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Abstract
We present penalized expectation propaga-
tion (PEP), a novel algorithm for approximate
inference in graphical models. Expectation
propagation is a variant of loopy belief prop-
agation that keeps messages tractable by pro-
jecting them back into a given family of func-
tions. Our extension, PEP, uses a structured-
sparsity penalty to encourage simple mes-
sages, thus balancing speed and accuracy. We
specifically show how to instantiate PEP in the
case of string-valued random variables, where
we adaptively approximate finite-state distri-
butions by variable-order n-gram models. On
phonological inference problems, we obtain
substantial speedup over previous related al-
gorithms with no significant loss in accuracy.

1 Introduction

Graphical models are well-suited to reasoning about
linguistic structure in the presence of uncertainty.
Such models typically use discrete random vari-
ables, where each variable ranges over a finite set
of values such as words or tags. But a variable can
also be allowed to range over an infinite space of dis-
crete structures—in particular, the set of all strings,
a case first explored by Bouchard-Côté et al. (2007).

This setting arises because human languages
make use of many word forms. These strings are
systematically related in their spellings due to lin-
guistic processes such as morphology, phonology,
abbreviation, copying error and historical change.
To analyze or predict novel strings, we can model
the joint distribution of many related strings at once.
Under a graphical model, the joint probability of an
assignment tuple is modeled as a product of poten-
tials on sub-tuples, each of which is usually modeled
in turn by a weighted finite-state machine.

In general, we wish to infer the values of un-
known strings in the graphical model. Deterministic

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1423276, and by a
Fulbright Research Scholarship to the first author.

approaches to this problem have focused on belief
propagation (BP), a message-passing algorithm that
is exact on acyclic graphical models and approxi-
mate on cyclic (“loopy”) ones (Murphy et al., 1999).
But in both cases, further heuristic approximations
of the BP messages are generally used for speed.

In this paper, we develop a more principled and
flexible way to approximate the messages, using
variable-order n-gram models.

We first develop a version of expectation propa-
gation (EP) for string-valued variables. EP offers a
principled way to approximate BP messages by dis-
tributions from a fixed family—e.g., by trigram mod-
els. Each message update is found by minimizing a
certain KL-divergence (Minka, 2001a).

Second, we generalize to variable-order models.
To do this, we augment EP’s minimization prob-
lem with a novel penalty term that keeps the num-
ber of n-grams finite. In general, we advocate pe-
nalizing more “complex” messages (in our setting,
large finite-state acceptors). Complex messages are
slower to construct, and slower to use in later steps.

Our penalty term is formally similar to regulariz-
ers that encourage structured sparsity (Bach et al.,
2011; Martins et al., 2011). Like a regularizer, it
lets us use a more expressive family of distribu-
tions, secure in the knowledge that we will use only
as many of the parameters as we really need for a
“pretty good” fit. But why avoid using more param-
eters? Regularization seeks better generalization by
not overfitting the model to the data. By contrast,
we already have a model and are merely doing in-
ference. We seek better runtime by not over-fussing
about capturing the model’s marginal distributions.

Our “penalized EP” (PEP) inference strategy is
applicable to any graphical model with complex
messages. In this paper, we focus on strings, and
show how PEP speeds up inference on the computa-
tional phonology model of Cotterell et al. (2015).

We provide further details, tutorial material, and
results in the appendices (supplementary material).
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2 Background

Graphical models over strings are in fairly broad use.
Linear-chain graphical models are equivalent to cas-
cades of finite-state transducers, which have long
been used to model stepwise derivational processes
such as speech production (Pereira and Riley, 1997)
and transliteration (Knight and Graehl, 1998). Tree-
shaped graphical models have been used to model
the evolution and speciation of word forms, in order
to reconstruct ancient languages (Bouchard-Côté et
al., 2007; Bouchard-Côté et al., 2008) and discover
cognates in related languages (Hall and Klein, 2010;
Hall and Klein, 2011). Cyclic graphical models
have been used to model morphological paradigms
(Dreyer and Eisner, 2009; Dreyer and Eisner, 2011)
and to reconstruct phonological underlying forms
(Cotterell et al., 2015). All of these graphical mod-
els, except Dreyer’s, happen to be directed ones.
And all of these papers, except Bouchard-Côté’s, use
deterministic inference methods—based on BP.

