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Abstract
We propose the use of neural networks to
model source-side preordering for faster and
better statistical machine translation. The neu-
ral network trains a logistic regression model
to predict whether two sibling nodes of the
source-side parse tree should be swapped in
order to obtain a more monotonic parallel
corpus, based on samples extracted from the
word-aligned parallel corpus. For multiple
language pairs and domains, we show that this
yields the best reordering performance against
other state-of-the-art techniques, resulting in
improved translation quality and very fast de-
coding.

1 Introduction

Preordering is a pre-processing task in translation
that aims to reorder the source sentence so that it
best resembles the order of the target sentence. If
done correctly, it has a doubly beneficial effect: it
allows a better estimation of word alignment and
translation models which results in higher transla-
tion quality for distant language pairs, and it speeds
up decoding enormously as less word movement is
required.

Preordering schemes can be automatically learnt
from source-side parsed, word-aligned parallel cor-
pora. Recently Jehl et al (2014) described a scheme
based on a feature-rich logistic regression model
that predicts whether a pair of sibling nodes in the
source-side dependency tree need to be permuted.
Based on the node-pair swapping probability pre-
dictions of this model, a branch-and-bound search
returns the best ordering of nodes in the tree.

We propose using a neural network (NN) to es-
timate this node-swapping probability. We find that
this straightforward change to their scheme has mul-
tiple advantages:
1. The superior modeling capabilities of NNs

achieve better performance at preordering and
overall translation quality when using the same
set of features.

2. There is no need to manually define which feature
combinations are to be considered in training.

3. Preordering is even faster as a result of the previ-
ous point. Our results in translating from English
to Japanese, Korean, Chinese, Arabic and Hindi
support these findings by comparing against two
other preordering schemes.

1.1 Related Work
There is a strong research and commercial in-
terest in preordering, as reflected by the exten-
sive previous work on the subject (Collins et al.,
2005; Xu et al., 2009; DeNero and Uszkor-
eit, 2011; Neubig et al., 2012). We are inter-
ested in practical, language-independent preorder-
ing approaches that rely only on automatic source-
language parsers (Genzel, 2010). The most recent
work in this area uses large-scale feature-rich dis-
riminative models, effectively treating preordering
either as a learning to rank (Yang et al., 2012), multi-
classification (Lerner and Petrov, 2013) or logistic
regression (Jehl et al., 2014) problem. In this paper
we incorporate NNs into the latter approach.

Lately an increasing body of work that uses NNs
for various NLP tasks has been published, includ-
ing language modeling (Bengio et al., 2003), POS
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tagging (Collobert et al., 2011), or dependency pars-
ing (Chen and Manning, 2014). In translation, NNs
have been used for improved word alignment (Yang
et al., 2013; Tamura et al., 2014; Songyot and Chi-
ang, 2014), to model reordering under an ITG gram-
mar (Li et al., 2013), and to define additional feature
functions to be used in decoding (Sundermeyer et
al., 2014; Devlin et al., 2014). End-to-end transla-
tion systems based on NNs have also been proposed
(Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2014).

Despite the gains reported, only the approaches
that do not dramatically affect decoding times can
be directly applied to today’s commercial SMT sys-
tems. Our paper is a step towards this direction, and
to the best of our knowledge, it is the first one to
describe the usage of NNs in preordering for SMT.

2 Preordering as node-pair swapping

Jehl et al (2014) describe a preordering scheme
based on a logistic regression model that predicts
whether a pair of sibling nodes in the source-side de-
pendency tree need to be permuted in order to have
a more monotonically-aligned parallel corpus. Their
method can be briefly summarised by the pseudo-
code of Figure 1.

LetN be the set of nodes in the source tree, and let
Cn be the set of children nodes of node n. For each
node with at least two children, first extract the node
features (lines 1-2). Then, for each pair of its chil-
dren nodes: extract their respective features (lines
4-5), produce all relevant feature combinations (line
6), and store the node-pair swapping probability pre-
dicted by a logistic regression model based on all
available features (line 7). Once all pair-wise proba-
bilities are stored, search for the best global permu-
tation and sort Cn accordingly (lines 9-10).

