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Abstract

We present two simple modifications to the
models in the popular Word2Vec tool, in or-
der to generate embeddings more suited to
tasks involving syntax. The main issue with
the original models is the fact that they are
insensitive to word order. While order in-
dependence is useful for inducing semantic
representations, this leads to suboptimal re-
sults when they are used to solve syntax-based
problems. We show improvements in part-of-
speech tagging and dependency parsing using
our proposed models.

1 Introduction

Word representations learned from neural language
models have been shown to improve many NLP
tasks, such as part-of-speech tagging (Collobert et
al., 2011), dependency parsing (Chen and Man-
ning, 2014; Kong et al., 2014) and machine trans-
lation (Liu et al., 2014; Kalchbrenner and Blunsom,
2013; Devlin et al., 2014; Sutskever et al., 2014).
These low-dimensional representations are learned
as parameters in a language model and trained to
maximize the likelihood of a large corpus of raw
text. They are then incorporated as features along
side hand-engineered features (Turian et al., 2010),
or used to initialize the parameters of neural net-
works targeting tasks for which substantially less
training data is available (Hinton and Salakhutdinov,
2012; Erhan et al., 2010; Guo et al., 2014).

One of the most widely used tools for building
word vectors are the models described in (Mikolov
et al., 2013), implemented in the Word2Vec tool,

in particular the “skip-gram” and the “continuous
bag-of-words” (CBOW) models. These two mod-
els make different independence and conditioning
assumptions; however, both models discard word
order information in how they account for context.
Thus, embeddings built using these models have
been shown to capture semantic information be-
tween words, and pre-training using these models
has been shown to lead to major improvements in
many tasks (Collobert et al., 2011). While more so-
phisticated approaches have been proposed (Dhillon
et al., 2011; Huang et al., 2012; Faruqui and Dyer,
2014; Levy and Goldberg, 2014; Yang and Eisen-
stein, 2015), Word2Vec remains a popular choice
due to their efficiency and simplicity.

However, as these models are insensitive to word
order, embeddings built using these models are sub-
optimal for tasks involving syntax, such as part-of-
speech tagging or dependency parsing. This is be-
cause syntax defines “what words go where?”, while
semantics than “what words go together”. Obvi-
ously, in a model where word order is discarded,
the many syntactic relations between words can-
not be captured properly. For instance, while most
words occur with the word the, only nouns tend to
occur exactly afterwords (e.g. the cat). This is
supported by empirical evidence that suggests that
order-insensitivity does indeed lead to substandard
syntactic representations (Andreas and Klein, 2014;
Bansal et al., 2014), where systems using pre-trained
with Word2Vec models yield slight improvements
while the computationally far more expensive which
use word order information embeddings of Col-
lobert et al. (2011) yielded much better results.
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In this work, we describe two simple modifica-
tions to Word2Vec, one for the skip-gram model
and one for the CBOW model, that improve the
quality of the embeddings for syntax-based tasks1.
Our goal is to improve the final embeddings while
maintaining the simplicity and efficiency of the orig-
inal models. We demonstrate the effectiveness of
our approaches by training, on commodity hard-
ware, on datasets containing more than 50 million
sentences and over 1 billion words in less than a
day, and show that our methods lead to improve-
ments when used in state-of-the-art neural network
systems for part-of-speech tagging and dependency
parsing, relative to the original models.

2 Word2Vec

The work in (Mikolov et al., 2013) is a popular
choice for pre-training the projection matrix W ∈
<d×|V | where d is the embedding dimension with
the vocabulary V . As an unsupervised task that is
trained on raw text, it builds word embeddings by
maximizing the likelihood that words are predicted
from their context or vice versa. Two models were
defined, the skip-gram model and the continuous
bag-of-words model, illustrated in Figure 1.

