa-
tion of the induced rules. According to our com-
plexity measure, the induced rules have good ac-
curacy and low complexity. While our complexity
measure informs the biases in our system and leads
to simpler, smaller extractors, it captures extrac-
tor interpretability only to a certain extent. There-
fore, we believe more work is required to devise a
more comprehensive quantitative measure for inter-
pretability. Another interesting direction of future
work, is the designing of human-computer interac-
tion experiments, to present the induced rules to a
manual rule-developer and evaluating the quality of
rules induced.

In the distantly supervised relation extraction, our
ILP formulation provides a good framework to add
new types of constraints to the problem. In the fu-
ture, we would like to experiment with other con-
straints such as modeling the selectional preferences
of entity types.

Our max-margin framework for distant supervi-
sion provided a way to optimize F1 score while
training the model. Although we solved the
hard optimization problem with an efficient dual-
decomposition formulation, our algorithms do not
scale very well to large datasets. As part of future
work, we would like to investigate distributed opti-
mization algorithms as an extension to our solutions.
In addition, we would like to maximize other per-
formance measures, such as area under the curve,
for information extraction models. We would also
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like to explore our approach for other latent variable
models in NLP, such as those in machine translation.
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