As features, Jehl et al (2014) use POS tags and de-
pendency labels, as well as the identity and class of
the head word (for the parent node) or the left/right-
most word (for children nodes). These are combined
into conjunctions of 2 or 3 features to create new
features. For logistic regression, they train a L1-
regularised linear model using LIBLINEAR (Fan
et al., 2008). The training samples are either pos-
itive/negative depending on whether swapping the
nodes reduces/increases the number of crossed links

PREORDERPARSETREE

1 for each node n ∈ N, |Cn| > 1
2 F ← GETFEATURES(n)
3 for each pair of nodes i, j ∈ Cn, i 6= j
4 F ← F ∪ GETFEATURES(i)
5 F ← F ∪ GETFEATURES(j)
6 Fc ← FEATURECOMBINATIONS(F )
7 pn(i, j) = LOGREGPREDICT(F, Fc)
8 end for
9 πn ← SEARCHPERMUTATION(pn)

10 SORT(Cn, πn)

Figure 1: Pseudocode for the preordering scheme of Jehl
et al (2014)

in the aligned parallel corpus.

2.1 Applying Neural Networks
“A (feedforward) neural network is a series of logis-
tic regression models stacked on top of each other,
with the final layer being either another logistic re-
gression model or a linear regression model” (Mur-
phy, 2012).

Given this, we propose a straightforward alterna-
tive to the above framework: replace the linear logis-
tic regression model by a neural network (NN). This
way a superior modeling performance of the node-
swapping phenomenon is to be expected. Addition-
ally, feature combination need not be engineered
anymore because that is learnt by the NN in train-
ing (line 6 in Figure 1 is skipped).

Training the neural network requires the same la-
beled samples that were used by Jehl et al (2014).
We use the NPLM toolkit out-of-the-box (Vaswani
et al., 2013). The architecture is a feed-forward neu-
ral network (Bengio et al., 2003) with four layers.
The first layer i contains the input embeddings. The
next two hidden layers (h1, h2) use rectified linear
units; the last one is the softmax layer (o). We did
not experiment with deeper NNs.

For our purposes, the input vocabulary of the NN
is the set of all possible feature indicator names
that are used for preordering1. There are no OOVs.
Given the sequence of ∼ 20 features seen by the

1Using a vocabulary of the 5K top-frequency English words,
50 word classes, approximately 40 POS tags and 50 depen-
dency labels, the largest input vocabulary in our experiments
is roughly 30,000.
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preorderer, the NN is trained to predict whether the
nodes should be reordered or not, i.e. |o| = 2. For
the rest of the layers, we use |i| = 50, |h1| = 100,
|h2| = 50. We set the learning rate to 1, the mini-
batch size to 64 and the number of epochs to 20.

3 Experiments

3.1 Data and setup

We report translation results in English into
Japanese, Korean, Chinese, Arabic and Hindi. For
each language pair, we use generic parallel data ex-
tracted from the web. The number of words is about
100M for Japanese and Korean, 300M for Chinese,
200M for Arabic and 9M for Hindi.

We use two types of dev/test sets: in-domain and
mix-domain. The in-domain sets have 2K sentences
each and were created by randomly extracting par-
allel sentences from the corpus, ensuring no repe-
titions remained. The mix-domain sets have about
1K sentences each and were created to evenly rep-
resent 10 different domains, including world news,
chat/SMS, health, sport, science, business, and oth-
ers.

Additionally, we report results on the English-to-
Hindi WMT 2014 shared task (Bojar et al., 2014a)
using the data provided2. The dev and test sets
have 520 and 2507 sentences each. All dev and
test sets have one single reference. We use SVM-
Tool (Giménez and Màrquez, 2004) for POS Tag-
ging, and MaltParser (Nivre et al., 2007) for depen-
dency parsing.

