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Abstract

Given a (static) scene, a human can effort-
lessly describe what is going on (who is do-
ing what to whom, how, and why). The pro-
cess requires knowledge about the world, how
it is perceived, and described. In this paper we
study the problem of interpreting and verbal-
izing visual information using abstract scenes
created from collections of clip art images. We
propose a model inspired by machine trans-
lation operating over a large parallel corpus
of visual relations and linguistic descriptions.
We demonstrate that this approach produces
human-like scene descriptions which are both
fluent and relevant, outperforming a num-
ber of competitive alternatives based on tem-
plates, sentence-based retrieval, and a multi-
modal neural language model.

1 Introduction

What is going on in the scene in Figure 1? Is the
boy trying to feed the dog or play with it? Why is
the girl upset? Is it because the dog is wearing her
glasses? Or perhaps she is just scared of the dog?
Scene interpretation is effortless for humans, almost
everyone can summarize Figure 1 in a few words,
without probably paying too much attention to the
fact the girl is wearing a pink dress, the sun is yellow
or that there is a plane in the sky.

Discovering what an image means and relaying it
in words is of theoretical importance raising ques-
tions about language and its grounding in the per-
ceptual world but also has practical applications.
Examples include sentence-based image search and
tools that enhance the accessibility of the web for
visually impaired (blind and partially sighted) in-
dividuals. Indeed, there has been a recent surge
of interest in the development of models that au-
tomatically describe image content in natural lan-

Figure 1: Given an image, humans do not simply see an
arrangement of objects, they understand how they relate
to each other as well as their attributes and the activities
they are involved in.

guage (see references in Section 2). Due to the com-
plex nature of the problem, existing approaches re-
sort to modeling simplifications, on the generation
side (e.g., through the use of templates and sentence-
based retrieval methods), or the image processing
side (e.g., by avoiding object-detection), or both.

In this paper we study the problem of interpreting
visual scenes and rendering their content using nat-
ural language. We approach this problem within the
methodology of Zitnick and Parikh (2013), who pro-
posed the use of abstract scenes generated from clip
art to model scene understanding (see Figure 1). The
use of abstract scenes offers several advantages over
real images. Firstly, it allows us to study the scene
description problem in isolation, without the noise
introduced by automatic object and attribute detec-
tors in real images. Secondly, it is relatively easy to
gather large amounts of data, allowing us to compare
multiple models on an equal footing, study in more
detail the problem of language grounding, and how
to identify what is important in an image. Thirdly,
information learned from abstract scenes will lead
to better understanding of the challenges and data
requirements arising when using real images.

We propose a model inspired by machine trans-
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lation, where the task is to transform a source sen-
tence E into its target translation F . We argue that
generating descriptions for scenes is quite similar,
but with a twist: the translation process is very loose
and selective; there will always be objects in a scene
not worth mentioning, and words in a description
that will have no visual counterpart. Our key in-
sight is to represent scenes via visual dependency
relations (Elliott and Keller, 2013) corresponding to
sentential descriptions. This allows us to create a
large parallel corpus for training a statistical ma-
chine translation system, which we interface with
a content selection component guiding the transla-
tion toward interesting or important scene content.
Advantageously, our model can be used in the re-
verse direction, i.e., to generate scenes, without ad-
ditional engineering effort. Our approach outper-
forms a number of competitive alternatives, when
evaluated both automatically and by humans.

2 Related Work

The task of image description generation has re-
cently gained popularity in the natural language pro-
cessing and computer vision communities. Several
methods leverage recent advances in computer vi-
sion and generate novel sentences relying on ob-
ject detectors, attribute predictors, action detectors,
and pose estimators. Generation is performed using
templates or syntactic rules which piece the descrip-
tion together while leveraging word-co-occurrence
statistics (Kulkarni et al., 2011; Yang et al., 2011;
Elliott and Keller, 2013; Mitchell et al., 2012). Re-
cent advances in neural language models have led to
approaches which generate captions by conditioning
on feature vectors from the output of a deep convo-
lutional neural network without the use of templates
or syntactic trees (Kiros et al., 2014; Vinyals et al.,
2014). Most methods assume no structural infor-
mation on the image side either (images are repre-
sented as unstructured bags of regions or as feature
vectors). A notable exception are Elliott and Keller
(2013) who introduce visual dependency relations
between objects and argue that such structured rep-
resentations are beneficial for image description.

