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Abstract

We investigate the problem of predicting
the quality of automatic speech recognition
(ASR) output under the following rigid con-
straints: i) reference transcriptions are not
available, ii) confidence information about the
system that produced the transcriptions is not
accessible, and iii) training and test data come
from multiple domains. To cope with these
constraints (typical of the constantly increas-
ing amount of automatic transcriptions that
can be found on the Web), we propose a
domain-adaptive approach based on multitask
learning. Different algorithms and strategies
are evaluated with English data coming from
four domains, showing that the proposed ap-
proach can cope with the limitations of previ-
ously proposed single task learning methods.

1 Introduction

The variety of applications for large vocabulary
speech recognition technology (LVCSR) is rapidly
growing. For instance, automatic transcriptions are
now used, either as-is or as rough material to be
checked and corrected by humans, for captioning
and subtitling DVD movies, Youtube videos, TV
programs and recordings in noisy environments such
as meetings and teleconferences. To enable fur-
ther integration in these and other scenarios, the im-
provement of the core automatic speech recognition
(ASR) technology should go hand in hand with the
development of evaluation methods adequate to ad-
dress new needs and constraints. Indeed, the stan-
dard evaluation protocol, based on computing the

word error rate of transcription hypotheses against
reference transcripts,1 is not always a viable solu-
tion.

In terms of needs, the aforementioned appli-
cations call for efficient and replicable evaluation
methods suitable for real-time processing. While
the availability of manually-created reference tran-
scripts is a core ingredient for system development,
tuning and lab testing, their use for on-field evalu-
ation (i.e. during the actual use) is impractical for
obvious reasons (i.e. the need of a quick response).

In terms of constraints, the problem is that ASR
technology is often used as a black-box, that is, with-
out any knowledge of how the transcriptions are gen-
erated.2 This calls for techniques capable to esti-
mate ASR output quality under the rigid constraint
of having, as a basic source of information, only the
spoken utterance (the acoustic signal) and the tran-
scription itself. Indeed, the invaluable information
provided by current confidence estimation methods
(e.g. word posterior probabilities (Evermann and
Woodland, 2000; Wessel et al., 2001), consensus de-
coding (Mangu et al., 2000) and minimum Bayes-
risk decoding (Xu et al., 2010)) is not accessible
when evaluating the output of an unknown system.

1The word error rate (WER) is the minimum edit distance
between an hypothesis and the reference transcription. Edit
distance is calculated as the number of edits (word insertions,
deletions, substitutions) divided by the number of words in the
reference.

2For instance, as announced by Google, in 2012 about
157 million YouTube videos in 10 languages already fea-
tured captions generated by a black-box ASR system
(source: http://techcrunch.com/2012/06/15/
youtube-launches-auto-captions-in-spanish/).
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To cope with these issues, Negri et al. (2014)
proposed a reference-free ASR quality estimation
(QE) method capable to operate both in a glass-box
(i.e. having access to confidence information) and
in a black-box fashion (i.e. without any knowledge
about the ASR system’s inner workings). According
to the authors, despite the promising evaluation re-
sults, the supervised learning approach adopted has
a main limitation: the degradation in performance
when models are trained on non-homogeneous data
that comes from different domains, speakers, or sys-
tems. However, although empirical evidence of this
limitation is provided, the robustness of ASR QE
systems to the heterogeneity of training and test data
is left as an open issue.

Filling this gap, which is the goal of this paper,
would be a significant step towards real-time ASR
output evaluation, and its seamless integration in a
number of application frameworks. Along this di-
rection, we propose and evaluate a supervised do-
main adaptation technique based on multitask learn-
ing (Caruana, 1997). Our approach aims to exploit
training data coming from different “domains” (in
a broad sense, e.g. different genres, speakers, top-
ics, styles, etc.) and to obtain ASR QE models that
are robust to differences with respect to the test data.
Experiments are carried out with English data com-
ing from four domains, and by comparing different
algorithms and strategies.