3.2 Intrinsic reordering evaluation

We evaluate the intrinsic preordering task on a ran-
dom 5K-sentence subset of the training data which is
excluded from model estimation. We report the nor-
malized crossing score c/s, where c is the number
of crossing links (Genzel, 2010; Yang et al., 2012)
in the aligned parallel corpus, and s is the number
of source (e.g. English) words. Ideally we would
like this metric to be zero, meaning a completely
monotonic parallel corpus3; the more monotonic the

2HindEndCorp v0.5 (Bojar et al., 2014b)
3However this may not be achievable given the alignment

links and parse tree available. In this approach, only permuta-
tions of sibling nodes in the single source parse tree are permit-
ted.

Figure 2: Normalized crossing score for English into
Japanese, Korean, Hindi, Chinese, Arabic, Spanish and
Portuguese.

corpus, the better the translation models will be and
the faster decoding will run as less distortion will be
needed.

Normalizing over the number of source words
allows us to compare this metric across language
pairs, and so the potential impact of preordering in
translation performance becomes apparent. See Fig-
ure 2 for results across several language pairs. In all
cases our proposed NN-based preorderer achieves
the lowest normalized crossing score among all pre-
ordering schemes.

3.3 Translation performance

For translation experiments, we use a phrase-based
decoder that incorporates a set of standard features
and a hierarchical reordering model (Galley and
Manning, 2008). The decoder stack size is set to
1000. Weights are tuned using MERT to optimize
BLEU on the dev set. In English-to-Japanese and
Chinese we use character-BLEU instead. To min-
imise optimization noise, we tune all our systems
from flat parameters three times and report average
BLEU score and standard deviation on the test set.

Table 1 contrasts the performance obtained by
the system when using no preordering capabilities
(baseline), and when using three alternative pre-
ordering schemes: the rule-based approach of Gen-
zel (2010), the linear-model logistic-regression ap-
proach of Jehl et al (2014) and our NN-based pre-
orderer. We report two baselines: one with distortion
limit d = 10 and another with d = 3. For systems
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d system speed eng-jpn eng-kor
ratio in mixed in mixed

10 baseline 1x 54.5 ±0.2 26.2 ±0.2 33.5 ±0.3 9.7 ±0.2
3 baseline 3.2x 50.9 ±0.2 25.0 ±0.2 28.7 ±0.1 8.2 ±0.1
3 Genzel (2010) 2.7x 54.0 ±0.1 26.4 ±0.2 30.5 ±0.2 9.8 ±0.2
3 Jehl et al (2014) 2.3x 55.0 ±0.1 26.9 ±0.2 33.1 ±0.1 10.4 ±0.1
3 this work 2.7x 55.6 ±0.2 27.2 ±0.1 33.4 ±0.1 10.6 ±0.2

d system eng-chi eng-ara eng-hin
in mixed in mixed mixed wmt14

10 baseline 46.9 ±0.5 18.4 ±0.6 25.1 ±0.1 22.7 ±0.2 10.1 ±0.3 11.7 ±0.1
3 baseline 44.8 ±0.7 18.3 ±0.4 24.6 ±0.1 21.9 ±0.2 8.3 ±0.2 9.3 ±0.3
3 Genzel (2010) 45.4 ±0.2 17.9 ±0.2 24.8 ±0.1 21.6 ±0.3 9.6 ±0.2 11.4 ±0.3
3 Jehl et al (2014) 45.8 ±0.1 18.5 ±0.3 25.1 ±0.2 22.4 ±0.2 10.0 ±0.1 12.7 ±0.3
3 this work 46.5 ±0.4 19.2 ±0.2 25.5 ±0.2 22.6 ±0.1 10.6 ±0.1 12.6 ±0.3

best WMT14 constrained system 11.1

Table 1: Translation performance for various language pairs using no preordering (baseline), and three alternative
preordering systems. Average test BLEU score and standard deviation across 3 independent tuning runs. Speed ratio
is calculated with respect to the speed of the slower baseline that uses a d = 10. Stack size is 1000. For eng-jpn and
eng-chi, character-based BLEU is used.

with preordering we only report d = 3, as increasing
d does not improve performance.