A large body of work has focused on the comple-
mentary problem of matching sentences (Ordonez et
al., 2011; Farhadi et al., 2010; Hodosh et al., 2013;

Feng and Lapata, 2013; Mason and Charniak, 2014)
or phrases (Kuznetsova et al., 2012; Kuznetsova
et al., 2014) to an image from existing human au-
thored descriptions. Sentence-based approaches em-
bed images and descriptions into the same multi-
dimensional space, and retrieve descriptions from
images most similar to a query image. Phrase-based
approaches are more involved in that phrases need
to be composed into a description and extraneous
information optionally removed. A common model-
ing choice is the use of Integer Linear Programming
(ILP) which naturally allows to encode various well-
formedness constraints (e.g., grammaticality).

We are not aware of any previous work generating
descriptions for abstract scenes, although the same
dataset has been used to model sentence-to-scene
generation (Zitnick et al., 2013) and predict object
dynamics in scenes (Fouhey and Zitnick, 2014). Us-
ing the visual relations put forward in Elliott and
Keller (2013), we convert the abstract scenes dataset
into a parallel corpus of visual and linguistic de-
scriptions, which allows us to train a statistical ma-
chine translation (SMT) model. In contrast to ear-
lier work (Kuznetsova et al., 2014; Kuznetsova et
al., 2012), which models the task as an optimiza-
tion problem end-to-end, we employ ILP for content
selection only, deferring the surface realization pro-
cess entirely to an SMT engine.

3 The Abstract Scenes Dataset

The abstract scenes dataset1 was created with the in-
tent to represent real-world scenes that depict a di-
verse set of subtle relations. It contains 10,020 im-
ages of children playing outside and 60,396 descrip-
tions (on average six per image). The data was col-
lected in three stages. First, Amazon Mechanical
Turk (AMT) workers were asked to created scenes
for a collection of 80 pieces of clip art depicting a
boy and a girl (in different poses and with differ-
ent facial expressions), and several objects including
trees, toys, hats, animals, and so on. Next, a new set
of subjects were asked to describe the scenes using
a one or two sentence description, finally, semanti-
cally similar scenes were generated by asking multi-
ple subjects to create scenes depicting the same writ-

1http://research.microsoft.com/en-us/um/
people/larryz/clipart/abstract_scenes.html
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0 6
s 3s.png 0 3 467 24 2 1
hb0 10s.png 2 10 145 182 0 1
hb1 19s png 3 19 323 188 0 1
c 9s.png 5 9 161 116 0 1
c 5s.png 7 4 43 172 0 0
t 4s.png 7 4 43 173 0 0

“Jenny is upset because Mike isn’t sharing the soccer ball.”, “Mike is
wearing sunglasses.”, “Jenny is wearing a silly hat.”, “Mike is kicking
the soccer ball away from Jenny.”, “Jenny is chasing Mike to get the
ball.”, “Jenny is wearing a silly hat.”

Figure 2: Example of a scene, its rendering information
(right), and human-written descriptions (bottom).

ten description. By construction, the dataset encodes
the objects in each scene, and their position.

