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Abstract

We present a language agnostic, unsupervised
method for inducing morphological transfor-
mations between words. The method re-
lies on certain regularities manifest in high-
dimensional vector spaces. We show that this
method is capable of discovering a wide range
of morphological rules, which in turn are used
to build morphological analyzers. We evaluate
this method across six different languages and
nine datasets, and show significant improve-
ments across all languages.

1 Introduction

Word representations obtained via neural net-
works (Bengio et al., 2003; Socher et al., 2011a)
or specialized models (Mikolov et al., 2013a) have
been used to address various natural language pro-
cessing tasks (Mnih et al., 2009; Huang et al., 2014;
Bansal et al., 2014). These vector representations
capture various syntactic and semantic properties
of natural language (Mikolov et al., 2013b). In
many instances, natural language uses a small set
of concepts to render a much larger set of mean-
ing variations via morphology. We show in this pa-
per that morphological transformations can be cap-
tured by exploiting regularities present in word-
representations as the ones trained using the Skip-
Gram model (Mikolov et al., 2013a).

In contrast to previous approaches that com-
bine morphology with vector-based word represen-
tations (Luong et al., 2013; Botha and Blunsom,
2014), we do not rely on an external morpholog-
ical analyzer, such as Morfessor (Creutz and La-

∗Work done at Google, now at Human Longevity Inc.

gus, 2007). Instead, our method automatically in-
duces morphological rules and transformations, rep-
resented as vectors in the same embedding space.

At the heart of our method is the SkipGram
model described in (Mikolov et al., 2013a). We fur-
ther exploit the observations made by Mikolov et
al (2013b), and further studied by (Levy and Gold-
berg, 2014; Pennington et al., 2014), regarding the
regularities exhibited by such embedding spaces.
These regularities have been shown to allow infer-
ences of certain types (e.g., king is to man what
queen is to woman). Such regularities also hold for
certain morphological relations (e.g., car is to cars
what dog is to dogs). In this paper, we show that one
can exploit these regularities to model, in a princi-
pled way, prefix- and suffix-based morphology. The
main contributions of this paper are as follows:

1. provides a method by which morphological
rules are learned in an unsupervised, language-
agnostic fashion;

2. provides a mechanism for applying these rules
to known words (e.g., boldly is analyzed as
bold+ly, while only is not);

3. provides a mechanism for applying these rules
to rare and unseen words;

We show that this method improves state-of-the-art
performance on a word-similarity rating task using
standard datasets. We also quantify the impact of our
morphology treatment when using large amounts of
training data (tens/hundreds of billions of words).

The technique we describe is capable of induc-
ing transformations that cover both typical, regu-
lar morphological rules, such as adding suffix ed
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to verbs in English, as well as exceptions to such
rules, such as the fact that pluralization of words
that end in y require substituting it with ies. Be-
cause each such transformation is represented in the
high-dimensional embedding space, it therefore cap-
tures the semantics of the change. Consequently,
it allows us to build vector representations for any
unseen word for which a morphological analysis is
found, therefore covering an unbounded (albeit in-
complete) vocabulary.

Our empirical evaluations show that this
language-agnostic technique is capable of learning
morphological transformations across various
language families. We present results for English,
German, French, Spanish, Romanian, Arabic,
and Uzbek. The results indicate that the induced
morphological analysis deals successfully with
sophisticated morphological variations.

2 Previous Work

Many recent proposals in the literature use word-
representations as the basic units for tackling
sentence-level tasks such as language model-
ing (Mnih and Hinton, 2007; Mikolov and Zweig,
2012), paraphrase detection (Socher et al., 2011a),
sentiment analysis (Socher et al., 2011b), discrimi-
native parsing (Collobert, 2011), as well as similar
tasks involving larger units such as documents (Glo-
rot et al., 2011; Huang et al., 2012; Le and Mikolov,
2014). The main advantage offered by these tech-
niques is that they can be both trained in an unsu-
pervised manner, and also tuned using supervised la-
bels. However, most of these approaches treat words
as units, and fail to account for phenomena involv-
ing the relationship between various morphological
forms that affect word semantics, especially for rare
or unseen words.