The skip-gram model’s objective function is to
maximize the likelihood of the prediction of contex-
tual words given the center word. More formally,
given a document of T words, we wish to maximize

L =
1
T

T∑
t=1

∑
−c≤j≤c,

j 6=0

log p(wt+j | wt) (1)

Where c is a hyperparameter defining the window
of context words. To obtain the output probabil-
ity p(wo|wi), the model estimates a matrix O ∈
<|V |×dw , which maps the embeddings rwi into a
|V |-dimensional vector owi . Then, the probability
of predicting the word wo given the word wi is de-
fined as:

p(wo | wi) =
eowi (wo)∑

w∈V eowi (w)
(2)

This is referred as the softmax objective. However,
for larger vocabularies it is inefficient to compute

1The code developed in this work is made available in
https://github.com/wlin12/wang2vec.

owi , since this requires the computation of a |V |×dw

matrix multiplication. Solutions for problem are ad-
dressed in the Word2Vec by using the hierarchical
softmax objective function or resorting to negative
sampling (Goldberg and Levy, 2014).

The CBOW model predicts the center word wo

given a representation of the surrounding words
w−c, ..., w−1, w1, wc. Thus, the output vector
ow−c,...,w−1,w1,wc is obtained from the product of the
matrix O ∈ <|V |×dw with the sum of the embed-
dings of the context words

∑
−c≤j≤c,j 6=0 rwj .

We can observe that in both methods, the order of
the context words does not influence the prediction
output. As such, while these methods may find sim-
ilar representations for semantically similar words,
they are less likely to representations based on the
syntactic properties of the words.
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Figure 1: Illustration of the Skip-gram and Continuous
Bag-of-Word (CBOW) models.

3 Structured Word2Vec

To account for the lack of order-dependence in the
above models, we propose two simple modifications
to these methods that include ordering information,
which we expect will lead to more syntactically-
oriented embeddings. These models are illustrated
in Figure 2.

3.1 Structured Skip-gram Model
The skip-gram model uses a single output matrix
O ∈ <|V |×d to predict every contextual word
w−c, ..., w−1, w1, ..., wc, given the embeddings of
the center word w0. Our approach adapts the
model so that it is sensitive to the positioning of the
words. It defines a set of c × 2 output predictors
O−c, ..., O−1, O1, Oc, with size O ∈ <(|V |)×d. Each
of the output matrixes is dedicated to predicting the
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output for a specific relative position to the center
word. When making a prediction p(wo | wi), we
select the appropriate output matrix Oo−i to project
the word embeddings to the output vector. Note, that
the number of operations that must be performed for
the forward and backward passes in the network re-
mains the same, as we are simply switching the out-
put layer O for each different word index.

3.2 Continuous Window Model

The Continuous Bag-Of-Words words model
defines a window of words w−c, ..., wc with
size c, where the prediction of the center word
w0 is conditioned on the remaining words
w−c, ..., w−1, w1, ..., wc. The prediction matrix
O ∈ <(|V |)×d is fed with the sum of the embed-
dings of the context words. As such, the order
of the contextual words does not influence the
prediction of the center word. Our approach
defines a different output predictor O ∈ <(|V |×2cd

which receives as input a (2c × d)-dimensional
vector that is the concatenation of the embeddings
of the context words in the order they occur
[e(w−c), . . . , e(w−1), e(w1), . . . , e(wc)]. As matrix
O defines a parameter for the word embeddings for
each relative position, this allows the words to be
treated differently depending on where they occur.
This model, denoted as CWindow, is essentially the
window-based model described in (Collobert et al.,
2011), with the exception that we do not project
the vector of word embeddings into a window
embedding before making the final prediction.

In both models, we are increasing the number
of parameters of matrix O by a factor of c × 2,
which can lead to sparcity problems when training
on small datasets. However, these models are gener-
ally trained on datasets in the order of 100 millions
of words, where these issues are not as severe.

