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Abstract

Supervised morphological paradigm learning
by identifying and aligning the longest com-
mon subsequence found in inflection tables
has recently been proposed as a simple yet
competitive way to induce morphological pat-
terns. We combine this non-probabilistic strat-
egy of inflection table generalization with a
discriminative classifier to permit the recon-
struction of complete inflection tables of un-
seen words. Our system learns morphological
paradigms from labeled examples of inflection
patterns (inflection tables) and then produces
inflection tables from unseen lemmas or base
forms. We evaluate the approach on datasets
covering 11 different languages and show that
this approach results in consistently higher ac-
curacies vis-à-vis other methods on the same
task, thus indicating that the general method
is a viable approach to quickly creating high-
accuracy morphological resources.

1 Introduction

Use of detailed and sophisticated morphological fea-
tures has been found to be crucial for many down-
stream NLP tasks, including part-of-speech tag-
ging and parsing (Tseng et al., 2005; Spoustová et
al., 2007). However, creating an accurate wide-
coverage morphological analyzer for a new lan-
guage that can be used in tandem with other higher-
level analyses is an arduous task.

Learning word inflection patterns by organizing
related word-forms into morphological paradigms
based on the longest common subsequence (LCS)
found in an inflection table has recently been

proposed as a method for supervised and semi-
supervised induction of morphological processing
tools from labeled data (Ahlberg et al., 2014). Also,
the argument that the LCS shared by different in-
flected forms of a word—even if discontinuous
within a word—corresponds strongly to a cross-
linguistic notion of a ‘stem’ has later been advanced
independently on grounds of descriptive economy
and minimum description length (Lee and Gold-
smith, 2014).

We used this idea in (Ahlberg et al., 2014) to
create a relatively simple-to-implement system that
learns paradigms from example inflection tables and
is then able to reconstruct inflection tables for un-
seen words by comparing suffixes of new base forms
to base forms seen during training. The system
performs well on available datasets and results in
human-readable and editable output. The longest
common subsequence strategy itself shows little bias
toward any specific morphological process such as
prefixation, suffixation, or infixation. Using the
model, we argued, a selection of ready-inflected ta-
bles could be quickly provided by a linguist, allow-
ing rapid development of morphological resources
for languages for which few such resources exist.

Potentially, however, the model’s commitment to
a simple suffix-based learner is a weakness. To
assess this, we evaluate a similar LCS-based gen-
eralization system with a more refined discrimina-
tive classifier that takes advantage of substrings in
the example data and performs careful feature se-
lection. We show that much higher accuracies can
be achieved by combining the LCS paradigm gen-
eralization strategy with such a feature-based classi-
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fier that assigns unknown words to the LCS-learned
paradigm based on substring features taken from
word edges. This holds in particular for languages
where paradigmatic behavior is triggered by mate-
rial in the beginning of a word (e.g. German verbs).

We present experiments on 18 datasets in 11 lan-
guages varying in morphological complexity. In all
the experiments, the task is to reconstruct a com-
plete inflection table from a base form, which usu-
ally corresponds to the lemma or dictionary form of
a noun, verb, or adjective. The experiments are di-
vided into two sets. In the first, we use an earlier
dataset (Durrett and DeNero, 2013) of Finnish, Ger-
man, and Spanish to compare against other methods
of paradigm learning. In the second, we use a more
comprehensive and complex dataset we have devel-
oped for 8 additional languages. This new dataset
is less regular and intended to be more realistic in
that it also features defective or incomplete inflec-
tion tables and inflection tables containing various
alternate forms, naturally making the classification
task substantially more difficult.1

Overall, supervised and semi-supervised learning
of morphology by generalizing patterns from inflec-
tion tables is an active research field. Recent work
sharing our goals includes Toutanova and Cherry
(2009), Dreyer and Eisner (2011), which works with
a fully Bayesian model, Dinu et al. (2012), Eskan-
der et al. (2013), which attempts to learn lexicons
from morphologically annotated corpora, and Dur-
rett and DeNero (2013), who train a discriminative
model that learns transformation rules between word
forms. We directly compare our results against the
last using the same dataset.

The paper is organized as follows: section 2 con-
tains the experimental setup, section 3 the datasets,
and section 4 the results and discussion.