An example is shown in Figure 2. The table
on the right-hand side specifies how the image was
rendered. The top row contains the scene identi-
fier (i.e., 0) and the number of pieces of clip art
in the image (i.e., 6). The remaining rows encode
rendering information for each individual piece of
clipart, i.e., its name (column 1), type (column 2),
attribute (column 3), position (columns 4–6), and
whether or not it is horizontally flipped (column 7).
Six human authored descriptions are shown the bot-
tom. AMT participants were instructed to write sim-
ple descriptions using basic words that would ap-
pear in a book for young children ages 4–6. Par-
ticipants who wished to use proper names in their
descriptions were provided with names “Mike” and
“Jenny” for the boy and girl. The vocabulary con-
sists of 2,705 words, and the average sentence length
is 6.3 words. As can be seen in Figure 2, subjects
choose to focus on different aspects of the image
(e.g., Mike and his sunglasses, the fact that Jenny is
chasing Mike). Also notice that even though by de-
sign we know which visual objects are present in the
image and their spatial relationships (see the right
hand-side in Figure 2), the alignment between pieces
of clipart and linguistic expressions is hidden. In
other words, we do not know which actions the ob-
jects depict (e.g., playing, holding) and which words
can be used to describe them (e.g., that t 4s.png is
called a ball).

4 Problem Formulation

We formulate scene description generation as a
translation problem from the visual to the linguis-
tic modality. Our approach follows the general
paradigm of SMT with two important differences.
Firstly, the source side (i.e., scene) is fundamentally
different from the target (i.e., linguistic descriptions)
both in terms of representation and structure. Sec-
ondly, the scene and its corresponding descriptions
constitute a very loose parallel corpus: not all visual
objects are verbalized (note that no participant chose
to mention the sun in Figure 2) and there are multi-
ple valid descriptions for a single scene focusing on
different objects and their relations. In the follow-
ing we first describe how we create a parallel corpus
representing the arrangement of objects in a scene
and their linguistic realization and then we move on
to present our generation model.

4.1 Parallel Corpus Creation
As mentioned earlier, each scene in the dataset has
six descriptions (on average). For each linguistic
description we create its corresponding visual en-
coding. We initially ground words and phrases by
aligning them to pieces of clipart. We parse the de-
scriptions using a dependency parser, and identify
expressions that function as arguments (e.g., subject,
object). In our experiments we used the Stanford
parser (Klein and Manning, 2003) but any parser
with similar output could have been used instead.
Next, we compute the mutual information (MI) be-
tween arguments and clip-art objects defined as:

MI(X ,Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
(1)

where X is the set of clip-art objects and Y the set of
arguments found in the dataset. We assume that the
visual rendering of an argument is the clip-art object
with which its MI value is highest. Figure 3 shows
argument-clipart pairs with high MI values.

Having identified which objects in the scene are
talked about, we move on to encode their spatial re-
lations. We adopt the relations outlined in Visual
Dependency Grammar (VDG; Elliott and Keller
(2013)). The latter are defined for pairs of image
regions but can also directly apply to clip-art ob-
jects. VDR Relations are specified according to
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X on Y More than 50% of X overlaps
with Y

X surrounds Y X overlaps entirely with Y
X above Y The angle between X and Y is

between 225◦and 315◦

X below Y The angle between X and Y is
between 45◦and 135◦.

X opposite Y The angle between X and Y is
between 315◦and 45◦or 135◦and
225◦. The Euclidean distance
between X and Y is greater than
w ·0.72.

X near Y Similar to opposite but the
Euclidean distance between
X and Y is greater than w ·0.36.

X close Y Similar to opposite but the
Euclidean distance between
X and Y is less or equal
to w ·0.36.

X infront Y X is in front Y in the Z-plane
X behind Y X is behind Y in the Z-plane
X same Y X and Y are at the same depth

Table 1: VDG relations between pairs of clip art objects.
All relations are considered with respect to the centroid of
an object and the angle between those centroids. We fol-
low the definition of the unit circle, in which 0◦lies to the
right and a turn around the circle is counter-clockwise.
All regions are mutually exclusive. Parameter w refers to
the width of the scene.

three geometric properties: pixel overlap, the angle
between regions, and the distance between regions.
Table 1 summarizes the relations used in our experi-
ments most of which encode spatial object relations
in the x-y space; the last three encode relative object
position along the z axis. Our relations are broadly
similar to those proposed in Elliott and Keller (2013)
with the exception of beside which we break down
into more fine-grained relations (namely near and
close). We also add the same relation in the z axis. In
cases where object X is facing object Y we subscript
relations opposite, near, and close with the letter F .