Previous attempts at dealing with sub-word units
and their compositionality have looked at explicitly-
engineered features such as stems, cases, POS, etc.,
and used models such as factored NLMs (Alexan-
drescu and Kirchhoff, 2006) to obtain representa-
tions for unseen words, or compositional distribu-
tional semantic models (Lazaridou et al., 2013) to
derive representations for morphologically-inflected
words, based on the composing morphemes. A more
recent trend has seen proposals that deal with mor-

phology using vector-space representations (Luong
et al., 2013; Botha and Blunsom, 2014). Given word
morphemes (affixes, roots), a neural-network archi-
tecture (recursive neural networks in the work of
Luong et al (2013), log-bilinear models in the case
of Botha and Blunsom (2014)), is used to obtain
embedding representations for existing morphemes,
and also to combine them into (possibly novel) em-
bedding representations for words that may not have
been seen at training time.

Common to these proposals is the fact that the
morphological analysis of words is treated as an
external, preprocessing-style step. This step is
done using off-the-shelf analyzers such as Morfes-
sor (Creutz and Lagus, 2007). As a result, the mor-
phological analysis happens within a different model
compared to the model in which the resulting mor-
phemes are consequently used. In contrast, the work
presented here uses the same vector-space embed-
ding to achieve both the morphological analysis of
words and to compute their representation. As a
consequence, the morphological analysis can be jus-
tified in terms of the relationship between the result-
ing representation and other words that exhibit sim-
ilar morphological properties.

3 Morphology Induction using Embedding
Spaces

The method we present induces morphological
transformations supported by evidence in terms of
regularities within a word-embedding space. We de-
scribe in this section the algorithm used to induce
such transformations.

3.1 Morphological Transformations
We consider two main transformation types, namely
prefix and suffix substitutions. Other transformation
types can also be considered, but we restrict the fo-
cus of this work to morphological phenomena that
can be modeled via prefixes and suffixes.

We provide first a high-level description of our al-
gorithm, followed by details regarding the individual
steps. The following steps are applied to monolin-
gual training data over a finite vocabulary V :

1. Extract candidate prefix/suffix rules from V

2. Train embedding space En ⊂ Rn for all words
in V
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3. Evaluate quality of candidate rules in En

4. Generate lexicalized morphological transfor-
mations

We provide more detailed descriptions next.

Extract candidate rules from V
Starting from (w1, w2) ∈ V 2, the algorithm

extracts all possible prefix and suffix substitu-
tions from w1 to w2, up to a specified size1.
We denote such substitutions using triplets of
the form type:from:to. For instance, triplet
suffix:ed:ing denotes the substitution of suf-
fix ed with suffix ing; this substitution is supported
by many word pairs in an English vocabulary, e.g.
(bored, boring), (stopped, stopping), etc. We call
these triplets candidate rules, because they form the
basis of an extended set from which the algorithm
extracts morphological rules.

At this stage, the candidate rules set contains both
rules that reflect true morphology phenomena, e.g.
suffix:s:ε (replace suffix s with the null suf-
fix, extracted from (stops, stop), (weds, wed), etc.),
or prefix:un:ε (replace prefix un with the null
prefix, from (undone, done), etc.), but also rules
that simply reflect surface-level coincidences, e.g.
prefix:S:ε (delete S at the beginning of a word,
from (Scream, cream), (Scope, cope), etc.).

Train embedding space
Using a large monolingual corpus, we train a

word-embedding space En of dimensionality n for
all words in V using the SkipGram model (Mikolov
et al., 2013a). For the experiments reported in
this paper, we used our own implementation of this
model (which varies only slightly from the publicly-
available word2vec implementation2).