2.1 Graphical models over strings

A directed or undirected graphical model describes
a joint probability distribution over a set of random
variables. To perform inference given a setting of
the model parameters and observations of some vari-
ables, it is convenient to construct a factor graph
(Kschischang et al., 2001). A factor graph is a fi-
nite bipartite graph whose vertices are the random
variables {V1, V2, . . .} and the factors {F1, F2, . . .}.
Each factor F is a function of the variables that it is
connected to; it returns a non-negative real number
that depends on the values of those variables. We de-
fine our factor graph so that the posterior probability
p(V1 = v1, V2 = v2, . . . | observations), as defined
by the original graphical model, can be computed as
proportional to the product of the numbers returned
by all the factors when V1 = v1, V2 = v2, . . ..

In a graphical model over strings, each random
variable V is permitted to range over the strings Σ∗

where Σ is a fixed alphabet. As in previous work, we
will assume that each factor F connected to d vari-
ables is a d-way rational relation, i.e., a function that
can be computed by a d-tape weighted finite-state
acceptor (Elgot and Mezei, 1965; Mohri et al., 2002;
Kempe et al., 2004). The weights fall in the semir-
ing (R,+,×): F ’s return value is the total weight of

all paths that accept the d-tuple of strings, where a
path’s weight is the product of its arcs’ weights. So
our model marginalizes over possible paths in F .

2.2 Inference by (loopy) belief propagation
Inference seeks the posterior marginal probabilities
p(Vi = v | observations), for each i. BP is an it-
erative procedure whose “normalized beliefs” con-
verge to exactly these marginals if the factor graph is
acyclic (Pearl, 1988). In the cyclic case, the normal-
ized beliefs still typically converge and can be used
as approximate marginals (Murphy et al., 1999).

A full presentation of BP for graphical models
over strings can be found in Dreyer and Eisner
(2009). We largely follow their notation. N (X) rep-
resents the set of neighbors of X in the factor graph.

For each edge in the factor graph, between a fac-
tor F and a variable V , BP maintains two messages,
µV→F and µF→V . Each of these is a function over
the possible values v of variable V , mapping each v
to a non-negative score. BP also maintains another
such function, the belief bV , for each variable V .

In general, each message or belief should be re-
garded as giving only relative scores for the differ-
ent v. Rescaling it by a positive constant would only
result in rescaling other messages and beliefs, which
would not change the final normalized beliefs. The
normalized belief is the probability distribution b̂V
such that each b̂V (v) is proportional to bV (v).

The basic BP algorithm is just to repeatedly select
and update a function until convergence. The rules
for updating µV→F , µF→V , and bV , given the set of
“neighboring” messages in each case, can be found
as equations (2)–(4) of Dreyer and Eisner (2009).
(We will give the EP variants in section 4.)

Importantly, that paper shows that for graphical
models over strings, each BP update can be imple-
mented via standard finite-state operations of com-
position, projection, and intersection. Each message
or belief is represented as a weighted finite-state ac-
ceptor (WFSA) that scores all strings v ∈ Σ∗.

2.3 The need for approximation
BP is generally only used directly for short cascades
of finite-state transducers (Pereira and Riley, 1997;
Knight and Graehl, 1998). Alas, in other graphi-
cal models over strings, the BP messages—which
are acceptors—become too large to be practical.
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In cyclic factor graphs, where exact inference for
strings can be undecidable, the WFSAs can become
unboundedly large as they are iteratively updated
around a cycle (Dreyer and Eisner, 2009). Even in
an acyclic graph (where BP is exact), the finite-state
operations quickly lead to large WFSAs. Each inter-
section or composition is a Cartesian product con-
struction, whose output’s size (number of automaton
states) may be as large as the product of its inputs’
sizes. Combining many of these operations leads to
exponential blowup.

3 Variational Approximation of WFSAs

To address this difficulty through EP (section 4), we
will need the ability to approximate any probability
distribution p that is given by a WFSA, by choosing
a “simple” distribution from a family Q.

Take Q to be a family of log-linear distributions

qθ(v) def= exp(θ · f(v)) /Zθ (∀v ∈ Σ∗) (1)

where θ is a weight vector, f(v) is a feature vector
that describes v, and Zθ

def=
∑

v∈Σ∗ exp(θ · f(v))
so that

∑
v qθ(v) = 1. Notice that the featurization

function f specifies the family Q, while the varia-
tional parameters θ specify a particular q ∈ Q.1

We project p into Q via inclusive KL divergence:

θ = argminθ D(p || qθ) (2)

Now qθ approximates p, and has support everywhere
that p does. We can get finer-grained approxima-
tions by expanding f to extract more features: how-
ever, θ is then larger to store and slower to find.