The procedure described above will generate a vi-
sual description for each linguistic description. It
also assumes that visual relations hold between pairs
of objects. The assumption is not unwarranted,
73.87% of the descriptions in the dataset involve

her
jenny
no one
pink dress
she

baseball bat
bat
bat and ball
homerun
one baseball bat

apple pie
baked pie
berry pie
delicious pie
pie

blue collar
brown dog
happy dog
small dog
smiling dog

apple
apple tree
big apple tree
cherries
fruit

baseball cap
baseball hat
blue cap
blue hat
star hat

Figure 3: Examples of argument-clipart object pairs with
high MI values (shown in descending order).

only two arguments. The parallel sentences cor-
responding to Figure 2 are illustrated in Table 2.
In cases where the the original description involves
three objects, ternary relations are decomposed into
binary ones. We create as many visual represen-
tations as there are linguistic descriptions. If two
humans generate identical descriptions, we produce
identical visual encodings. In total, we were able to
create 46,053 parallel descriptions2 accounting for
79.5% of the sentences in the dataset.

4.2 Generation Model

It is straightforward to train a phrase-based SMT
model on the parallel corpus outlined above. The
model would learn to translate a visual description
(see the source side in Table 2) into natural lan-
guage. However, when generating linguistic de-
scriptions for a scene at test time, we must first
decide “what to say” (content selection) and then
“how to say” it (surface realization). What is the
most important content in the scene worth describ-
ing? Given that visual relations between objects are
assumed to be binary (see the VDG grammar in Ta-
ble 1), there are n(n− 1) combinations of pairs of
objects in a scene (where n is the number of clipart
pieces available) and as many corresponding visual
expressions. However, many of these visual expres-
sions will capture unimportant aspects of the scene,
or even express atypical relations unattested in the
training data. We develop below a content selection
component based on the intuition that frequently

2Our parallel corpus can be downloaded from
http://homepages.inf.ed.ac.uk/mlap/index.php?
page=resources.
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Image description
1. hb0.10s.png closeF same t.4s.png Mike isn’t sharing the soccer ball
2. hb0.10s.png surrounds same c.9s.png Mike is wearing sunglasses
3. hb1.19s.png below same c.5s.png Jenny is wearing a silly hat
4. hb0.10s.png closeF same t.4s.png Mike is kicking the soccer ball
5. hb1.19s.png closeF same hb0.10s.png Jenny is chasing Mike
6. hb1.19s.png below same c.5s.png Jenny is wearing a silly hat

Table 2: Parallel corpus of visual expressions and linguistic descriptions corresponding to Figure 2.

mentioned object pairs probably express important
scene content. In addition, it is reasonable to assume
that the selected objects will be in close proximity,
especially when actions are involved. One would
expect the agent of the action to be near the object
or person receiving it (e.g., Mike is kicking the ball,
Jenny is holding Mike’s hand ). The same is true for
instruments, which are typically held by the persons
using them (e.g., Jenny is digging with a shovel ).

Content Selection We cast the problem of finding
suitable objects to talk about as an integer linear pro-
gram (ILP). Our model selects clip art object pairs
that best describe the content of a scene and ranks
them based on their relevance. Indicator variable ystk
denotes whether two objects are being selected and
how they are ranked (e.g, whether they should be
mentioned first or last):

ystk =


1 if objects s and t are selected for rank k

and s is before t
0 otherwise

(2)
where s and t index two clip art objects and
k = 1, ..,S encodes their rank (based on relevance).
Our objective function is given below:

Z = ∑
s∈S,t∈S

Fst ·Dst ·∑
k∈S

((card(S)+1)−k) ·ystk (3)

where Fst quantifies the normalized co-occurrence
frequency of objects s and t (in the training set)
and Dst specifies their relative distance. The term
((card(S)+1)−k) accounts for the ranking of pairs
so that most relevant ones are ranked first. Here,
card(S) represents the cardinality of the set S de-
noting the number of clip art objects in the scene;
k ranges over all available ranks (which is limited by
the number of clip art objects available). The term

Figure 4: Example of three clip art objects and the most
frequent objects they co-occur with.