Overall, our contributions can be summarized as
follows:

• Multitask learning (MTL) is investigated for
the first time in the ASR QE scenario, as a way
to cope with the dissimilarity between training
and test data coming from multiple domains.

• The QE problem is approached both as a re-
gression (assignment of real-valued quality la-
bels) and as a binary classification task (as-
signment of ‘good’/‘bad’ labels according to
a given, arbitrary WER threshold). The latter
task is introduced as a preliminary study.

• Results are thoroughly analyzed, considering
both the amount of training data coming from
the different domains and the relative distance
between their distributions.

2 Related Work

In the ASR field, most prior works that address the
reference-free estimation of output quality fall into
the confidence estimation (CE) framework. In this
framework, the reliability of a transcription is es-
timated from the system’s standpoint, that is, as a
function of the process that generated the transcrip-
tion (Sukkar and Lee, 1996; Evermann and Wood-
land, 2000; Wessel et al., 2001; Sanchis et al., 2012;
Seigel, 2013, inter alia). In CE, the information
available to the estimator covers all the aspects of
the decoding process (e.g. word posterior probabili-
ties, n-best lists, hypotheses density, language model
scores). Although related to our problem, CE hence
builds on a strong assumption (i.e. the ASR system
is known), which does not hold in many situations.

Quality estimation, instead, operates in the least
favorable condition in which, besides the lack of ref-
erences, the ASR system is regarded as a “black-
box”. To our knowledge, the study proposed in (Ne-
gri et al., 2014) is the most relevant related work
along this direction. In their investigation, the au-
thors run a set of experiments aimed to predict the
WER of automatically transcribed utterances in dif-
ferent testing conditions (by varying the distance be-
tween training and test data), with different state-
of-the-art learning algorithms (all for regression),
and with different groups of features (the so called
“black-box” and “glass-box” feature groups). The
major problem emphasized in their analysis is the
strong dependency between QE models and the de-
gree of homogeneity of training and test data. From
the application perspective, this is a severe limita-
tion since (as in any other supervised learning set-
ting) the similarity of training and test sets is a strong
requirement that should be bypassed (possibly with
minimal loss in performance). This issue, which has
not been addressed yet, is the starting point of our
investigation.

Another aspect that so far has been disregarded
concerns the type of estimates that a model should
return. Indeed, while ASR QE has been explored as
a regression task (i.e. aiming to return real-valued
quality estimates), nothing has been done to ap-
proach it as a classification problem (i.e. assigning
quality estimates chosen from two or more classes).
In classification mode, we return explicit good/bad
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labels based on a fixed, application-dependent qual-
ity criterion defined a priori (a threshold set on train-
ing data). Since the way to present the quality esti-
mates can have interesting effects on their practical
use, the impact of the aforementioned learning prob-
lem on a supervised classification setting is another
aspect that deserves investigation and motivates our
work.

3 Multitask Learning for Adaptive ASR
Quality Estimation

The problem of dealing with different distributions
between training and test data is broadly investi-
gated by the machine learning community. In par-
ticular, approaches for dealing with domain drift
are proposed within the scope of transfer learning,
whose aim is to explore knowledge from one or
more source tasks (henceforth, we use the terms do-
main and task interchangeably) and apply it to a tar-
get task (Pan and Yang, 2010). In this paper we use
a transfer learning technique called multitask learn-
ing (MTL), which explores domain-specific training
signals of related tasks to improve model generaliza-
tion (Caruana, 1997).

MTL is an inductive transfer method that assumes
that the tasks are related and share a certain struc-
ture that allows knowledge transfer. In early works,
for instance, these shared structures are the hid-
den layers of a neural network (Caruana, 1997).3

The authors showed that MTL improves over learn-
ing each task in isolation (called single task learn-
ing, STL henceforth) for different problems. Sev-
eral approaches to MTL have been proposed and
each makes different assumptions about the struc-
ture shared among the tasks. In this work we ex-
plore three different MTL algorithms that deal with
task relatedness in different ways.