3.1 Finding θ
Solving (2) reduces to maximizing −H(p, qθ) =
Ev∼p[log qθ(v)], the log-likelihood of qθ on an “in-
finite sample” from p. This is similar to fitting a
log-linear model to data (without any regularization:
we want qθ to fit p as well as possible). This objec-
tive is concave and can be maximized by following
its gradient Ev∼p[f(v)] − Ev∼qθ [f(v)]. Often it is
also possible to optimize θ in closed form, as we will

1To be precise, we take Q = {qθ : Zθ is finite}. For exam-
ple, θ = 0 is excluded because then Zθ =

∑
v∈Σ∗ exp 0 =

∞. Aside from this restriction, θ may be any vector over
R∪{−∞}. We allow−∞ since it is a feature’s optimal weight
if p(v) = 0 for all v with that feature: then qθ(v) = 0 for such
strings as well. (Provided that f(v) ≥ 0, as we will ensure.)

see later. Either way, the optimal qθ matches p’s ex-
pected feature vector: Ev∼qθ [f(v)] = Ev∼p[f(v)].
This inspired the name “expectation propagation.”

3.2 Working with θ

Although p is defined by an arbitrary WFSA, we can
represent qθ quite simply by just storing the parame-
ter vector θ. We will later take sums of such vectors
to construct product distributions: observe that un-
der (1), qθ1+θ2(v) is proportional to qθ1(v) · qθ2(v).

We will also need to construct WFSA versions of
these distributions qθ ∈ Q, and of other log-linear
functions (messages) that may not be normalizable
into distributions. Let ENCODE(θ) denote a WFSA
that accepts each v ∈ Σ∗ with weight exp(θ ·f(v)).

3.3 Substring features

To obtain our family Q, we must design f . Our
strategy is to choose a set of “interesting” substrings
W . For each w ∈ W , define a feature function
“How many times does w appear as a substring of
v?” Thus, f(v) is simply a vector of counts (non-
negative integers), indexed by the substrings inW .

A natural choice ofW is the set of all n-grams for
fixed n. In this case, Q turns out to be equivalent to
the family of n-gram language models.2 Already in
previous work (“variational decoding”), we used (2)
with this family to approximate WFSAs or weighted
hypergraphs that arose at runtime (Li et al., 2009).

Yet a fixed n is not ideal. If W is the set of bi-
grams, one might do well to add the trigram the—
perhaps because the is “really” a bigram (counting
the digraph th as a single consonant), or because the
bigram model fails to capture how common the is
under p. Adding the toW ensures that qθ will now
match p’s expected count for this trigram. Doing this
should not require adding all |Σ|3 trigrams.

By including strings of mixed lengths inW we get
variable-order Markov models (Ron et al., 1996).

3.4 Arbitrary FSA-based features

More generally, letA be any unambiguous and com-
plete finite-state acceptor: that is, any v ∈ Σ∗ has
exactly one accepting path inA. For each arc or final
state a in A, we can define a feature function “How

2Provided that we include special n-grams that match at the
boundaries of v. See Appendix B.2 for details.
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many times is a used when A accepts v?” Thus,
f(v) is again a vector of non-negative counts.

Section 6 gives algorithms for this general set-
ting. We implement the previous section as a spe-
cial case, constructing A so that its arcs essentially
correspond to the substrings in W . This encodes a
variable-order Markov model as an FSA similarly to
(Allauzen et al., 2003); see Appendix B.4 for details.

In this general setting, ENCODE(θ) just returns a
weighted version ofAwhere each arc or final state a
has weight exp θa in the (+,×) semiring. Thus, this
WFSA accepts each v with weight exp(θ · f(v)).

3.5 Adaptive featurization
How do we chooseW (orA)? ExpandingW will al-
low better approximations to p—but at greater com-
putational cost. We would like W to include just
the substrings needed to approximate a given p well.
For instance, if p is concentrated on a few high-
probability strings, then a good W might contain
those full strings (with positive weights), plus some
shorter substrings that help model the rest of p.

To selectW at runtime in a way that adapts to p,
let us say that θ is actually an infinite vector with
weights for all possible substrings, and defineW =
{w ∈ Σ∗ : θw 6= 0}. Provided that W stays finite,
we can store θ as a map from substrings to nonzero
weights. We keepW small by replacing (2) with

θ = argminθ D(p || qθ) + λ · Ω(θ) (3)

where Ω(θ) measures the complexity of this W or
the corresponding A. Small WFSAs ensure fast
finite-state operations, so ideally, Ω(θ) should mea-
sure the size of ENCODE(θ). Choosing λ > 0 to be
large will then emphasize speed over accuracy.