((card(S)+1)−k) is inversely proportional to k, so
its highest value is when k is 1. In other words, the
value of the term is maximum when the selected ob-
jects are ranked first. This way, we ensure that most
relevant object pairs are given high ranks.

We compute Fst from our parallel corpus (see left-
hand side in Table 2), simply by counting the num-
ber of times objects s and t co-occur. Figure 4 shows
three clip art objects (Mike, a snake, and a bear)
and their most frequent co-occurrences. We estimate
term Dst , the distance between objects s and t, using
function

√
∆x2 +∆y2 +∆z2. Coordinate z has only

three possible values (see Table 1). To increase the
effect of ∆z, we use a scaling factor. We normalize
and invert Dst so that it ranges from 0 to 1. In ad-
dition, we transform it with a sigmoid function so
as to maximize the effect of near and distant objects
(distances of relatively close objects are set to 1 and
distances of distant objects are set to 0).

The objective function in Equation (3) is too per-
missive, allowing repetitions of the same object
within a pair and of the object pairs themselves.
Constraints (4)–(10) avoid repetitions and ensure
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that the selected objects are varied with the aim of
generating logically consistent descriptions. Con-
straint (4) avoids empty descriptions, by enforcing
that at least one clip art object pair is selected. Con-
straint (5) ensures that an object cannot appear in
the same pair twice, whereas constraint (6) requires
that at most one pair can be selected for a given
rank k. We also enforce the selection of different
pairs of objects (constraint (7)) at contiguous ranks
(constraint (8)).

∑
s∈S,t∈S

yst1 = 1 (4)

∀stk,s==t , ystk = 0 (5)

∀k, ∑
s∈S,t∈S

ystk ≤ 1; (6)

∀st , ∑
k∈S

(ystk + ytsk)≤ 1 (7)

∀k=1,..,S−1, ∑
s∈S,t∈S

ystk+1 ≤ ∑
s∈S,t∈S

ystk (8)

Finally, to instill some coherence in the descrip-
tions, while avoiding overly repetitive discourse, we
disallow objects to be selected more than four times:

∀s, sums = ∑
t∈S,k∈S

ystk (9)

∀t , sumt = ∑
s∈S,k∈S

ystk (10)

∀st,s==t , sums + sumt ≤ 4 (11)

Auxiliary variables sums and sumt represent the
number of times objects s and t are selected to be
the first and second object of a pair.

Given a new unseen scene, we obtain the Fst val-
ues for all pair-wise combinations of the objects in it
and compute their distance Dst . We solve the ILP
problem defined above and read the value of the
variable ystk which contains the selected clip art ob-
ject pairs ranked by relevance. So, our model can in
principle produce multiple descriptions for a given
scene, highlighting potentially different aspects of
the visually encoded information. We used GLPK3

to maximize the objective function subject to the
constraints introduced above.

3https://www.gnu.org/software/glpk/

Surface realization The ILP selects all
description-worthy pairs of clip art objects for
a scene. Using the rules presented in Table 1 we
create visual encodings for them (see Table 2,
source side), and finally translate them into natural
language using a Phrase-based SMT engine (Koehn
et al., 2003). Specifically, given a source visual
expression f, our aim is to find an equivalent target
natural language description ê that maximizes the
posterior probability:

ê = argmax
e

P(e|f) (12)

Most recent SMT work models the posterior P(e|f)
directly (Och and Ney, 2002) using a log-linear com-
bination of several models where:

P(e|f) =
exp∑K

k=1 λkhk(f,e)
∑e′ exp∑K

k=1 λkhk(f,e′)
(13)

and the decision decision rule is given by:

ê = argmax
e

K

∑
k=1

λkhk(f,e) (14)

where hk(f,e) is a scoring function representing im-
portant features for the translation of f into e. Exam-
ples include the language model of the target lan-
guage, a reordering model, or several translation
models. K is the number of models (or features)
and λk are the weights of the log-linear combina-
tion. Typically, the weights Λ = [λ1, . . . ,λK ]T are
optimized on a development set, by means of Mini-
mum Error Rate Training (MERT; Och (2003)).

One of the most popular instantiations of loglinear
models in SMT are phrase-based (PB) models (Zens
et al., 2002; Koehn et al., 2003). PB models allow to
learn translations for entire phrases instead of indi-
vidual words. The basic idea behind PB translation
is to segment the source sentence into phrases, then
to translate each source phrase into a target phrase,
and finally reorder the translated target phrases in or-
der to compose the target sentence. For this purpose,
phrase-tables are produced, in which a source phrase
is listed together with several target phrases and the
probability of translating the former into the latter.
Throughout our experiments, we obtained transla-
tion models using the PB SMT framework imple-
mented in MOSES (Koehn et al., 2007).
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Mike is kicking the ball The plane is flying in the sky
nsubj,aux,verb,det,dobj det,nsubj,aux,verb,prep,

det,pobj

Table 3: Sample scenes with human-written descriptions
and corresponding templates.

5 Model Comparison

We evaluated the model described above through
comparison to four alternatives, representing differ-
ent modeling paradigms in the literature. Our first
comparison model is based on templates, which are
commonly used to produce descriptions for images
(Elliott and Keller, 2013; Kulkarni et al., 2011).
Rather than manually creating template rules we in-
duce them from dependency-parsed scene descrip-
tions. We represent each description in the data as
a sequence of typed dependencies. The scene de-
scriptions are relatively simple, and many sentences
have similar structure. Overall, 20 templates repre-
sent the syntactic structure of more than 44% of all
scene descriptions. Examples of scenes, their de-
scriptions, and corresponding templates are shown
in Table 3 (template nsubj,aux,verb,det,dobj is
the most frequent in the data).

We train a logistic regression classifier (Yu et al.,
2011) on scene-template pairs, and learn to assign a
template for a new unseen scene. The “template-
predictor” uses variety of features based on the
alignment between clip-art objects and POS-tags as
well as objects and dependency roles. The align-
ments were computed using MI as described in Sec-
tion 4.1. We also used visual features based on the
absolute and relative distance between objects, their
co-occurrence, spatial location, depth ordering, fa-
cial expression and poses (see Zitnick et al. (2013)
for details). In order to transform the templates
into natural language sentences we train a “word-
predictor” which fills the most likely word for every
grammatical function slot in a given template (again
using logistic regression and the same feature space

as for the template predictor). The word predictor
uses a vocabulary of 70 frequently occurring words
(attested no less than 150 times in the corpus). For
a new scene, candidate templates are predicted and
subsequently expanded to descriptions by predicting
words for every function slot in the templates. Can-
didate descriptions are ranked using a trigram lan-
guage model to ensure grammatical coherence.

We also implemented two sentence-based re-
trieval approaches. Our first system is conceptu-
ally similar to the model proposed by Farhadi et al.
(2010). In their work, images and descriptions seen
at training time are mapped into a shared meaning
space M using a function f . Given an unseen im-
age λ, the description closest to f (λ) in M is re-
trieved and returned by the model. We used the
word-predictor described above as a simple way of
annotating an unseen scene λ with the words that
most saliently describe it. These keywords then used
as a TFIDF search query against the set H of human
scene descriptions seen during training:

TFIDF(q,d) = ∑
w∈q

TF(w,d)IDF(w),

TF(w,q) =
√

∑
w′∈q

1w=w′ ,

IDF(w) = 1+ log
‖H‖

1+ ∑
d∈H

∑
w′∈d

1w=w′
. (15)

where H is the set of all human descriptions seen
at training time, ‖·‖ is the set-norm, q is a search
query, d is any description in H and 1w=w′ an indica-
tor variable set to 1 if w and w′ are the same word and
0 otherwise. The human description maximizing the
TFIDF similarity with the predicted keywords is re-
turned as the description for the new scene.