Before defining each one of the three approaches,
we introduce some basic notation previously used
by Chen et al. (2011). In MTL there are K ∈ N
tasks and each task k ∈ [1,K] has mk training in-
stances {(x1, y1), . . . , (xmk

, ymk
)}, with xi ∈ Rd

where d is the number of features and yi ∈ R is
the output (the response variable or label). For each

3Another intuitive example of transferable knowledge is the
fact that, for some domains, a fraction of the extracted features
can show a correlated behavior.

task, the input features and labels form two different
matrices X(k) = [x1,(k), . . . ,xmk,(k)] and Y(k) =
[y1,(k), . . . , ymk,(k)], respectively. The weights of
the features for all tasks are represented by matrix
W, where each column corresponds to a task and
each row corresponds to a feature. The function
L(W,X,Y) is the loss function defined for each
algorithm. We work with two loss functions:

• Least squares (for regression), defined as
(XT

(k)Wk −Y(k))2, where k is the task identi-
fier and Wk is the k-th column of W;

• Logistic Regression (for classification), defined
as log(1 + exp(−Y(k)XT

(k)Wk)).

MTL Lasso. This algorithm extends the idea of
the Lasso (Tibshirani, 1996) to the MTL setting. In
MTL Lasso the `1-norm (the sum of the absolute

values of the weights vector, given by
d∑

i=1
|wi|) is

applied to all the tasks at once (the ||W||1 compo-
nent in Eq. 1). The λ ∈ [0, 1] parameter controls
the level of regularization applied to the model. In
other words, the sparsity of the predicted model is
controlled via λ which weights the `1-norm across
all tasks.

min
W

K∑
k=1

L(Wk,X(k),Y(k)) + λ||W||1 (1)

MTL L21. This algorithm (Argyriou et al., 2007)
learns a low-dimensional representation of the fea-
tures across tasks, and induces sparsity on the fea-
ture weights for all the tasks at the same time. This
is achieved through the use of a group regularizer
that penalizes the weights matrix W with the `2,1-
norm (Eq. 2). This norm is defined as ||W||2,1 =
d∑

i=1
||Wi||2, where d is the number of features and

Wi is the i-th row of W. It is obtained by first
computing the 2-norm of each row in W (the fea-
tures) and then computing the 1-norm over the re-
sulting vector. The 2-norm of a vector is given by

||x||2 =
√∑

i x
2
i . The parameter λ ∈ [0, 1] con-

trols the regularization applied to the model. MTL
L21 assumes that all tasks share the same feature
representation.
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min
W

K∑
k=1

L(Wk,X(k),Y(k)) + λ||W||2,1 (2)

Robust MTL. This algorithm does not assume
that all the tasks share the same feature representa-
tion as the previous two algorithms do (Chen et al.,
2011). Moreover, RMTL uses two different struc-
tures: one for grouping related tasks to share knowl-
edge; the other for identifying irrelevant tasks and
keeping them in a different group that does not share
information with the first one. This is to cope with
situations in which, since tasks are not related, neg-
ative transfer of information across tasks might oc-
cur, thus harming the generalization of the model.
The algorithm approximates task relatedness via a
low-rank structure and identifies outlier tasks us-
ing a group-sparse structure (column-sparse, at task
level). RMTL minimizes the expression described in
3. It employs a non-negative linear combination of
the trace norm (the task relatedness component L)
and a column-sparse structure induced by the `1,2-
norm (the outlier task detection component S). If a
task is an outlier it will have non-zero entries in S.

min
W

K∑
k=1

L(Wk,X(k),Y(k))+λl||L||∗+λs||S||1,2 (3)

In Eq. 3 W is subject to L + S, where ||.||∗ is the
trace norm, given by the sum of the singular values
σi of W, and ||S||1,2 is the group regularizer that
induces sparsity on the tasks. It is obtained by first
computing the `1-norm over the columns of W and
then applying the `2-norm over the resulting vector.
The λl and λs parameters control the level of regu-
larization of L and S, respectively.

All the MTL algorithms presented in this section
are linear, with different regularization terms. While
RMTL is only defined for regression, the other algo-
rithms are defined for both regression and classifica-
tion.