Evaluate quality of candidate rules
The extracted candidate rules set is evaluated by

using, for each proposed rule r, its support set:

Sr = {(w1, w2) ∈ V 2|w1
r−→ w2}

The notation w1
r→ w2 means that rule r applies to

word w1 (e.g., for rule suffix:ed:ing, word w1

1A maximum size of 6 is used in our experiments.
2At code.google.com/p/word2vec.

rule hit rate Example ↑dw

suffix:er:o 0.8 ↑dVoter

suffix:ton:ε 1.1 ↑dGaleton

prefix:S:ε 1.6 ↑dSDK

prefix:ε:in 28.8 ↑d competent

suffix:ly:ε 32.1 ↑dofficially

prefix:ε:re 37.0 ↑d sited

prefix:un:re 39.0 ↑dunmade

suffix:st:sm 52.5 ↑degoist

suffix:ted:te 54.9 ↑dimitated

suffix:ed:ing 68.1 ↑dprocured

suffix:y:ies 69.6 ↑dfoundry

suffix:t:ts 73.0 ↑dpugilist

suffix:sed:zed 80.1 ↑dserialised

Table 1: Candidate rules evaluated in En.

ends with suffix ed), and the result of applying the
rule to word w1 is word w2. To speed up computa-
tion, we downsample the sets Sr to a large-enough
number of word pairs (1000 has been used in the ex-
periments in this paper).

We define a generic evaluation functionEvF over
paired couples in Sr×Sr, using a function F : Rn×
Rn → R, as follows:

EvF ((w1, w2), (w,w′)) = FE(w2, w1+ ↑ dw) (1)

(w1, w2), (w,w′) ∈ Sr, ↑ dw = w′ − w
Word-pair combinations in Sr×Sr are evaluated us-
ing Eq. 1 to assess the meaning-preservation prop-
erty of rule r. We use as FE function rankE ,
the cosine-similarity rank function in En. We can
quantitatively measure the assertion “car is to cars
what dog is to dogs”, as rankE(cars, car+↑ddog ).
We use a single threshold t0rank to capture meaning
preservation (all the experiments in this paper use
t0rank = 100): for each proposed rule r, we com-
pute a hit rate based on the number of times Eq. 1
scores above t0rank, over the number of times it has
been evaluated. In Table 1 we present some of these
candidate rules and their hit rate.

We note that rules that are non-meaning–
preserving receive low hit rates, while rules that are
morphological in nature, such as suffix:ed:ing
(verb change from past/participle to present-
continuous) and suffix:y:ies (pluralization of
y–ending nouns), receive high hit rates.
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w1 w2 rank cosine transformation
create created 0 0.58 suffix:ε:d:↑dethrone
create creates 0 0.65 suffix:te:tes:↑evaluate
create creates 1 0.62 suffix:ε:s:↑contradict

created create 0 0.65 suffix:ed:e↑eroded
creation create 0 0.52 suffix:ion:e:↑communication
creation created 0 0.54 suffix:ion:ed:↑disruption

recreations recreate 2 0.59 suffix:ions:e:↑translations
recreations recreating 1 0.53 suffix:ions:ing:↑constructions
recreations Recreations 81 0.64 prefix:r:R:↑remediation

Table 2: Examples of lexicalized morphological transformations evaluated in En using rank and cosine.

Generate lexicalized morphological
transformations

The results in Table 1 indicate the need for cre-
ating lexicalized transformations. For instance, rule
suffix:ly:ε (drop suffix ly, a perfectly reason-
able morphological transformation in English) is
evaluated to have a hit rate of 32.1%. While such
transformations are desirable, we want to avoid ap-
plying them when firing without yielding meaning-
preserving results (the rest of 67.9%), e.g., for word-
pair (only, on). We therefore create lexicalized trans-
formations by restricting the rule application to the
vocabulary subset of V which passes the meaning-
preservation criterion.

The algorithm also computes best direction vec-
tors ↑dw for each rule support set Sr. It greedily
selects a direction vector ↑dw0 that explains (based
on Equation 1) the most pairs in Sr. After subset
Sw0

r is computed for direction vector ↑dw0 , it ap-
plies recursively on set Sr − Sw0

r . This yields a new
best direction vector ↑dw1 , and so on. The recursion
stops when it finds a direction vector ↑dwk

that ex-
plains less than a predefined number of words (we
used 10 in all the experiments from this paper).

We consider multiple direction vectors ↑dwi

because of the possibly-ambiguous nature of a
morphological transformation. Consider rule
suffix:ε:s, which can be applied to the noun
walk to yield plural-noun walks; this case is mod-
eled with a transformation like walk + ↑dinvention ,
since ↑dinvention =inventions−invention is a direc-
tion that our procedure deems to explain well noun
pluralization; it can also be applied to the verb walk

to yield the 3rd-person singular form of the verb, in
which case it is modeled as walk + ↑denlist , since
↑denlist =enlists−enlist is a direction that our pro-
cedure deems to explain well 3rd-person singular
verb forms. In that sense, our algorithm goes beyond
proposing simple surface-level morphemes, with di-
rection vectors encoding well-defined semantics for
our morphological analysis.