As shown, our preorderer obtains the best BLEU
scores for all reported languages and domains, prov-
ing that the neural network is modeling the depen-
dency tree node-swapping phenomenon more accu-
rately, and that the reductions in crossing score re-
ported in the previous section have a positive impact
in the final translation performance.

The bottom right-most column reports results on
the WMT 2014 English-to-Hindi task. Our system
achieves better results than the best score reported
for this task4. In this case, the two logistic regression
preorderers perform similarly, as standard deviation
is higher, possibly due to the small size of the dev
set.

3.4 Decoding Speed

The main purpose of preordering is to find a better
translation performance in fast decoding conditions.
In other words, by preordering the text we expect to
be able to decode with less distortion or phrase re-
ordering, resulting in faster decoding. This is shown
in Table 1, which reports the speed ratio between
each system and the speed of the top-most baseline,

4Details at matrix.statmt.org/matrix/systems list/1749

as measured in English-to-Japanese in-domain5. We
find that decoding with a d = 3 is about 3 times
faster than for d = 10.

We now take this further by reducing the stack
size from 1000 to 50; see results in Table 2. As ex-
pected, all systems accelerate with respect to our ini-
tial baseline. However, this usually comes at a cost
in BLEU with respect to using a wider beam, unless
preordering is used. In fact, the logistic regression
preorderers achieve the same performance while de-
coding over 60 times faster than the baseline.

Interestingly, the NN-based preorderer turns out
to be slightly faster than any of the other preordering
approaches. This is because there is no need to ex-
plicitly create thousands of feature combinations for
each node pair; simply performing the forward ma-
trix multiplications given the input sequence of ∼20
features is more efficient. Similar observations have
been noted recently in the context of dependency
parsing with NNs (Chen and Manning, 2014). Note
also that, on average, only 25 pair-wise probabili-
ties are queried to the logistic regression model per
source sentence. Overall, we incorporate the bene-
fits of neural networks for preordering at no compu-

5Similar speed ratios were observed for other language pairs
(not reported here for space)
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d system speed eng-jpn eng-kor eng-chi
w/ stack=50 ratio in mixed in mixed mixed

10 baseline 22x 53.6 (-0.9) 25.4 (-0.8) 32.8 (-0.7) 9.3 (-0.4) 17.9 (-0.5)
3 baseline 66x 50.5 (-0.4) 24.8 (-0.2) 28.8 (+0.1) 8.1 (-0.1) 18.0 (-0.3)
3 Genzel (2010) 64x 53.8 (-0.2) 26.3 (-0.1) 30.4 (-0.1) 9.8 (0.0) 18.1 (+0.2)
3 Jehl et al (2014) 61x 55.0 (0.0) 26.5 (-0.4) 33.0 (-0.1) 10.4 (0.0) 18.3 (-0.2)
3 this work 65x 55.7 (+0.1) 27.2 (0.0) 33.2 (-0.2) 10.8 (+0.2) 19.1 (-0.1)

Table 2: Translation performance for maximum stack size of 50. The figures in parentheses indicate the difference
in BLEU scores due to using a smaller stack size, that is, compared to the same systems in Table 1. Speed ratio is
calculated with respect to the speed of the slower baseline that uses a stack of 1000, eg. the first row in Table 1.

tational cost.
Currently, our preorderer takes 6.3% of the to-

tal decoding time (including 2.6% for parsing and
3.7% for actually preordering). We believe that fur-
ther improvements in preordering will result in more
translation gains and faster decoding, as the distor-
tion limit is lowered.

4 Conclusions

To the best of our knowledge, this is the first paper to
describe the usage of NNs in preordering for SMT.
We show that simply replacing the logistic regres-
sion node-swapping model with an NN model im-
proves both crossing scores and translation perfor-
mance across various language pairs. Feature com-
bination engineering is avoided, which also results
in even faster decoding times.
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