Section 6.1 will extend section 6’s algorithms
to approximately minimize the new objective (3).
Formally this objective resembles regularized log-
likelihood. However, Ω(θ) is not a regularizer—
as section 1 noted, we have no statistical reason to
avoid “overfitting” p̂, only a computational one.

4 Expectation Propagation

Recall from section 2.2 that for each variable V , the
BP algorithm maintains several nonnegative func-
tions that score V ’s possible values v: the messages
µV→F and µF→V (∀F ∈ N (V )), and the belief bV .

Feature
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 Weight
1.04
.83
.86
.89
.91
-.96

F1

F2

F3

V3r i n g
ue ε ee

s e ha
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V1

Figure 1: Information flowing toward V2 in EP (reverse
flow not shown). The factors work with purple µ mes-
sages represented by WFSAs, while the variables work
with green θ messages represented by log-linear weight
vectors. The green table shows a θ message: a sparse
weight vector that puts high weight on the string cat.

EP is a variant in which all of these are forced
to be log-linear functions from the same family,
namely exp(θ ·fV (v)). Here fV is the featurization
function we’ve chosen for variable V .3 We can rep-
resent these functions by their parameter vectors—
let us call those θV→F , θF→V , and θV respectively.

4.1 Passing messages through variables
What happens to BP’s update equations in this set-
ting? According to BP, the belief bV is the pointwise
product of all “incoming” messages to V . But as we
saw in section 3.2, pointwise products are far eas-
ier in EP’s restricted setting! Instead of intersecting
several WFSAs, we can simply add several vectors:

θV =
∑

F ′∈N (V )

θF ′→V (4)

Similarly, the “outgoing” message from V to factor
F is the pointwise product of all “incoming” mes-
sages except the one from F . This message θV→F
can be computed as θV −θF→V , which adjusts (4).4

We never store this but just compute it on demand.
3A single graphical model might mix categorical variables,

continuous variables, orthographic strings over (say) the Roman
alphabet, and phonological strings over the International Pho-
netic Alphabet. These different data types certainly require dif-
ferent featurization functions. Moreover, even when two vari-
ables have the same type, we could choose to approximate their
marginals differently, e.g., with bigram vs. trigram features.

4If features can have −∞ weight (footnote 1), this trick
might need to subtract −∞ from −∞ (the log-space version
of 0/0). That gives an undefined result, but it turns out that any
result will do—it makes no difference to the subsequent beliefs.
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4.2 Passing messages through factors
Our factors are weighted finite-state machines, so
their messages still require finite-state computations,
as shown by the purple material in Figure 1. These
computations are just as in BP. Concretely, let F be
a factor of degree d, given as a d-tape machine. We
can compute a belief at this factor by joining F with
d WFSAs that represent its d incoming messages,
namely ENCODE(θV ′→F ) for V ′ ∈ N (F ). This
gives a new d-tape machine, bF . We then obtain
each outgoing message µF→V by projecting bF onto
its V tape, but removing (dividing out) the weights
that were contributed (multiplied in) by θV→F .5

4.3 Getting from factors back to variables
Finally, we reach the only tricky step. Each resulting
µF→V is a possibly large WFSA, so we must force it
back into our log-linear family to get an updated ap-
proximation θF→V . One cannot directly employ the
methods of section 3, because KL divergence is only
defined between probability distributions. (µF→V
might not be normalizable into a distribution, nor is
its best approximation necessarily normalizable.)

The EP trick is to use section 3 to instead approx-
imate the belief at V , which is a distribution, and
then reconstruct the approximate message to V that
would have produced this approximated belief. The
“unapproximated belief” p̂V resembles (4): it multi-
plies the unapproximated message µF→V by the cur-
rent values of all other messages θF ′→V . We know
the product of those other messages, θV→F , so

p̂V := µF→V � µV→F (5)

where the pointwise product � is carried out by
WFSA intersection and µV→F

def= ENCODE(θV→F ).
We now apply section 3 to choose θV such that

qθV is a good approximation of the WFSA p̂V . Fi-
nally, to preserve (4) as an invariant, we reconstruct

θF→V := θV − θV→F (6)
5This is equivalent to computing each µF→V by “general-

ized composition” of F with the d − 1 messages to F from
its other neighbors V ′. The operations of join and generalized
composition were defined by Kempe et al. (2004).