Our third baseline exploits image similarity (Or-
donez et al., 2011). Given an unseen scene λ, we re-
trieve from the training set λ′, the scene most similar
to it, and return one of λ′’s human descriptions se-
lected at random. We used locality sensitivity hash-
ing to find the subset of candidate scenes similar
to λ. Scenes were represented with the same visual
features used for the word and template predictors
and their similarity was computed with the cosine
metric.

Finally, we also trained a multimodal log-bilinear
model (Kiros et al., 2014) on the abstract scenes
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System BLEU METEOR
LBL 7.33 17.76
MLBL 12.30 20.40
Image 12.80 21.77
Keyword 14.70 26.60
Template 40.30 30.40
SMT 43.70 35.60

Table 4: Model comparison on scene description task us-
ing automatic measures.

System 1st 2nd 3rd 4th AvgRank
Keyword 0.24 0.13 0.22 0.41 2.22
Template 0.25 0.16 0.13 0.46 2.21
SMT 0.53 0.24 0.12 0.11 3.19
Human 0.57 0.27 0.12 0.04 3.36

Table 5: Rankings (shown as proportions) and mean rat-
ings given to systems by human participants.

dataset. The model essentially implements a feed-
forward neural network to predict the next word
given the image and previous words.4 Images
were associated with feature representations ob-
tained from the output of a convolutional network,
following the feature learning procedure outlined in
Kiros et al. (2014).

6 Results

We evaluated system output automatically using
(smoothed) BLUE and METEOR as calculated by
NIST’s MultEval software5 using the human-written
descriptions as reference. Elliott and Keller (2014)
find that both metrics correlate well with human
judgments. For a fair comparison, we force our
model to output one description, i.e., the most rel-
evant one.

Our results are summarized in Table 4. As
can be seen, our model (SMT) performs best both
in terms of BLEU and METEOR. The template-
based generator (Template) obtains competitive per-
formance which is not surprising, it incorporates
some of the ingredients of the SMT system such as

4We used the implementation at http://www.cs.
toronto.edu/˜rkiros/multimodal.html.

5ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v13a-20091001.tar.gz

Resp 1st 2nd 3rd 4th 5th 6th

YES 75.5 65.8 53.0 44.7 44.0 37.5
NO 18.0 24.8 31.2 31.3 37.5 58.0
MAYBE 6.5 9.50 15.8 15.8 18.5 4.50

Table 6: Proportion of SMT descriptions deemed accu-
rate and relevant. System output evaluated for rank place-
ments 1. . .6.

word-to-clipart alignments, a language model, and
is guaranteed to produce grammatical output. The
performance of the multimodal log-bilinear model
(MLBL) keyword- and image-based retrieval sys-
tems is inferior. We conjecture that the image fea-
tures, and similarity functions used in these mod-
els are not fine-grained enough to capture the subtle
differences in scenes which humans detect and ex-
press in the descriptions. Finally, notice that visual
information is critical in doing well on the descrip-
tion generation task. A log-bilinear language model
(LBL) trained solely on the descriptions performs
poorly (see the top row in Table 4).

We further evaluated system output eliciting hu-
man judgments for 100 randomly selected test
scenes. Participants were presented with a scene and
descriptions generated by our system, the template-
based model, the best-performing sentence retrieval
model, and a randomly selected human description.
Subjects were asked to rank the four descriptions
from best to worst (ties are allowed) in order of in-
formativeness (does the description capture what is
shown in the scene?) and fluency (is the descrip-
tion written in well-formed English?). We elicited
rankings using Amazon’s Mechanical Turk crowd-
sourcing platform. Participants (self-reported native
English speakers) saw 10 scenes per session. We
collected 5 responses per item.