4 Experimental Setting

Our experiments aim to measure the capability of
MTL methods to learn across different domains. To
this aim, the algorithms4 previously described are

4In our experiments we used the implementations available
in the Malsar toolkit (Zhou et al., 2012)

compared with the STL baseline, both in regression
and in binary classification. Given a set of (signal,
transcription, WER) tuples as training instances, our
task is to label new unseen (signal, transcription)
test pairs with a WER prediction (regression mod-
els) or with a good/bad tag (classification models)
depending on the quality of the transcription.

In classification, the class boundary is defined a
priori, according to an arbitrary threshold τ set on
the WER of the instances: those with a WER ≤ τ
will be considered as positive examples while the
others will be considered as negative examples. Dif-
ferent thresholds can be set to experiment with test-
ing conditions that reflect a variety of application-
oriented requirements. We work at one extreme, in
which a value of τ close to zero (0.05) emphasizes
systems’ ability to precisely identify high-quality
transcriptions (those withWER ≤ τ ). Any applica-
tion that requires precise judgments to isolate high-
quality ASR output can potentially benefit of such
optimization (e.g. data selection for acoustic model-
ing using a QE-based active learning model). The
investigation of other thresholding schemes, how-
ever, is certainly an aspect that we want to explore
in the future.

The small value of τ selected produces a skewed
distribution of classes, with a ratio of good to bad
labels across the four domains of about 75% “good”
and 25% “bad”. To cope with this issue, we use a
sample weighting technique while training the clas-
sification models (Veropoulos et al., 1999). We as-
sign a weight w to each of the training instances,
computed as the inverse of its class frequency in the
training set. In other words, w is obtained by di-
viding the total number of training samples by the
number of training samples belonging to the class of
the given utterance.

4.1 Data

Our datasets include English audio recordings from
four different domains: broadcast news (henceforth
News), political speeches (Legal), weather reports
(Weather) and talks of single speakers in the con-
text of the TED talks (TED). All datasets (see Ta-
ble 1 for details) were used in past ASR evaluation
campaigns, and are provided with manual reference
transcriptions associated to each audio recording.
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News Legal Weather TED
Total dur. (min) 150 338 108 340
# running words 26,282 53,846 23,722 41,545
# utterances 737 2,922 1,290 2,245
# speakers 178 95 36 28
Avg. utt. dur. (s) 12.2 6.9 5.0 9.1
WER 17.7 20.4 11.9 22.9

Table 1: Some characteristics of the four domains.

News. We use the HUB45 corpus, which contains
104 hours of broadcasts from different television and
radio networks. We selected the 1999 test set of the
DARPA Hub-4 evaluation, consisting of two record-
ings acquired in TV studios and containing speech
of professional speakers reading news.

Legal. This audio database6 contains recordings
of European Parliament members speaking in ple-
nary sessions, as well as recordings of interpreters
(non-native speakers). Speech is hence quite sponta-
neous, and a relevant level of reverberation is present
due to the usage of table-mounted microphones. The
data that we used for our experiments are both the
English EPPS development (dev06) and evaluation
(eval07) sets of the 2007 TC-STAR ASR evaluation
campaign (Hamon et al., 2007).

Weather. This dataset is formed by recordings of
weather reports broadcasted by the BBC English
TV channel, and contains both national and local
weather forecasts. There are roughly 50 native
speakers and the speech is delivered very quickly.
Although the speakers are native and the recordings
are performed in a controlled environment, there are
some hesitations, grammar errors or lengthy formu-
lations in the recordings which are corrected in the
captions (which can thus be considered as loose ref-
erence transcripts (Mohr et al., 2013)).