2 Method

As a first step, our system converts inflection tables
into paradigms using a procedure given in Hulden
(2014). The system generalizes concrete inflection
tables by associating the common symbol subse-
quences shared by the words (the LCS) with vari-

1The data and the code is available at our website
https://svn.spraakbanken.gu.se/clt/naacl/
2015/extract
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Figure 1: General overview of the system, exempli-
fied using Icelandic nouns. First, a large number of in-
flection tables are generalized into a smaller number of
paradigms; the generalization of the table for höfn ‘har-
bor’ into a paradigm is illustrated here. At classifica-
tion time, an unknown base form is classified into one
of the learned paradigms and its inflection table is recon-
structed, illustrated here by gjöf ‘present’.

ables. These variables represent abstractions that at
table reconstruction time can correspond to any se-
quence of one or more symbols. As many inflec-
tion tables of different words are identical after as-
signing the common parts to ‘variables,’ this pro-
cedure results in a comparatively small number of
paradigms after being input a large number of in-
flection tables. The process is illustrated in Figure 1.
During generalization, the forms that gave rise to
a particular paradigm are stored and later used for
training a classifier to assign unknown base forms
to paradigms. Having a number of paradigms at our
disposal by this generalization method, the task of
reconstructing an inflection table for an unseen base
form in effect means picking the correct paradigm
from among the ones generalized, a standard classi-
fication task of choosing the right/best paradigm.

After seeing a number of inflection tables gener-
alized into abstract paradigms as described above,
the task we evaluate is how well complete inflection
tables can be reconstructed from only seeing an un-
known base form. To this end, we train a “one-vs-
the-rest” linear multi-class support vector machine
(SVM).2 For each example base form wbi that is a
member of paradigm pj , we extract all substrings
from wbi from the left and right edges, and use those
as binary features corresponding to the paradigm pj .

2Using LIBLINEAR (Fan et al., 2008) with L2-
regularization.
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For example, during training, the German verb lesen
would have the following binary features activated:
{#l, #le, #les, #lese, #lesen, #lesen#, lesen#, esen#,
sen#, en#, n#}.

Before applying the classifier to an unseen base
form and reconstructing the corresponding inflection
table, many competing paradigms can be ruled out
as being ill-matched simply by inspecting the base
form. For example, the infinitive for the paradigm
containing the English verb sing is generalized as
x1+i+x2. At classification time of a verb like run,
this paradigm can be ruled out due to incompatibil-
ity, as there is no i in run, and so the infinitive cannot
be generated. Likewise, the Icelandic paradigm seen
in Figure 1 can be ruled out for the base form hest
‘horse’, as the base form does not contain ö. The
SVM-classifier may indeed suggest such paradigm
assignments, but such classifications are ignored and
the highest scoring compatible paradigm is selected
instead. These additional constraints on possible
base form-paradigm pairings are a general feature of
the LCS-strategy and are not at all tied to the classi-
fication method here.

2.1 Feature selection

In order to eliminate noise features, we performed
feature selection using the development set. We si-
multaneously tuned the SVM soft-margin penalty
parameter C, as well as the length and type (pre-
fix/suffix) of substrings to include as features. More
concretely, we explored the values using a grid
search over C = 0.01 . . . 5.0, with a growing se-
quence gap (Hsu et al., 2003), as well as tuning the
maximum length of anchored substring features to
use (3 . . . 9), and whether to include prefix-anchored
substrings at all (0/1). In the second experiment,
where cross-validation was used, we performed the
same tuning procedure on each fold’s development
set.

3 Data

For the first experiment, we use the datasets pro-
vided by Durrett and DeNero (2013). This dataset
contains complete inflection tables for German
nouns and verbs (DE-NOUNS, DE-VERBS), Finnish
verbs and nouns combined with adjectives (FI-
VERBS, FI-NOUNADJ), and Spanish verbs (ES-

VERBS). The number of inflection tables in this
set ranges from 2,027 (DE-VERBS) to 7,249 (FI-
VERBS). From these tables, 200 were held out for
development and 200 for testing, following the splits
that previous authors have used (Durrett and DeN-
ero, 2013; Ahlberg et al., 2014) to ensure a fair base-
line.3

For the second experiment, we collected addi-
tional inflection tables from Catalan (CA), English
(EN), French (FR), Galician (GL), Italian (IT), Por-
tuguese (PT), Russian (RU) (all from the FreeLing
project (Padró and Stanilovsky, 2012)) and Maltese
(MT) (Camilleri, 2013).4 These inflection tables are
often incomplete or defective and some contain very
rarely occurring grammatical forms. Many alternate
forms are also given. To avoid having to account for
rare or historical forms, we filtered out grammatical
forms (slots) that occur in less than ∼1% of all in-
flection tables. We also performed an independent
cross-check with Wiktionary and removed some in-
flection table slots that did not appear in that re-
source. We further limited the number of inflection
tables to 5,000. In the second experiment, we also
split each dataset into 5 folds for cross-validation
(maximally 4,000 tables for training, 500 for devel-
opment and 500 for testing for each fold).