The results of our human evaluation study are
shown in Table 5. Specifically, we show, propor-
tionally, how often our participants ranked each sys-
tem 1st, 2nd and so on. Perhaps unsurprisingly,
the human-written descriptions were considered best
(and ranked 1st 57% of the time). Our model is
ranked best 0.53% of the time, followed by the tem-
plate and keyword-based retrieval systems which are
only ranked first 25% of the time.6 We further

6Percentages do not sum to 100% because ties are allowed.
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Jenny is holding a hot dog. Jenny is sitting in the sandbox.
Jenny is wearing a witch hat. Jenny is wearing purple sunglasses.
Jenny is scared of the snake. The cat is sitting in the sandbox.

The snake is under the pine tree. The cat is watching Jenny.

Figure 5: Examples of descriptions generated by the
SMT model for two scenes.

converted the ranks to ratings on a scale of 1 to 4
(assigning ratings 4. . .1 to rank placements 1. . .4).
This allowed us to perform Analysis of Variance
(ANOVA) which revealed a reliable effect of system
type. Specifically, post-hoc Tukey tests showed that
our SMT model is significantly (p < 0.01) better
than the other two comparison systems but does not
differ significantly from the human goldstandard.

We also evaluated more thoroughly our content
selection mechanism. Since our system can in prin-
ciple generate multiple descriptions for a scene, we
were interested to see how many of these are indeed
relevant. We let the system generate the six best
descriptions per scene and asked AMT participants
to assess whether they were accurate (are the peo-
ple, objects and actions mentioned in the descrip-
tion shown in the scene?) and appropriate (is the
description relevant for the scene?). Participants an-
swered with “yes”, “no”, or “maybe”. Again we
used 100 items from the test set, and elicited 5 re-
sponses per item. Table 6 shows the outcome of
this study. The majority of first-best descriptions
(75.5%) returned by our system are perceived as rel-
evant and scene appropriate. The same is true for
2nd and 3rd best descriptions, whereas the quality
of descriptions deteriorates with lower ranks. This
suggests that we could generate short discourses de-
scribing different viewpoints in a scene.

Figure 5 illustrates the descriptions produced by
our model for two scenes, whereas Figure 6 shows
example output when the system is run in reverse,
i.e., it takes descriptions as input and generates a
scene. This can be done straightforwardly, without
any additional effort, however note that the model is

“Mike and Jenny decide to make hot dogs on the grill.”, “It’s a
rainstorm and Jenny runs away to stay dry.”, “Mike stays beside
the fire.”, “Jenny is standing next to the tree.”, “Mike is sitting next
to the fire.”, “The hot dog is on the pit.”

Figure 6: Right scene is generated by SMT model (left
scene is the original) given descriptions (bottom) as input.

unaware of the absolute position of objects, it places
the cloud next to Jenny.

7 Conclusions

In this paper we presented proof of concept that
an SMT-based approach is successful at generat-
ing human-like scene descriptions provided that
(a) there is a large enough parallel corpus to learn
from and (b) a content selection component iden-
tifies important scene content. Our results further
indicate that instilling some degree of structural in-
formation in visual scenes (via the VDG) is benefi-
cial. It allows to describe visual content more ac-
curately and facilitates its rendering in natural lan-
guage (since the two modalities are structurally sim-
ilar). The template-based, retrieval, and language
modeling systems do not use this structural informa-
tion, and even though their descriptions are largely
grammatical, they are not as felicitous. Our results
also point to difficulty of the task. Even when com-
puter vision is taken out of the equation, and the
description language is simple, human-written text
is still preferable (see Table 5). In the future, we
would like to develop better content selection mod-
els (e.g., identify surprising aspects in a scene) and
more accurate grounding strategies (e.g., via dis-
criminative alignment).
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