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Abstract

This work is an attempt to automatically ob-
tain numerical attributes of physical objects.
We propose representing each physical object
as a feature vector and representing sizes as
linear functions of feature vectors. We train
the function in the framework of the com-
bined regression and ranking with many types
of fragmentary clues including absolute clues
(e.g., A is 30cm long) and relative clues (e.g.,
A is larger than B).

1 Introduction

We know how large surfboards usually are and also
that an inner pocket of any jacket is much smaller
than a surfboard. Since we know about these nu-
merical attributes, nobody of sound mind has prob-
ably ever tried to vainly put a surfboard into an in-
ner pocket of a jacket. However, computers do not
have comprehensive knowledge of this sort. This
lack of comprehensive knowledge of the numerical
attributes is one obstacle to flexible and natural man-
machine communication. This work is an attempt
to automatically obtain knowledge on numerical at-
tributes so that computers can use it.

The knowledge on numerical attributes is also
very useful on many other occasions. For exam-
ple, it enables computers to alert their users when
the users input incorrect numbers that are outside of
the normal range of the attribute. In image recogni-
tion, a large red object will unlikely be recognized as
a strawberry if the computer knows its normal size.
In natural language processing, QA systems can use

numerical knowledge to eliminate the out-of-range
answer candidates to numerical questions.

A number of attempts similar to the current work
have been made in some other fields such as psy-
chology or fuzzy theory. However, such attempts
heavily rely on costly experiments such as giving
questionnaires to human subjects and have a prob-
lem in their scalability. In contrast, the current
work attempts to use NLP techniques on large text
data both online and offline in order to obtain such
knowledge without relying on costly experiments
such as questionnaires. A possible criticism of this
project is that simply examining an existing knowl-
edge source such as Wikipedia might accomplish
this purpose without much effort. Indeed Wikipedia
provides numerical information of some physical
objects, but not all. For example, the Wikipedia page
for watches provides descriptions on their function
and their history, but no information on their size.

Clues to the numerical attributes are rather scat-
tered over corpora and other linguistic resources. In
a corpus, we can find informative descriptions such
as “X is 35cm tall”. We can also find text fragments
suggesting an order relation between two physical
objects with regard to the size as in “X is larger
than Y”, as well as implicit clues such as “I put X
into Y”, which usually means X is smaller than Y .
Holonymy relations (X is a part of Y ) in a thesaurus
suggest an order relation in size (X is smaller than
Y ). Glosses in a dictionary also provide subtle clues
to the sizes of entry words. Each of these clues alone
is not sufficient for precisely determining the size,
so we have to bring them together. We have there-
fore developed a mathematical model that uses these
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clues and determines the sizes of many physical ob-
jects simultaneously. The approach consists of two
steps: (i) many different types of clues to the numer-
ical attribute are collected from various linguistics
resources, and (ii) those collected clues are brought
together by a combined regression and ranking.

2 Related Work

Hovy et al. (2002) pointed out the importance of the
knowledge on the numerical attributes in question
answering. They hand-coded the possible range of
a numerical attribute. Akiba et al. (2004), Fujihata
et al. (2001), Aramaki et al. (2007), and Bakalov
et al. (2011) made similar attempts. Their target,
however, is the fixed numerical attributes of the
named entities, while our target is the numerical at-
tributes of general physical objects, not restricted to
the named entities.

Davidov and Rappoport (2010) collected various
types of text fragments indicating values of numer-
ical attributes of physical objects. Our work differs
from theirs in that we explore more subtle linguistic
clues in addition to those used in the previous work,
by using a global mathematical model that brings to-
gether all the clues.

Narisawa et al. (2013) tried to determine whether
a given amount is large, small, or normal as a size
of an object, making good use of clue words such as
only; The sentence “This laptop weighs only 0.7kg”
means that laptops are usually heavier than 0.7kg.

3 Fragmentary clues to sizes

3.1 Physical objects
We first collect physical objects, i.e., objects for
which the size can be defined. However, the numeri-
cal attribute of a word depends on the sense in which
the word is being used. We will therefore determine
the size of each sense instead of each word. Specif-
ically, we determine the size of each noun synset in
the Japanese WordNet (Bond et al., 2009). We basi-
cally regard as physical objects the synsets that are
descendants of the synset corresponding to “physi-
cal objects” (00002684-n). We filter out the physi-
cal objects that are descendants of any of the follow-
ing synsets ( 09334396-n, 00027167-n, 09239740-n,
09287968-n, 09277686-n, 09335240-n, 04564698-
n, and 03670849-n), since their sizes would be hard

to define (e.g., earth, location, soil).
We further filter out approximately 400 synsets

for various reasons such as ambiguity.1

3.2 Collecting absolute clues

We collect absolute clues, which indicate a value of
a physical object without reference to other physical
objects.