TED. This dataset contains audio recordings of
English speakers (28 different talks) and was used
within the IWSLT 2013 evaluation campaign (Cet-
tolo et al., 2013). This domain presents large vari-
ability of topics (hence a large, unconstrained vocab-
ulary), presence of non-native speakers, and a rather

5distributed by the Linguistic Data Consortium and avail-
able at https://catalog.ldc.upenn.edu/docs/
LDC2000S88/

6http://catalog.elra.info/product_info.
php?products_id=1032

informal speaking style.
Given their diverse nature, the four domains

present a big challenge both for ASR and QE sys-
tems. From Table 1 it is possible to grasp several
differences among them. One aspect that reflects
such differences is the WER of the ASR system we
used to transcribe the utterances (described in Sec-
tion 4.2). The lowest WER is for Weather, a do-
main in which the speech is planned. This is also
the domain with the shortest average utterance dura-
tion (5 sec.), the lowest number of speakers (36) and
the lowest number of running words (23,722). The
higher WER achieved on the other domains is due
to the more challenging conditions posed by each of
them. TED and News include speeches about un-
constrained topics, and their average utterance dura-
tions tend to be longer than for the other two do-
mains. News is the shortest domain in duration
and the smallest in number of utterances (150 min.
for 737 utterances), but has the highest number of
speakers. This means that there are very few utter-
ances for each speaker, in average, and that both the
ASR and the QE system must cope with the differ-
ences in speech for all these subjects. Legal presents
the second largest number of speakers, both native
and non-native, using a specific terminology on a
varied number of topics.

4.2 ASR System

The ASR engine used in our experiments makes
use of Hidden Markov Models (HMMs) of tri-
phone units and of 4-gram back-off language mod-
els (LMs). HMMs are trained on domain-specific
sets of audio data. The HUB4 training corpus is re-
leased with “verbatim” transcriptions of the audio
signals while, for the other three domains (i.e. Le-
gal, Weather and TED), training data have only as-
sociated captions, which are not always exact tran-
scriptions of the corresponding audio recordings. To
extract audio segments with reliable transcriptions
we hence applied a lightly supervised training pro-
cedure (Lamel et al., 2001). This resulted in 67
hours of recordings for the Weather domain, 144
hours for TED, 164 hours for News and 100 hours
for Legal. For LM training, first, a general purpose
LM is trained on the Gigaword text corpus (5th ed.)
(Parker et al., 2011) then, it is adapted to all do-
mains, using domain specific text data. Each auto-
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matic transcription of the data presented in Table 1
is generated with the corresponding word and time
boundaries that are aligned with the reference utter-
ances. This allows us to compute the utterance WER
and the features for the various prediction models.

4.3 Features

Our models are trained with the same 52 “black-
box” features proposed by Negri et al. (2014), which
can be categorized in three groups: Signal, Hybrid
and Textual. The first group aims to capture the diffi-
culty to transcribe the input and is extracted by look-
ing at the signal segment as a whole. Hybrid features
provide a more fine-grained way to capture the tran-
scription difficulty, by linking the signal to the out-
put transcription. Textual features aim to capture the
plausibility/fluency of a transcription considering its
surface word information.

4.4 Evaluation Metrics

Regression. Our regression models are evaluated
in terms of mean absolute error (MAE). The MAE, a
standard error measure for regression, is the average
of the absolute difference between the prediction ŷi

of a model and the gold standard response yi for all
instances in the test set. As it is an error measure,
lower values indicate better performance.

Classification. To handle the imbalanced class
distribution, and equally reward the correct classi-
fication on both classes, our evaluation is carried out
in terms of balanced accuracy (BA – the higher the
better), which is computed as the average of the ac-
curacies on the two classes (Brodersen et al., 2010).
When the distribution of classes is balanced, BA is
equal to the accuracy metric.

4.5 Baselines

Regression. We compare the MTL methods
against two baselines. The first one, simple but often
hard to beat for regression models, is computed by
labeling all the test instances with the Mean WER
value calculated on the training set. The second
baseline is an STL algorithm trained on data from
the target domain. The algorithm that we used (STL
Elastic henceforth) is the elastic net (Zou and Hastie,
2005). Parameter estimation is performed with 5-
fold cross-validation.