In the simple case d = 2, F is just a weighted finite-state
transducer mapping V ′ to V , and computing µF→V reduces to
composing ENCODE(θV ′→F ) with F and projecting the result
onto the output tape. In fact, one can assume WLOG that d ≤ 2,
enabling the use of popular finite-state toolkits that handle at
most 2-tape machines. See Appendix B.10 for the construction.

In short, EP combines µF→V with θV→F , then
approximates the result p̂V by θV before removing
θV→F again. Thus EP is approximating µF→V by

θF→V := argmin
θ

D(µF→V � µV→F︸ ︷︷ ︸
= p̂V

|| qθ � µV→F︸ ︷︷ ︸
=θV

)

(7)
in a way that updates not only θF→V but also θV .

Wisely, this objective focuses on approximating
the message’s scores for the plausible values v.
Some values v may have p̂V (v) ≈ 0, perhaps be-
cause another incoming message θF ′→V rules them
out. It does not much harm the objective (7) if these
µF→V (v) are poorly approximated by qθF→V (v),
since the overall belief is still roughly correct.

Our penalized EP simply adds λ · Ω(θ) into (7).

4.4 The EP algorithm: Putting it all together
To run EP (or PEP), initialize all θV and θF→V to 0,
and then loop repeatedly over the nodes of the factor
graph. When visiting a factorF , ENCODE its incom-
ing messages θV→F (computed on demand) as WF-
SAs, construct a belief bF , and update the outgoing
WFSA messages µF→V . When visiting a variable
V , iterate K ≥ 1 times over its incoming WFSA
messages: for each incoming µF→V , compute the
unapproximated belief p̂V via (5), then update θV to
approximate p̂V , then update θF→V via (6).

For possibly faster convergence, one can alternate
“forward” and “backward” sweeps. Visit the factor
graph’s nodes in a fixed order (given by an approx-
imate topological sort). At a factor, update the out-
going WFSA messages to later variables only. At
a variable, approximate only those incoming WFSA
messages from earlier factors (all the outgoing mes-
sages θV→F will be recomputed on demand). Note
that both cases examine all incoming messages. Af-
ter each sweep, reverse the node ordering and repeat.

If gradient ascent is used to find the θV that ap-
proximates p̂V , it is wasteful to optimize to conver-
gence. After all, the optimization problem will keep
changing as the messages change. Our implementa-
tion improves θV by only a single gradient step on
each visit to V , since V will be visited repeatedly.

See Appendix A for an alternative view of EP.

5 Related Approximation Methods

We have presented EP as a method for simplifying a
variable’s incoming messages during BP. The vari-
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able’s outgoing messages are pointwise products of
the incoming ones, so they become simple too. Past
work has used approximations with a similar flavor.

Hall and Klein (2011) heuristically predetermine
a short, fixed list of plausible values for V that were
observed elsewhere in their dataset. This list is anal-
ogous to our θV . After updating µF→V , they force
µF→V (v) to 0 for all v outside the list, yielding a
finite message that is analogous to our θF→V .

Our own past papers are similar, except they
adaptively set the “plausible values” list to⋃
F ′∈N (V ) k-BEST(µF ′→V ). These strings are fa-

vored by at least one of the current messages to V
(Dreyer and Eisner, 2009; Dreyer and Eisner, 2011;
Cotterell et al., 2015). Thus, simplifying one of V ’s
incoming messages considers all of them, as in EP.

The above methods prune each message, so may
prune correct values. Hall and Klein (2010) avoid
this: they fit a full bigram model by inclusive KL
divergence, which refuses to prune any values (see
section 3). Specifically, they minimized D(µF→V �
τ || qθ � τ), where τ was a simple fixed function (a
0-gram model) included so that they were working
with distributions (see section 4.3). This is very sim-
ilar to our (7). Indeed, Hall and Klein (2010) found
their procedure “reminiscent of EP,” hinting that τ
was a surrogate for a real µV→F term. Dreyer and
Eisner (2009) had also suggested EP as future work.

EP has been applied only twice before in the NLP
community. Daumé III and Marcu (2006) used EP
for query summarization (following Minka and Laf-
ferty (2003)’s application to an LDA model with
fixed topics) and Hall and Klein (2012) used EP for
rich parsing. However, these papers inferred a single
structured variable connected to all factors (as in the
traditional presentation of EP—see Appendix A),
rather than inferring many structured variables con-
nected in a sparse graphical model.

We regard EP as a generalization of loopy BP for
just this setting: graphical models with large or un-
bounded variable domains. Of course, we are not
the first to use such a scheme; e.g., Qi (2005, chap-
ter 2) applies EP to linear-chain models with both
continuous and discrete hidden states. We believe
that EP should also be broadly useful in NLP, since
it naturally handles joint distributions over the kinds
of structured variables that arise in NLP.