We used a search engine2 with a query such as
‘ “the size of A” AND meter’ (AND represents a log-
ical conjunction) and decompose the retrieved snip-
pets into text fragments with “...” as a delimiter.
We used only the first 1,000 pages (the maximum
amount allowed by the terms of use for API users)
for the query comprising a pattern (“the size of A”,
“the length of A”, or “the height of A”) and a length
unit (millimeter, centimeter, meter, or kilometer).

Note that absolute clues are corpus-based.

3.3 Collecting relative clues

We also collect relative clues, which suggest a nu-
merical order relation between two physical objects,
i.e., A should be larger than B. Note that holonymy
and comparative sentences below are explicit rela-
tive clues as opposed to implicit relative clues that
follow. Note also that holonymy is WordNet-based
while comparative sentences and implicit relative
clues are corpus-based.

3.3.1 Holonymy
If A is a part of B, it usually means that A

is smaller than B. We can obtain such part-of
(holonymy) relations from the WordNet. Specif-
ically, for each physical object obtained in Sec-
tion 3.1, we retrieve its holonymy synsets. If a
synset is a holonym of another synset, it suggests
that the former is larger than the latter.

3.3.2 Comparative sentences
The sentence “the middle finger is longer than the

ring finger” suggests that the relation ‘middle finger
> ring finger’ holds for the size attribute. We collect
such comparative sentences. Specifically, we search

1The list of those synsets and textual patterns and Japanese
search keywords used in this work are available from
http://www.lr.pi.titech.ac.jp/˜takamura/
core9.html .

2Yahoo!JAPAN API.
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an n-gram corpus (Kudo and Kazawa, 2007) for the
textual patterns including “A is longer than B”.3

3.3.3 Implicit relative clues
People tend not to write out clues explicitly

when most readers are expected to have the relevant
knowledge. Since absolute clues and comparative
sentences are explicit, we cannot expect a sufficient
amount of such clues.

We argue that people unintentionally put many
pieces of common knowledge into some specific tex-
tual patterns. The sentence “I put my wallet into the
pocket” suggests that ‘pocket > wallet’ holds for the
numerical attribute. We collect from the n-gram cor-
pus such textual patterns (A in B, put A in B, take
A out of B, store A in B, put A on B, drop A from
B, A go into B, and A go out of B).

4 Bringing together the clues

4.1 Feature representation and linear model

To bring together the clues introduced in Section 3,
we first represent physical objects with feature vec-
tors and employ a linear model in which the size
f(w, x) is represented as the inner product w · x
of feature vector x and weight vector w.

We use the following features: the synsets that are
ancestors of the target synset (i.e., synsets that can be
found by traversing up through hypernym-hyponym
relations or instance-of relations), the synsets that
the target synset is a member of (hmem in WordNet),
the hypernym synsets of the target synset (hype in
WordNet), the synsets that the target synset is an in-
stance of (inst in WordNet), the synsets that the tar-
get synset has as a component (mprt in WordNet),
the synsets that the target synset is a component of
(hprt in WordNet), the head word in the gloss in a
dictionary, and the synonyms in the target synset.

4.2 Formalization

We discuss how to estimate weight vector w.
Some physical objects are given absolute clues. If

multiple absolute clues are found for an object, we
regard their average (actually, its logarithm) as the
approximate size used for training. Since the size
is a real number, the machine learning framework
to be employed should be regression. Additionally,

3We also used “shorter”, “larger”, and “smaller”.

relative clues are incorporated into the training by
means of ranking framework. We henceforth use the
combined regression and ranking.

Our formalization is similar to the combined re-
gression and ranking model developed by Scul-
ley (2010). Let Da and Dr denote respectively the
training datasets consisting of absolute clues and rel-
ative clues. Each element in Da is represented as a
pair of a feature vector x and its average size y. Each
element in Dr is represented as a tuple of feature
vectors x1 and x2, and the order relation z; z indi-
cates whether x1 is larger (z = +1), or x2 is larger
(z = −1). We minimize the following function:

(1 − α)La(w, Da) + αLr(w, Dr) +
λ

2
||w||2, (1)

where α is a trade-off parameter between regres-
sion loss La(w, Da) and pairwise loss Lr(w, Dr).
(λ/2)||w||2 is the regularization term.

The regression loss La(w, Da) is decomposed as

1
|Da|

∑
(x,y)∈Da

la(y, f(w, x)), (2)

where la(y, f(w, x)) is the loss of the pair (x, y)
under the model w, and is represented by squared
loss (y − f(w,x))2, indicating the difference be-
tween the target value and the model output.

The pairwise loss Lr(w, Dr), is decomposed as

1
|Dr|

∑
(x1,x2,z)∈Dr

lr(z, x1, x2, w), (3)

where lr(z,x1,x2,w) is the loss of the tuple
(x1, x2, z) under the model w, and is represented
by hinge loss, max(0, 1 − z · f(w, x1 − x2)).