Classification. In this setting we also consider two
baselines. The first one (Majority) is computed by
labeling all the test instances with the most frequent
label in the training set and, by definition, corre-
sponds to a score of 0.5 in terms of balanced accu-
racy. The second classification baseline is the logis-
tic regression (STL LogReg henceforth), also known
as maximum entropy algorithm (Hastie et al., 2009).
We perform parameter optimization for LogReg us-
ing stratified 5-fold cross-validation in a randomized
search process (Bergstra and Bengio, 2012).

For both STL baselines we selected algorithms7

that induce linear models and use the same loss func-
tions (least squares for regression and logistic re-
gression for classification) of the MTL methods.

5 Results and Discussion

To mitigate the effect of having considerably differ-
ent amounts of training data in the four domains,
and equally weight their contribution to the learn-
ing task, all our models (STL and MTL) are trained
using the same number of instances from all the do-
mains and, at most, half of the data available for the
smallest domain, News (i.e. 362 instances). To ana-
lyze performance variations with different amounts
of data, we create subsets of the 362 instances, for
10 different sizes ranging from 10% to 100% of the
instances for each domain.8 We repeat this process
30 times by randomly shuffling all the data avail-
able for each domain. For each of the resulting
learning curves, the plots in this section present the
confidence intervals9 (at 95%) for the 30 different
train/test splits.

In addition to the STL model trained only on in-
domain data, we also experiment with an STL model
trained on the concatenation of the training data of
all domains. Its results are, on average, statistically
comparable to, or worse than, STL in-domain for
both regression and classification.

Regression. Among the three MTL regression al-
gorithms, RMTL achieves the best results in all our

7We used the implementations available in Scikit-learn (Pe-
dregosa et al., 2011).

8That is, for instance, with 10% of training data from four
domains, the total amount of instances is 144 (36*4).

9The confidence intervals are used to show whether there
are statistically significant differences in performance among
the models.
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Figure 1: Learning curves for the regression models evaluated on the four domains. The evaluation metric is MAE (↓).

tests. This suggests that its capability to handle do-
main divergence, thus avoiding negative transfer, is
required to increase performance. For the sake of
visualization, in the plots in Figure 1 we hence omit
the curves of the other MTL methods, keeping only
those of RMTL and the two baselines.

As shown in the figure, for the Legal domain,
RMTL results are better than those of both the base-
lines (lower MAE) even with 30% of the data and,
except in one case (40% of the data), the improve-
ment over STL (always the stronger baseline) is sta-
tistically significant. For Weather and TED, the im-
provement is less evident: more data are required
to outperform the STL baseline (respectively 50%
and 60%), the improvements are not always statisti-
cally significant and, for TED, the MAE results con-
verge to those of STL with 100% of the data. For the
News domain RMTL’s performance is always com-
parable to STL. An interesting behavior can be ob-
served in the Legal domain, in which the Mean base-
line degrades as we add training data. This suggests
that, even internally to the domain, training and test
labels have very different distributions. A smaller

degradation is observed for the STL model, which
improves over the Mean baseline as it also uses the
information captured by the features. The two base-
lines, however, assume that both training and test
data come from similar distributions. Instead, by
taking advantage also of the knowledge transferred
from the other domains, RMTL allows to cope with
the differences between training and test.

Classification. In this setting we compare the
MTL algorithms (L21 and Lasso) with the STL (Lo-
gReg) and Majority baselines. As shown in Fig-
ure 2, the two MTL models (which significantly out-
perform the Majority baseline in all conditions) al-
ways achieve a higher balanced accuracy than sin-
gle task learning in three domains (TED, Legal and
Weather). In the Weather domain, the performance
improvement over the STL baseline is always statis-
tically significant when using from 20% to 100% of
the training data. For TED and Legal, MTL perfor-
mance tends to converge to the results of STL when
the models are trained on 100% of the data (around
65% BA), with an improvement that remains statis-
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Figure 2: Learning curves for the classification models evaluated on four domains for WER scores with threshold at
0.05. Evaluation is calculated with balanced accuracy (↑).

tically significant only for TED. For the News do-
main, similar to the regression setting, the improve-
ment of MTL over STL is less evident. Indeed, only
L21 outperforms the single task baseline but the dif-
ference is not statistically significant.