6 Two Methods for Optimizing θ
We now fill in details. If the feature set is defined by
an unambiguous FSA A (section 3.4), two methods
exist to max Ev∼p[log qθ(v)] as section 3.1 requires.

Closed-form. Determine how often A would tra-
verse each of its arcs, in expectation, when reading
a random string drawn from p. We would obtain an
optimal ENCODE(θ) by, at each state of A, setting
the weights of the arcs from that state to be propor-
tional to these counts while summing to 1.6 Thus,
the logs of these arc weights give an optimal θ.

For example, in a trigram model, the probability
of the c arc from the ab state is the expected count of
abc (according to p) divided by the expected count
of ab. Such expected substring counts can be found
by the method of Allauzen et al. (2003). For gen-
eral A, we can use the method sketched by Li et al.
(2009, footnote 9): intersect the WFSA for p with
the unweighted FSA A, and then run the forward-
backward algorithm to determine the posterior count
of each arc in the result. This tells us the expected to-
tal number of traversals of each arc in A, if we have
kept track of which arcs in the intersection of p with
A were derived from which arcs in A. That book-
keeping can be handled with an expectation semir-
ing (Eisner, 2002), or simply with backpointers.

Gradient ascent. For any given θ, we can use
the WFSAs p and ENCODE(θ) to exactly compute
Ev∼p[log qθ(v)] = −H(p, qθ) (Cortes et al., 2006).
We can tune θ to globally maximize this objective.

The technique is to intersect p with ENCODE(θ),
after lifting their weights into the expectation semir-
ing via the mappings k 7→ 〈k, 0〉 and k 7→ 〈0, log k〉
respectively. Summing over all paths of this in-
tersection via the forward algorithm yields 〈Z, r〉
where Z is the normalizing constant for p. We also
sum over paths of ENCODE(θ) to get the normal-
izing constant Zθ. Now the desired objective is
r/Z − logZθ. Its gradient with respect to θ can be
found by back-propagation, or equivalently by the
forward-backward algorithm (Li and Eisner, 2009).

An overlarge gradient step can leave the feasible
space (footnote 1) by driving ZθV to ∞ and thus
driving (2) to ∞ (Dreyer, 2011, section 2.8.2). In
this case, we try again with reduced stepsize.

6This method always yields a probabilistic FSA, i.e., the arc
weights are locally normalized probabilities. This does not sac-
rifice any expressiveness; see Appendix B.7 for discussion.
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6.1 Optimizing θ with a penalty

Now consider the penalized objective (3). Ideally,
Ω(θ) would count the number of nonzero weights in
θ—or better, the number of arcs in ENCODE(θ). But
it is not known how to efficiently minimize the re-
sulting discontinuous function. We give two approx-
imate methods, based on the two methods above.

Proximal gradient. Leaning on recent advances
in sparse estimation, we replace this Ω(θ) with a
convex surrogate whose partial derivative with re-
spect to each θw is undefined at θw = 0 (Bach et al.,
2011). Such a penalty tends to create sparse optima.

A popular surrogate is an `1 penalty, Ω(θ) def=∑
w |θw|. However, `1 would not recognize that

θ is simpler with the features {ab, abc, abd} than
with the features {ab, pqr, xyz}. The former leads
to a smaller WFSA encoding. In other words, it is
cheaper to add abd once abc is already present, as
a state already exists that represents the context ab.

We would thus like the penalty to be the number
of distinct prefixes in the set of nonzero features,

|{u ∈ Σ∗ : (∃x ∈ Σ∗) θux 6= 0}|, (8)

as this is the number of ordinary arcs in ENCODE(θ)
(see Appendix B.4). Its convex surrogate is

Ω(θ) def=
∑
u∈Σ∗

√∑
x∈Σ∗

θ2
ux (9)

This tree-structured group lasso (Nelakanti et al.,
2013) is an instance of group lasso (Yuan and Lin,
2006) where the string w = abd belongs to four
groups, corresponding to its prefixes u = ε, u =
a, u = ab, u = abd. Under group lasso, moving θw
away from 0 increases Ω(θ) by λ|θw| (just as in `1)
for each group in which w is the only nonzero fea-
ture. This penalizes for the new WFSA arcs needed
for these groups. There are also increases due to
w’s other groups, but these are smaller, especially
for groups with many strongly weighted features.