Lexicalized rules enhanced with direction vectors
are called morphological transformations. For each
morphological transformation, we evaluate again
how well it passes a proximity test in En for the
words it applies to. As evaluation criteria, we use
two instances of Eq 1, with FE instantiated to rankE

and cosineE , respectively. We apply more stringent
criteria in this second pass, using thresholds on the
resulting rank (trank) and cosine (tcosine) values to
indicate meaning preservation (we used trank = 30
and tcosine = 0.5 in all the experiments in this pa-
per). We present in Table 2 a sample of the re-
sults of this procedure. For instance, word create
can be transformed to creates using two different
transformations: suffix:te:tes:↑evaluate
and suffix:ε:s:↑contradict, passing the
meaning-preservation criteria with rank=0, co-
sine=0.65, and rank=1, cosine=0.62, respectively.

Lexicalized morphological transformations over
a vocabulary V have a graph-based interpretation:
words represent nodes, transformations represent
edges in a labeled, weighted, cyclic, directed multi-
graph (weights are (r, c) pairs, rank and cosine
values; multiple direction vectors create multiple
edges between two nodes; cycles may exist, see
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Figure 1: A few strongly connected components of a GV
Morph graph for English.

e.g. created→create→created in Table 2). We
use the notation GV

Morph to denote such a graph.
GV

Morph usually contains many strongly connected
components, with components representing families
of morphological variations. As an illustration, we
present in Figure 1 a few strongly connected compo-
nents obtained for an English embedding space (for
illustration purposes, we show only a maximum of 2
directed edges between any two nodes in this multi-
graph, even though more may exist).

3.2 Inducing 1-to-1 Morphological Mappings

The induced graph GV
Morph encodes a lot of infor-

mation about words and how they relate to each
other. For some applications, however, we want
to normalize away morphological diversity by map-
ping to a canonical surface form. This amounts to
selecting, from among all the candidate morpholog-
ical transformations generated, specific 1-to-1 map-
pings. In graph terms, this means building a labeled,
weighted, acyclic, directed graph DV

Morph starting
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Figure 2: A part of a DV
Morph graph, with the morpho-

logical family for the normal-form created.

from GV
Morph, using the nodes from GV

Morph and re-
taining only edges that meet certain criteria.

For the experiments presented in Section 4, we
build a directed graph DV

Morph as follows:

1. edge w1
(r,c)→ w2 in GV

Morph is considered only
if count(w1) ≤ count(w2) in V ;

2. if multiple such edges exist, chose the one with
minimal rank r;

3. if multiple such edges still exist, chose the one
with the maximal cosine c.

The interpretation we give is word-normalization: a
normalization of w to w′ is guaranteed to be mean-
ing preserving (using the direction-vector seman-
tics), and to a more frequent form. A snippet of the
resulting graph DV

Morph is presented in Figure 2.
One notable aspect of this normalization pro-

cedure is that these are not “traditional” morpho-
logical mappings, with morphology-inflected words
mapped to their linguistic roots. Rather, our method
produces morphological mappings that favor fre-
quency over linguistic normalization. An exam-
ple of this can be seen in Figure 2, where the root
form create is morphologically-explained by map-
ping it to the form created. This choice is purely
based on our desire to favor the accuracy of the

word-representations for the normal forms; differ-
ent choices regarding how this pruning procedure
is performed lead to different normalization proce-
dures, including some that are more linguistically-
motivated (e.g., length-based).

3.3 Morphological Transformations for Rare
and Unknown Words

For some count threshold C, we define VC = {w ∈
V |C ≤ count(w)}. The method we presented up to
this point induces a morphology graph DVC

Morph that
can be used to perform morphological analysis for
any words in VC . We analyze the rest of the words
we may encounter (i.e., rare words and OOVs) by
mapping them directly to nodes in DVC

Morph.