4 Experiments

We conducted experiments in two mainstream
syntax-based tasks part-of-speech Tagging and De-
pendency parsing. Part-of-speech tagging is a word
labeling task, where each word is to be labelled with
its corresponding part-of-speech. In dependency
parsing, the goal is to predict a tree built of syntactic
relations between words. In both tasks, it has been
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Figure 2: Illustration of the Structured Skip-gram and
Continuous Window (CWindow) models.

shown that pre-trained embeddings can be used to
achieve better generalization (Collobert et al., 2011;
Chen and Manning, 2014).

4.1 Building Word Vectors

We built vectors for English in two very different
domains. Firstly, we used an English Wikipedia
dump containing 1,897 million words (60 million
sentences), collected in September of 2014. We
built word embeddings using the original and our
proposed methods on this dataset. These embed-
dings will be denoted as WIKI(L). Then, we took a
sample of 56 million English tweets with 847 mil-
lion words collected in (Owoputi et al., 2013), and
applied the same procedure to build the TWITTER
embeddings. Finally, we also use the Wikipedia
documents, with 16 million words, provided in the
Word2Vec package for contrastive purposes, de-
noted as WIKI(S). As preprocessing, the text was
lowercased and groups of contiguous digits were re-
placed by a special word. For all corpora, we trained
the network with a c = 5, with a negative sampling
value of 10 and filter out words with less than 40
instances. WIKI(L) and TWITTER have a vocabu-
lary of 424,882 and 216,871 types, respectively, and
embeddings of 50 dimensions.

Table 1 shows the similarity for a few selected
keywords for each of the different embeddings. We
can see hints that our models tend to group words
that are more syntactically related. In fact, for the
word breaking, the CWindow model’s top five words
are exclusively composed by verbs in the contin-
uous form, while the Structured Skip-gram model
tends to combine these with other forms of the verb
break. The original models tend to be less keen on
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Embeddings WIKI(S) TWITTER WIKI(L)
query breaking amazing person

CBOW breaks incredible someone
turning awesome anyone
broke fantastic oneself
break phenomenal woman

stumbled awsome if
Skip-gram break incredible harasser

breaks awesome themself
broke fantastic declarant
down phenominal someone

broken phenomenal right-thinking
CWindow putting incredible woman
(this work) turning amaaazing man

sticking awesome child
pulling amzing grandparent
picking a-mazing servicemember

Structured break incredible declarant
Skip-gram turning awesome circumstance
(this work) putting amaaazing woman

out ah-mazing schoolchild
breaks amzing someone

Table 1: Most similar words using different word embed-
ding models for the words breaking, amazing and person.
Each word is queried in a different dataset.

preserving such properties. As for the TWITTER
embeddings, we can observe that our adapted em-
beddings are much better at finding lexical variations
of the words, such as a-mazing, resembling the re-
sults obtained using brown clusters (Owoputi et al.,
2013). Finally, for the query person, we can see
that our models tend to associate this term to other
words in the same class, such as man, woman and
child, while original models tend to include unre-
lated words, such as if and right-thinking.

In terms of computation speed, the Skip-gram
and CBOW models, achieve a processing rate of
71.35k and 342.17k words per second, respectively.
The Structured Skip-gram and CWindow models
can process 34.64k and 124.43k words per second,
respectively. There is a large drop in computa-
tional speed in the CWindow model compared to
the CBOW model, as it uses a larger output ma-
trix, which grows with the size of the window. The
Structured Skip-gram model processes words at al-
most half the speed of the Skip-gram model. This is
explained by the fact that the Skip-gram model sub-
samples context words, varying the size of the win-
dow size stochastically, so that words closer to the

center word are sampled more frequently. That is,
when defining a window size of 5, the actual win-
dow size used for each sample is a random value
between 1 and 5. As we use a separate output layer
for each position, we did not find this property to be
useful as it provides less training samples for out-
put matrixes with higher indexes. While our models
are slower they are still suitable for processing large
datasets as all the embeddings we use were all built
within a day.