While a single type of loss function was used for
the regression loss and the pairwise loss in the pre-
vious work (Sculley, 2010), the current framework
relies on two different types of loss functions, i.e.,
squared loss and hinge loss, so that both absolute
and relative clues can be used in the model.

5 Experiments

5.1 Experimental setting

We followed the process in Section 3.1 and elimi-
nated infrequent ones from the obtained synsets. For
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the remaining synsets, we performed a search for ab-
solute and relative clues and obtained 1,329 abso-
lute clues and 7,335 relative clues. This set of rela-
tive clues stems from 848 WordNet-based clues and
6,496 corpus-based clues with a small overlap. We
note that fewer than 1% of these 6,496 corpus-based
clues are explicit. The synsets for which no clues
are found are removed from the following process,
leaving 3,598 synsets. Thoroughly using the web
data might provide a larger overall amount, but the
current result suggests that there are fewer absolute
clues than relative ones and fewer explicit clues than
implicit ones.

We evaluate the methods in two different ways.
One is the difference: the sizes of the 262 randomly
sampled synsets without absolute clues are manu-
ally determined, and we calculated the difference
between the estimated size and the manually deter-
mined size for each of those synsets. The other is
the order relation classification: the size relations of
1,152 randomly sampled pairs of synsets are manu-
ally annotated, and we employ as an evaluation met-
ric the accuracy indicating how many of those rela-
tions are correctly predicted.

We implemented our combined regression and
ranking method by modifying a package.4 We used
the logarithms of sizes as the target value. We tuned
λ in Equation (1) to the value that optimizes the ac-
curacy out of 11 values5: 10−7, 10−6, · · · , 103.

We tested different numbers of absolute clues in
training (namely, 300, 500, 800, 1,000) in order to
examine its effect.

5.2 Results

Figure 1 shows how the average difference for each
number of absolute clues changes as α in Equa-
tion (1) is varied. All types of clues and features
are used for Figure 1 (a), while the clues and fea-
tures extracted from WordNet except for glosses are
excluded for Figure 1 (b). The latter emulates the
situation where the dictionary is available, but the
large-scale thesaurus such as WordNet is not. The
left-most point (α = 0) for each figure corresponds
to simple regression. The curves show that the dif-
ference can be reduced by using the combined re-

4http://code.google.com/p/sofia-ml/
5In the actual application, we would be able to use develop-

ment data for tuning.

Size (cm) Synset Example word
1.35×10−1 11678768-n ovum
2.68×100 02312744-n silkworm
3.26×100 02206856-n bee
7.16×100 04453037-n tooth of gear
9.09×100 03209910-n floppy disk
1.14×101 03378442-n foot
3.01×101 04586225-n wind chime
3.35×101 03485794-n hand towel
4.57×101 04590553-n windshield
1.56×102 09189157-n nest of hawk or eagle
1.65×102 04152829-n screen
4.31×104 02687992-n airport

Table 1: Sample of the estimated sizes

gression and ranking. The improvement is more re-
markable when fewer absolute clues are used.

Similarly, Figure 2 shows how the accuracy of the
order relation classification for each number of ab-
solute clues changes as α is varied. The accuracy
of the order relation classification was around 70
to 80 %. The benefit of using combined regression
and ranking is more remarkable in Figure 2 (b), i.e.,
when the thesaurus is not available.

Table 1 shows a sample of physical objects and
their estimated sizes. We can see that the overall
trend of the size has been successfully captured.

We also examine some features with small or
large weights in Table 2. Very small weights are
given to, for example, elementary particles in the
field of particle physics, hydrons, and bacteria.6

Feature Weight
Synset for baryon, as ancestor -7.75
Hydron as synonym -7.75
Synset for fermion, as ancestor -7.13
Electron, as synonym -6.06
Bacteria, as synonym -6.06
Bell tower, hprt feature +7.15
Railroad as synonym, +8.16
Means of transportation as ancestor +8.38

Table 2: Features with large absolute weights. Note that
baryon is a heavy particle in the field of particle physics.

6More comprehensive results are available from
http://www.lr.pi.titech.ac.jp/˜takamura/
core9.html .
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Figure 1: Average difference between the estimated size and the manually determined size (log of centimeter).
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Figure 2: Accuracy of order relation classification

6 Conclusion

We addressed the task of automatically extracting
numerical attributes of physical objects. We propose
representing the sizes of objects using a linear func-
tion. We used the combined regression and ranking
model with both absolute and relative clues.

Currently, many features are extracted from a the-
saurus WordNet. If we can extract effective features
from other resources, we would be able to apply our
method to the objects that are not in the thesaurus.
Future work also includes the following:
· more accurately collecting physical objects,
· sense disambiguation of words in clues,

· use of superlative sentences,
· filtering out descriptions of rare events,
· a more effective way of using glosses,
· application to other attributes, e.g., weight,
· handling idioms.
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