We extract such mappings from DVC
Morph using

all the sequences of edges that start at nodes in the
graph and end in a normal-form (i.e., nodes that have
out-degree 0). The result is a set of rule sequences
denoted RS. A count cutoff on the rule sequence
counts is used, since low-count sequences tend to
be less reliable (in the experiments reported in this
paper we use a cutoff of 50). We also denote with R
the set of all edges in DMorph. Using sets RS and R,
we mapw 6∈ VC to a nodew′ ∈ DVC

Morph, as follows:

1. for rule-sequences s ∈ RS from highest-to-
lowest count, if w s→ w′ and w′ ∈ DVC

Morph,
then s is the morphological analysis for w;

2. if no s is found, do breadth-first search in
DVC

Morph using r ∈ R, up to a predefined3 depth

d; for k ≤ d, word w′ with w
r1...rk−→ w′ ∈

DVC
Morph and the highest count in VC is the mor-

phological analysis for w.

For example, this procedure uses the RS sequence
s=prefix : un : ε, suffix : ness : ε to perform
the OOV morphological analysis unassertiveness

s−→assertive. We perform an in-depth analysis of
the performance of this procedure in Section 4.2.

4 Empirical Results

In this section, we evaluate the performance of the
procedure described in Section 3. Our evaluations
aim at answering several empirical questions: how

3We use d=1 in the experiments reported in Section 4.2.
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Lang |Tokens| |V | |GV
Morph| |DV

Morph|
EN 1.1b 1.2m 780k 75,823
DE 1.2b 2.9m 3.7m 169,017
FR 1.5b 1.2m 1.8m 92,145
ES 566m 941k 2.2m 82,379
RO 1.7b 963k 3.8m 141,642
AR 453m 624k 2.4m 114,246
UZ 850m 2.0m 5.6m 194,717

Table 3: Statistics regarding the size of the training data
and the induced morphology graphs.

well does our method capture morphology, and how
does it compare with previous approaches that use
word-representations for morphology? How well
does this method handle OOVs? How does the im-
pact of morphology analysis change with training
data size? We provide both qualitative and quanti-
tative answers for each of these questions next.

4.1 Quality of Morphological Analysis

We first evaluate the impact of our morphologi-
cal analysis on a standard word-similarity rating
task. The task measures word-level understand-
ing by comparing the correlation between human-
produced similarity ratings for word pairs, e.g. (in-
traspecific, interspecies), with those produced by an
algorithm. For the experiments reported here, we
train SkipGram models4 using a dimensionality of
n = 500. We denote a system using only Skip-
Gram model embeddings as SG. To evaluate the im-
pact of our method, we perform morphological anal-
ysis for words below a count threshold C. For a
word w ∈ DVC

Morph , we simply use the SkipGram

vector-representation; for a word w 6∈ DVC
Morph, we

use as word-representation its mapping in DVC
Morph;

we denote such a system SG+Morph. For both SG
and SG+Morph systems, we compute the similarity
of word-pairs using the cosine distance between the
vector-representations.

Data
We train both the SG and SG+Morph models from

scratch, for all languages considered. For English,

4Additional settings include a window-size of 5 and negative
sampling set to 5. Unseen words receive a zero-vector embed-
ding and a cosine score of 0.

we use the Wikipedia data (Shaoul and Westbury,
2010). For German, French, and Spanish, we use
the monolingual data released as part of the WMT-
2013 shared task (Bojar et al., 2013). For Arabic
we use the Arabic GigaWord corpus (Parker et al.,
2011). For Romanian and Uzbek, we use collections
of News harvested from the web and cleaned (boiler-
plate removed, formatting removed, encoding made
consistent, etc.). All SkipGram models are trained
using a count cutoff of 5 (all words with count less
than the cutoff are ignored). Table 3 presents statis-
tics on the data and vocabulary size, as well as the
size of the induced morphology graphs. These num-
bers illustrate the richness of the morphological phe-
nomena present in languages such as German, Ro-
manian, Arabic, and Uzbek, compared to English.