4 Results and discussion

In the main results tables 1, 2, and 3 we report
the per table accuracy and per form accuracy in re-
constructing complete inflection tables from unseen
base forms. The per table accuracy is the percentage
of inflection tables that are perfectly reconstructed
from the base form. The per form accuracy is the
percentage of correct forms in the reconstructed ta-
ble. The associated oracle scores, which indepen-
dently provide a measure of generalization power of
the LCS-method, represent the maximal percentage
achievable by an oracle classifier that always picks

3The development and test data for the first experiment had
been filtered to not contain any of the 200 most frequently
occurring forms in the language (Durrett and DeNero, 2013);
this may result in an easier classification task because the
maneuver in effect ensures that words belonging to irregular
paradigms—i.e. those which would otherwise be difficult to
classify correctly—are never evaluated against.

4The FreeLing data also included Russian verbs. However,
this data set was deemed too incomplete to be useful and was
left out.
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Data Per table accuracy Per form accuracy Oracle acc.
per form (table)

SVM AFH14 D&DN13 SVM AFH14 D&DN13

DE-VERBS 91.5 68.0 85.0 98.11 97.04 96.19 99.70 (198/200)
DE-NOUNS 80.5 76.5 79.5 89.88 87.81 88.94 100.00 (200/200)
ES-VERBS 99.0 96.0 95.0 99.92 99.52 99.67 100.00 (200/200)
FI-VERBS 94.0 92.5 87.5 97.14 96.36 96.43 99.00 (195/200)
FI-NOUNS-ADJS 85.5 85.0 83.5 93.68 91.91 93.41 100.00 (200/200)

Table 1: Results on experiment 1. Here AFH14 stands for Ahlberg et al. (2014) and D&DN for Durrett and DeNero
(2013). The SVM-columns show the results of the current method.

the best learned paradigm for an unseen base form.
In experiment 2, where the correct forms may con-
sist of several alternatives, we only count a form as
correct if all alternatives are given and all are correct.
For example, the verb dream in English lists two
alternative past participles, dreamed and dreamt,
which both must be reconstructed for the past par-
ticiple form to count as being correct.

Experiment 1
The accuracies obtained on the first three-language
comparison experiment are shown in Table 1. Here,
we see a consistent improvement upon the max-
suff -strategy (AFH14) that simply picks the longest
matching suffix among the base forms seen and as-
signs the unseen word to the same paradigm (break-
ing ties by paradigm frequency), as well as improve-
ment over other learning strategies (D&DN13). Par-
ticularly marked is the improved accuracy on Ger-
man verbs. We assume that this is because German
verb prefixes, which are ignored in a suffix-based
classifier, contain information that is useful in clas-
sifying verb behavior. German verbs that contain so-
called inseparable prefixes like miss-, ver-, wider-
do not prefix a ge- in the past participle form. For ex-
ample: kaufen∼ gekauft, brauchen∼ gebraucht,
legen ∼ gelegt, but verkaufen ∼ verkauft, wider-
legen ∼ widerlegt, missbrauchen ∼ missbraucht,
reflecting the replacement of the standard ge- by the
inseparable prefix. There are many such inseparable
prefixes that immediately trigger this behavior (al-
though some prefixes only occasionally show insep-
arable behavior), yet this information is lost when
only looking at suffixes at classification time. This
analysis is supported by the fact that, during feature

selection, German verbs was the only dataset in this
first experiment where word prefixes were not re-
moved by the feature selection process.

Experiment 2
The results of the second experiment are given in
tables 2 (per table accuracy) and 3 (per form ac-
curacy). The tables contain information about how
many inflection tables were input on average over
5 folds to the learner (#tbl), how many paradigms
this reduced to (#par), and how many forms (slots)
each paradigm has (#forms). The mfreq column is
a baseline where the classifier always picks the most
populated paradigm, i.e. the paradigm that resulted
from combining the largest number of different in-
flection tables by the LCS process. The AFH14
shows the performance of a maximal suffix match-
ing classifier, identical to that used in Ahlberg et al.
(2014).

Discussion
Overall, the results support earlier claims that the
LCS-generalization appears to capture paradigmatic
behavior well, especially if combined with care-
ful classification into paradigms. There is a clear
and consistent improvement over baselines that use
the same data sets. In addition, the SVM-classifier
yields results comparable, and in many cases bet-
ter, to using a maximum suffix classifier and addi-
tionally having access to raw corpus data in the lan-
guage, a semi-supervised experiment reported sepa-
rately in Ahlberg et al. (2014). In this work we have
not attempted to extend the current method to such
a semi-supervised scenario, although such an exten-
sion seems both interesting and possible.
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Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.
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