Our objective (3) is now the sum of a differ-
entiable convex function (2) and a particular non-
differentiable convex function (9). We minimize it
by proximal gradient (Parikh and Boyd, 2013). At
each step, this algorithm first takes a gradient step
as in section 6 to improve the differentiable term,
and then applies a “proximal operator” to jump to

ε
-0.6

a
1.2

b
0

aa
0

ab
0

ba
0

bb
0

Figure 2: Active set method, showing the infinite tree of
all features for the alphabet Σ = {a, b}. The green nodes
currently have non-zero weights. The yellow nodes are
on the frontier and are allowed to become non-zero, but
the penalty function is still keeping them at 0. The red
nodes are not yet considered, forcing them to remain at 0.

a nearby point that improves the non-differentiable
term. The proximal operator for tree-structured
group lasso (9) can be implemented with an efficient
recursive procedure (Jenatton et al., 2011).

What if θ is∞-dimensional because we allow all
n-grams as features? Paul and Eisner (2012) used
just this feature set in a dual decomposition algo-
rithm. Like them, we rely on an active set method
(Schmidt and Murphy, 2010). We fix abcd’s weight
at 0 until abc’s weight becomes nonzero (if ever);7

only then does feature abc become “active.” Thus,
at a given step, we only have to compute the gradient
with respect to the currently nonzero features (green
nodes in Figure 2) and their immediate children (yel-
low nodes). This hierarchical inclusion technique
ensures that we only consider a small, finite subset
of all n-grams at any given iteration of optimization.

Closed-form with greedy growing. There are
existing methods for estimating variable-order n-
gram language models from data, based on either
“shrinking” a high-order model (Stolcke, 1998) or
“growing” a low-order one (Siivola et al., 2007).

We have designed a simple “growing” algorithm
to estimate such a model from a WFSA p. It approx-
imately minimizes the objective (3) where Ω(θ) is
given by (8). We enumerate all n-grams w ∈ Σ∗ in
decreasing order of expected count (this can be done
efficiently using a priority queue). We addw toW if
we estimate that it will decrease the objective. Every
so often, we measure the actual objective (just as in
the gradient-based methods), and we stop if it is no
longer improving. Algorithmic details are given in
Appendices B.8–B.9.

7Paul and Eisner (2012) also required bcd to have nonzero
weight, observing that abcd is a conjunction abc∧bcd (Mc-
Callum, 2003). This added test would be wise for us too.
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Figure 3: Inference on 15 factor graphs (3 languages × 5 datasets of different sizes). The first row shows the to-
tal runtime (logscale) of each inference method. The second row shows the accuracy, as measured by the negated
log-probability that the inferred belief at a variable assigns to its gold-standard value, averaged over “underlying mor-
pheme” variables. At this penalty level (λ = 0.01), PEP [thick line] is faster than the pruning baseline of Cotterell et
al. (2015) [dashed line] and much faster than trigram EP, yet is about as accurate. (For Dutch with sparse observations,
it is considerably more accurate than baseline.) Indeed, PEP is nearly as fast as bigram EP, which has terrible accuracy.
An ideal implementation of PEP would be faster yet (see Appendix B.5). Further graphs are in Appendix C.

7 Experiments and Results

Our experimental design aims to answer three ques-
tions. (1) Is our algorithm able to beat a strong base-
line (adaptive pruning) in a non-trivial model? (2)
Is PEP actually better than ordinary EP, given that
the structured sparsity penalty makes it more algo-
rithmically complex? (3) Does the λ parameter suc-
cessfully trade off between speed and accuracy?

All experiments took place using the graphical
model over strings for the discovery of underly-
ing phonological forms introduced in Cotterell et
al. (2015). They write: “Comparing cats ([kæts]),
dogs ([dOgz]), and quizzes ([kwIzIz]), we see the
English plural morpheme evidently has at least three
pronunciations.” Cotterell et al. (2015) sought a uni-
fying account of such variation in terms of phono-
logical underlying forms for the morphemes.

In their Bayes net, morpheme underlying forms
are latent variables, while word surface forms are
observed variables. The factors model underlying-
to-surface phonological changes. They learn the fac-
tors by Expectation Maximization (EM). Their first
E step presents the hardest inference problem be-
cause the factors initially contribute no knowledge
of the language; so that is the setting we test on here.

Their data are surface phonological forms from
the CELEX database (Baayen et al., 1995). For each
of 3 languages, we run 5 experiments, by observ-
ing the surface forms of 100 to 500 words and run-
ning EP to infer the underlying forms of their mor-
phemes. Each of the 15 factor graphs has≈ 150–700
latent variables, joined by 500–2200 edges to 200–
1200 factors of degree 1–3. Variables representing
suffixes can have extremely high degree (> 100).