As test sets, we use standard, publicly-available
word-similarity datasets. Most relevant for our ap-
proach is the Stanford English Rare-Word (RW)
dataset (Luong et al., 2013), consisting of 2034
word pairs with a higher degree of English morphol-
ogy compared to other word-similarity datasets. We
also use for English the WS353 (Finkelstein et al.,
2002) and RG65 datasets (Rubenstein and Goode-
nough, 1965). For German, we use the Gur350 and
ZG222 datasets (Zesch and Gurevych, 2006). For
French we use the RG65 French version (Joubarne
and Inkpen, 2011); for Spanish, Romanian, and Ara-
bic we use their respective versions of WS353 (Has-
san and Mihalcea, 2009).

Results
We present in Table 4 the results obtained across

6 language pairs and 9 datasets, using a count
threshold for SG+Morph of C = 100. We also
include the results obtained by two previously-
proposed methods, LSM2013 (Luong et al., 2013)
and BB2014 (Botha and Blunsom, 2014), which
share some of the characteristics of our method.

Even in the absence of any morphological treat-
ment, our word representations are better than pre-
viously used ones. For instance, LSM2013 uses
exactly the same EN Wikipedia (Shaoul and West-
bury, 2010) training data, and achieves 26.8 and 34.4
Spearman ρ correlation on RW, with and without
morphological treatment, respectively. The word
representations we train yield a ρ of 35.8 for SG,
and a ρ of 41.8 for SG+Morph (+7.4 improve-
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Spearman ρ
Language EN DE FR ES RO AR
Testset RW WS RG Gur ZG RG WS WS WS

System
LSM2013 w/o morph 26.8 62.6 62.8 - - - - - -
LSM2013 w/ morph 34.4 64.6 65.5 - - - - - -
BB2014 w/o morph 18.0 32.0 47.0 36.0 6.0 33.0 26.0 - -
BB2014 w/ morph 30.0 40.0 41.0 56.0 25.0 45.0 28.0 - -
SG 35.8 71.2 75.1 62.4 16.6 63.6 36.5 51.7 37.1
SG+Morph 41.8 71.2 75.1 64.1 21.5 67.3 47.3 53.1 43.1

# pairs 2034 353 65 350 222 65 353 353 353

Table 4: Performance of previously proposed methods, compared to SG and SG+Morph trained on Wiki1b. LSM2013
uses exactly the same training data for EN, whereas BB2014 uses the same training data for DE, FR, ES.

ment under the morphology condition). The mor-
phological treatment used by LSM2013 also has a
small effect on the words present in the English
WS and RG sets; our method does not propose any
separate morphological treatment for the words in
these datasets, since all of them have been observed
more than our C = 100 threshold in the training
data (therefore have reliable representations). The
SG word-representations for all the other languages
(German, French, Spanish, Romanian, and Arabic)
also perform well on this task, with much higher
Spearman scores obtained by SG compared with the
previously-reported scores.

The results in Table 4 also show that our mor-
phology treatment provides consistent gains across
all languages considered. For morphologically-rich
languages, all datasets reflect the impact of mor-
phology treatment. We observe significant gains be-
tween the performance of the SG and SG+Morph
systems, on top of the high correlation numbers of
the SG system. For German, the relatively small
increase we observe is due to the fact the German
noun-compounds are not covered by our morpholog-
ical treatment. For French, Spanish, Romanian, and
Arabic, the gains by the SG+Morph support the con-
clusion that our method, while completely language-
agnostic, handles well the variety of morphological
phenomena present in these languages.

4.2 Quality of Morphological Analysis for
Unknown/Rare Words

In this section, we quantify the accuracy of the mor-
phological treatment for OOVs presented in Sec-

tion 3.3. We assume that the statistics for unseen
words (with respect to their morphological make-
up) are similar with the statistics for low-frequency
words. Therefore, for some relatively-low counts L
and H , the set V[L,H) = VL − VH is a good proxy
for the population of OOV words that we see at run-
time. We evaluate OOV morphology as follows:

1. Run the procedure for morphology induction
on VL, resulting in DVL

Morph;

2. Run the procedure for morphology induction
on VH , resulting in DVH

Morph;

3. Apply OOV morphology using DVH
Morph for

each w ∈ V[L,H]; evaluate resulting w → w′

against reference w → w′ref from DVL
Morph, as

normal-form(w′) ≡ normal-form(w′ref ).