4.2 Part-Of-Speech Tagging

We reimplemented the window-based model pro-
posed in (Collobert et al., 2011), which defines a
3-layer perceptron. In this network, words are first
projected into embeddings, which are concatenated
and projected into a window embedding. These are
finally projected into an output layer with size of the
POS tag vocabulary, followed by a softmax. In our
experiments, we used a window size of 5, word em-
beddings of size 50 and window embeddings of size
500. Word embeddings were initialized using the
pre-trained vectors and these parameters are updated
as the rest of the network. Additionally, we also add
a capitalization feature which indicates whether the
first letter of the work is uppercased, as all word fea-
tures are lowercased words. Finally, for words un-
seen in the training set and in the pre-trained em-
beddings, we replace them with a special unknown
token, which is also modelled as a word type with a
set of 50 parameters. At training time, we stochasti-
cally replace word types that only occur once in the
training dataset with the unknown token. Evaluation
is performed with the part-of-speech tag accuracy,
which denotes the percentage of words labelled cor-
rectly.

Experiments are performed on two datasets, the
English Penn Treebank (PTB) dataset using the
standard train, dev and test splits, and the ARK
dataset (Gimpel et al., 2011), with 1000 training,
327 dev and 500 labelled English tweets from Twit-
ter. For the PTB dataset, we use the WIKI(L) em-
beddings and use TWITTER embeddings for the
ARK dataset. Finally, the set of parameters with the
highest accuracy in the dev set are used to report the
score for the test set.

Results are shown in Table 2, where we observe
that our adapted models tend to yield better re-
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PTB Twitter
Dev Test Dev Test

CBOW 95.89 96.13 87.85 87.54
Skip-gram 96.62 96.68 88.84 88.73
CWindow 96.99 97.01 89.72 89.63

Structured Skip-gram 96.62 97.05 89.69 89.79
SENNA 96.54 96.58 84.96 84.85

Table 2: Results for part-of-speech tagging using differ-
ent word embeddings (rows) on different datasets (PTB
and Twitter). Cells indicate the part-of-speech accuracy
of each experiment.

sults than the original models in both datasets. In
the Twitter dataset, our results slightly higher than
the accuracy reported using only Brown clusters
in (Owoputi et al., 2013), which was 89.50. We also
try initializing our embeddings with those in (Col-
lobert et al., 2011), which are in the “Senna” row.
Even though results are higher in our models, we
cannot conclude that our method is better as they
are trained crawls from Wikipedia in different time
periods. However, it is a good reference to show that
our embeddings are on par with those learned using
more sophisticated models.

4.3 Dependency Parsing
The evaluation on dependency parsing is performed
on the English PTB, with the standard train, dev and
test splits with Stanford Dependencies. We use neu-
ral network defined in (Chen and Manning, 2014),
with the default hyper-parameters2 and trained for
5000 iterations. The word projections are initial-
ized using WIKI(L) embeddings. Evaluation is
performed with the labelled (LAS) and unlabeled
(UAS) attachment scores.

In Table 3, we can observe that results are consis-
tent with those in part-of-speech tagging, where our
models obtain higher scores than the original models
and with competitive results compared to Senna em-
beddings. This suggests that our models are suited
at learning syntactic relations between words.

5 Conclusions

In this work, we present two modifications to the
original models in Word2Vec that improve the word
embeddings obtained for syntactically motivated

2Found in http://nlp.stanford.edu/software/nndep.shtml

Dev Test
UAS LAS UAS LAS

CBOW 91.74 88.74 91.52 88.93
Skip-gram 92.12 89.30 91.90 89.55
CWindow 92.38 89.62 92.00 89.70

Structured Skip-gram 92.49 89.78 92.24 89.92
SENNA 92.24 89.30 92.03 89.51

Table 3: Results for dependency parsing on PTB using
different word embeddings (rows). Columns UAS and
LAS indicate the labelled attachment score and the unla-
belled parsing scores, respectively.

tasks. This is done by introducing changes that make
the network aware of the relative positioning of con-
text words. With these models we obtain improve-
ments in two mainstream NLP tasks, namely part-
of-speech tagging and dependency parsing, and re-
sults generalize in both clean and noisy domains.
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