Our classification results can be explained taking
into consideration the distribution of positive and
negative instances in each domain. Weather, for
which MTL always outperforms STL, has the most
balanced distribution (35% good and 65% bad). In
the other three domains, instead, the proportion of
negative samples is always above 77%. Although in
this penalized condition all algorithms are supported
by sample weighting, MTL seems to better exploit
this technique when the target domain is balanced.

The challenging nature of the data we are using
(described in Section 4.1) is corroborated by the
moderate performance achieved by STL. Although
it is trained with in-domain data, the best STL clas-
sification model (for the Legal domain) does not ex-
ceed a BA of 66%. In this difficult scenario, the use-
fulness of MTL is demonstrated by its capability of

reaching the best performance of STL with smaller
amounts of data in most of the cases (e.g. 30% of
the data for the Legal domain).

Domains divergence. To further analyze the per-
formance of MTL in regression and classification,
following previous works on MTL and domain
adaptation in computer vision (Costante et al., 2014;
Samanta et al., 2014), we use maximum mean dis-
crepancy (MMD) as a measure of divergence be-
tween domains. MMD is an effective way to com-
pare two multivariate distributions p and q by mini-
mizing the difference in Reproducing Kernel Hilbert
Space (RKHS) between the means of the projected
distributions (Gretton et al., 2012). It is defined as
supf∈F Ep[f(p)]−Eq[f(q)] where p and q are points
sampled i.i.d. from two domains and f(.) is a con-
tinuous bounded function on p and q (usually a unit
ball function). We measure the pairwise divergences
among the domains described in Section 4.1 using
the features extracted and a radial basis function ker-
nel. The divergences are presented in Figure 3.

According to the pairwise MMD, the most di-
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vergent pair is News-Weather, which is followed
by News-Legal. The distance between News and
the other domains indicates that, when it is used as
target, knowledge transfer from the other domains
might be problematic. In fact, looking at the re-
sults obtained by classification and regression mod-
els for News, we notice that none of the MTL meth-
ods achieves significant improvements over the STL
baselines. Furthermore, the RMTL regression learn-
ing curve (Figure 1) for News shows that RMTL fol-
lows the same curve of STL, meaning that it is able
to handle the high divergence between News and the
other domains and hence, it learns mostly from in-
domain data.

In general, the divergence measurements between
the domains are relatively high (the values are closer
to 1 than to 0). This is not surprising given the
intra- and inter-domain variability of speakers and
topics, the different conditions in which speech was
recorded, and the WER differences across domains.
However, the interesting aspect evidenced by the
measurements is that MMD allows to successfully
approximate such domain differences (and, likely,
other more implicit diversity indicators), thus being
a useful instrument to measure domain relatedness.

Figure 3: Domains divergence given by MMD (0 means
similar and 1 means dissimilar).

6 Conclusion

We presented a supervised approach to ASR qual-
ity estimation aimed to cope with large differences
between training and test data. To achieve robust-

ness and adaptability to such differences, we ex-
ploited the capability of multitask learning, which
allows QE models to make the best use of train-
ing data coming from multiple domains by trans-
ferring knowledge across them. The MTL learn-
ing paradigm was applied both in regression mode
(WER prediction) and, in a preliminary inves-
tigation, for binary classification (assignment of
‘good’/‘bad’ quality labels). In both settings, we ex-
perimented with different amounts of English data
coming from four very diverse domains (different
genres, speakers, topics, and styles).

Our results indicate that MTL, which we used for
the first time in ASR QE10, is able to take advantage
of data coming from such heterogeneous domains
and to significantly improve over single-task learn-
ing baselines both in regression and in classification.
Although the extent of the improvement depends on
the divergence between the domains (a major is-
sue for any supervised learning task), our results
show that in the worst case MTL performance con-
verges to the results of single-task learning. Overall,
by suggesting a way to overcome the main limita-
tions of previous approaches, our study opens in-
teresting research avenues towards reference-free,
system-agnostic and real-time ASR output evalua-
tion.
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