To make the analysis more revealing, we split the en-
tries in V[L,H) in two: type T1 entries are those that
have in-degree > 0 in DVL

Morph (i.e., words that have
a morphological mapping in the reference graph);
type T2 entries are those that have 0 in-degree in
DVL

Morph (i.e., words with no morphological mapping
in the reference, e.g., proper-nouns in English). Note
that the T1/T2 distinction reflects a recall/precision
trade-off: T1-words should be morphologically an-
alyzed, while T2-words should not; a method that
over-analyses has poor performance on T2, while
one that under-analyses performs poorly on T1.

We use the same datasets as the ones presented
in Section 4.1, see Table 3. The results for all the
languages are shown in Table 6, with all rows using
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EN (RW testset) DE (RG testset)
|Unmapped| Spearman ρ |Unmapped| Spearman ρ

Wiki1b News120b Wiki1b News120b WMT2b News20b WMT2b News20b
SG 80 177 35.8 44.7 0 20 62.4 62.1
SG+Morph 1 0 41.8 52.0 0 0 64.1 69.1

Table 5: Comparison between models SG and SG+Morph at different training-data sizes.

|V[1000,2000)| Accuracy
Lang T1 T2 T1 T2

EN 3421 10617 89.7% 89.6%
DE 10778 21234 90.8% 93.1%
FR 6435 9807 90.3% 90.4%
ES 5724 7412 91.1% 90.3%
RO 11905 9254 86.5% 85.3%
AR 7913 5202 92.4% 69.0%
UZ 11772 9027 81.3% 84.1%

Table 6: Accuracy of Rare&OOV analysis.

the same setup. Count L = 1000 was chosen such
that DVL

Morph is reliable enough to be used as refer-
ence. The accuracy results are consistently high (in
the 80-90% range) for both T1- and T2-words, even
for morphologically-rich languages such as Uzbek.
These results indicate that our method does well at
both identifying a morphological analysis when ap-
propriate, as well as not proposing one when not jus-
tified, and therefore provides accurate morphology
analysis for rare and OOV words.

4.3 Morphology and Training Data Size

We also evaluate the impact of our morphology anal-
ysis under a regime with substantially more training
data. To this end, we use large collections of En-
glish and German News, harvested from the web and
cleaned (boiler-plate removed, formatting removed,
encoding made consistent). Statistics regarding the
resulting vocabularies and the induced morphology
are presented in Table 7 (vocabulary cutoffs of 400
for EN and 50 for DE). We present results using
the word-similarity task using the same Stanford
Rare-Word (RW) dataset for EN and RG dataset for
DE, compared against the setup using only 1-2 bil-
lion training tokens. For SG+Morph, we use count
thresholds of 3000 for EN and 100 for DE. The re-
sults are given in Table 5. For English, a 100x in-

Lang |Tokens| |V | |GV
Morph| |DV

Morph|
EN 120b 1.0m 2.9m 98,268
DE 20b 1.8m 6.7m 351,980

Table 7: Statistics for large training-data sizes.

crease in the training data for EN brings a 10-point
increase in Spearman ρ (from 35.8 to 44.7, and from
41.8 to 52.0). The morphological analysis provides
substantial gains at either level of training-data size:
6 points in ρ for Wiki1b (from 35.8 to 41.8), and 7.3
points for News120b EN (from 44.7 to 52.0). For
German, the increase in training-data size does not
bring visible improvements (perhaps due the high
vocabulary cutoff), but the morphological treatment
has a large impact under the large training-data con-
dition (7 points for News20b DE, from 62.1 to 69.1).

5 Conclusions and Future Work

We have presented an unsupervised method for mor-
phology induction. The method derives a morpho-
logical analyzer from scratch, and only requires a
monolingual corpus for training, with no additional
knowledge of the language. Our evaluation shows
that this method performs well across a large va-
riety of language families, and we present here re-
sults that improve on current state-of-the-art for the
morphologically-rich Stanford Rare-word dataset.

We acknowledge that certain languages exhibit
phenomena (such as word-compounds in German)
that require a more focused approach for solving
them. But techniques like the ones presented here
have the potential to exploit vector-based word rep-
resentations successfully to address such phenom-
ena as well.
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