We compare PEP with other approximate infer-
ence methods. As our main baseline, we take the
approximation scheme actually used by Cotterell et
al. (2015), which restricts the domain of a belief to
that of the union of 20-best strings of its incoming
messages (section 5).We also compare to unpenal-
ized EP with unigram, bigram, and trigram features.

We report both speed and accuracy for all meth-
ods. Speed is reported in seconds. Judging accuracy
is a bit trickier. The best metric would to be to mea-
sure our beliefs’ distance from the true marginals or
even from the beliefs computed by vanilla loopy BP.
Obtaining these quantities, however, would be ex-
tremely expensive—even Gibbs sampling is infeasi-
ble in our setting, let alone 100-way WFSA intersec-
tions. Luckily, Cotterell et al. (2015) provide gold-
standard values for the latent variables (underlying
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forms). Figure 3 shows the negated log-probabilities
of these gold strings according to our beliefs, aver-
aged over variables in a given factor graph. Our ac-
curacy is weaker than Cotterell et al. (2015) because
we are doing inference with their initial (untrained)
parameters, a more challenging problem.

Each update to θV consisted of a single step of
(proximal) gradient descent: starting at the current
value, improve (2) with a gradient step of size η =
0.05, then (in the adaptive case) apply the proximal
operator of (9) with λ = 0.01. We chose these
values by preliminary exploration, taking η small
enough to avoid backtracking (section 6.1).

We repeatedly visit variables and factors (sec-
tion 4.4) in the forward-backward order used by Cot-
terell et al. (2015). For the first few iterations, when
we visit a variable we make K = 20 passes over its
incoming messages, updating them iteratively to en-
sure that the high probability strings in the initial ap-
proximations are “in the ballpark”. For subsequent
iterations of message passing we take K = 1. For
similar reasons, we constrained PEP to use only un-
igram features on the first iteration, when there are
still many viable candidates for each morph.

7.1 Results
The results show that PEP is much faster than the
baseline pruning method, as described in Figure 3
and its caption. It mainly achieves better cross-
entropy on English and Dutch, and even though it
loses on German, it still places almost all of its prob-
ability mass on the gold forms. While EP with un-
igram and bigram approximations are both faster
than PEP, their accuracy is poor. Trigram EP is
nearly as accurate but even slower than the base-
line. The results support the claim that PEP has
achieved a “Goldilocks number” of n-grams in its
approximation—just enough n-grams to approxi-
mate the message well while retaining speed.

Figure 4 shows the effect of λ on the speed-
accuracy tradeoff. To compare apples to apples, this
experiment fixed the set of µF→V messages for each
variable. Thus, we held the set of beliefs fixed, but
measured the size and accuracy of different approx-
imations to these beliefs by varying λ.

These figures show only the results from gradient-
based approximation. Closed-form approximation is
faster and comparably accurate: see Appendix C.
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Figure 4: Increasing λ will greatly reduce the number
of selected features in a belief—initially without harming
accuracy, and then accuracy degrades gracefully. (Num-
ber of features has 0.72 correlation with runtime, and is
shown on a log scale on the x axis.)

Each point shows the result of using PEP to approxi-
mate the belief at some latent variable V , using µF→V

messages from running the baseline method on German.
Lighter points use larger λ. Orange points are affixes
(shorter strings), blue are stems (longer strings). Large
circles are averages over all points for a given λ.

8 Conclusion and Future Work

We have presented penalized expectation propaga-
tion (PEP), a novel approximate inference algo-
rithm for graphical models, and developed specific
techniques for string-valued random variables. Our
method integrates structured sparsity directly into
inference. Our experiments show large speedups
over the strong baseline of Cotterell et al. (2015).

In future, instead of choosing λ, we plan to re-
duce λ as PEP runs. This serves to gradually refine
the approximations, yielding an anytime algorithm
whose beliefs approach the BP beliefs. Thanks to
(7), the coarse messages from early iterations guide
the choice of finer-grained messages at later itera-
tions. In this regard, “Anytime PEP” resembles other
coarse-to-fine architectures such as generalized A*
search (Felzenszwalb and McAllester, 2007).

As NLP turns its attention to lower-resource lan-
guages and social media, it is important to model the
rich phonological, morphological, and orthographic
processes that interrelate words. We hope that the
introduction of faster inference algorithms will in-
crease the use of graphical models over strings. We
are releasing our code package (see Appendix D).
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