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Abstract

We present a novel evaluation method for
grammatical error correction that addresses
problems with previous approaches and scores
systems in terms of improvement on the orig-
inal text. Our method evaluates corrections at
the token level using a globally optimal align-
ment between the source, a system hypothesis,
and a reference. Unlike the M2 Scorer, our
method provides scores for both detection and
correction and is sensitive to different types of
edit operations.

1 Introduction

A range of methods have been applied to evaluation
of grammatical error correction, but no entirely sat-
isfactory method has emerged as yet. Standard met-
rics (such as accuracy, precision, recall and F -score)
have been used, but they can lead to different results
depending on the criteria used for their computation
(Leacock et al., 2014; Chodorow et al., 2012).

Accuracy, for example, can only be computed
in cases where we can enumerate all true nega-
tives, which is why it has been mostly used for
article and preposition errors (De Felice and Pul-
man, 2008; Rozovskaya and Roth, 2010). Extend-
ing this approach to other error types involves the
identification of all relevant instances or positions
where an error can occur, which is not always easy
and renders the evaluation process costly, language-
dependent, and possibly inexact. Accuracy has also
been criticised as being a poor indicator of predictive
power, especially on unbalanced datasets (Manning
and Schütze, 1999).

Source: You have missed word.
System hypothesis: You have missed a word.
System edits: (ε→ a)
Gold edits: (word→ a word) or

(word→ words)

Figure 1: Mismatch between system and gold standard
edits producing the same corrected sentence.

Alternatively, we can compute precision (P ), re-
call (R) and F -score by comparing system edits to
gold-standard edits and thus circumvent the problem
of counting true negatives. This was the official eval-
uation scheme adopted for the HOO 2011 (Dale and
Kilgarriff, 2011) and HOO 2012 (Dale et al., 2012)
shared tasks. However, these metrics can fail when
edits are not identical and therefore underestimate
system performance (see Figure 1).

This problem was later addressed by the Max-
Match or M2 Scorer (Dahlmeier and Ng, 2012),
which is able to identify equivalent edits by apply-
ing a transitive rule (e.g. (ε→ a) + (word→ word)
⇒ (word → a word)). The scorer also allows for
multiple gold standard annotations of each sentence,
choosing the ones that maximise overall F -score. So
far, the M2 Scorer has been the most reliable tool
for evaluating error correction systems and has been
used as the official scorer in the subsequent CoNLL
2013 (Ng et al., 2013), CoNLL 2014 (Ng et al.,
2014) and EMNLP 2014 (Mohit et al., 2014) shared
tasks. In 2014, system ranking was based on F0.5-
score, weighting precision twice as highly as recall.

Nevertheless, this method also suffers from a
number of limitations:
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Source Annotator 1 Annotator 2
This machines is designed for help people . (This→ These), (is→ are),

(help→ helping)
(machines→ machine),
(for→ to)

System hypothesis System edits P R F0.5
These machines are designed to help people . (This→ These), (is→ are),

(for→ to)
0.67 0.67 0.67

Table 1: The M2 Scorer is unable to mix and match corrections from different annotators.

Source Gold edits
Machine is design to help people . (Machine→Machines), (is design→ are designed)

System hypothesis System edits P R F0.5
Machine is designed to help people . (design→ designed) 0.00 0.00 0.00

Table 2: Partial matches are ignored by the M2 Scorer.

(a) There is a limit to the number of unchanged
words allowed in an edit (2 by default), whose
value affects final results.

(b) Given that the computed metrics rely on true
positive counts, a baseline system that does not
propose any correct edits will not produce in-
formative results (P = 1 by definition, R = 0
and F = 0). The actual error rate and con-
sequent potential for text improvement are not
taken into account.

(c) It is not possible to discriminate between a ‘do-
nothing’ baseline system and other systems that
only propose wrong corrections, as they will all
yield F = 0.

(d) System performance is underestimated when
using multiple annotations for a sentence, since
the scorer will choose the one that maximises
F -score instead of mixing and matching all the
available annotations (see Table 1).

(e) Partial matches are ignored (see Table 2).

(f) Phrase-level edits can produce misleading re-
sults, as they may not always reflect effective
improvements (see Table 3).

(g) The lack of a true negative count (i.e. the num-
ber of non-errors) precludes the computation of
accuracy, which is useful for discriminating be-
tween systems with F = 0.

(h) There is no clear indicator of improvement on
the original text after applying the suggested
corrections, since an increase in P, R or F does
not imply a reduction in the error rate (see Sec-
tion 2.3.3).

(i) It is not clear how values of F should be in-
terpreted (especially for F0.5), as there is no
known threshold that would signal improve-
ment. Ranking by F -score does not guarantee
that the top systems make the source text better.

(j) Detection scores are not computed.

In addition, Leacock et al. (2014) discuss key is-
sues concerning system evaluation, such as the es-
timation of true negatives and good practices for re-
porting results, which are currently not addressed by
the M2 scorer.

2 Designing a new evaluation method

A better evaluation method should address the issues
described above and use a metric that is meaningful
and easy to interpret. We examine these and other
related problems, showing how they can be resolved.

The proposed method uses tokens as the unit of
evaluation (instead of phrase-level edits), which pro-
vides a stable unit of comparison and facilitates the
computation of true negatives. In turn, this provides
a solution for problems 1.(a), 1.(e), 1.(f) and 1.(g).
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Source Gold edits
Machine is design to help people . (Machine→Machines), (is→ are), (design→ designed)

System hypothesis System edits P R F0.5
The machine is designed for helping
people .

(Machine is→ The machine is),
(design→ designed),
(to help people→ for helping people)

0.33 0.33 0.33

Machines is a design on the helping of
the people .

(Machine→Machines),
(is design to help→ is a design on the
helping of the)

0.50 0.33 0.45

Table 3: The M2 Scorer evaluates systems based on the number of edits, regardless of their length and their effect on
the final corrected sentence. The first hypothesis is better than the second despite having a lower F0.5-score.

The following sections describe the three pillars
of our method: a new annotation scheme, sentence
alignment and metrics.

2.1 Annotation

We define a gold standard format where each sen-
tence is annotated with a set of errors and their possi-
ble corrections. A sentence can contain zero or more
errors, each of which includes information such as
type, a flag indicating whether a correction is re-
quired, and a list of alternative corrections corre-
sponding to each of the annotators. An error is re-
quired to be corrected when all annotators provide a
correction for it.

Unlike in other annotation schemes, each error is
defined by its locus (regardless of the position of the
incorrect tokens in the sentence) and all its alterna-
tive corrections must be mutually exclusive. In other
words, corrections are grouped whenever they refer
to the same underlying error, even if the tokens in-
volved are not contiguous. Listing 1 shows a sample
XML annotation for the sentence in Table 1.

Because all the correction alternatives are mutu-
ally exclusive, we can directly combine them to gen-
erate all possible valid gold standard references. The
annotation in Listing 1 would produce the following
list of references:

These machines are designed for helping people .

These machines are designed to help people .

This machine is designed for helping people .

This machine is designed to help people .

<sentence id="1" numann="2">
<text>
This machines is designed for help
people .

</text>
<error-list>
<error id="1" req="yes" type="SVA">
<alt ann="0">
<c start="0" end="1">These</c>
<c start="2" end="3">are</c>

</alt>
<alt ann="1">
<c start="1" end="2">machine</c>

</alt>
</error>
<error id="2" req="yes" type="Vform">
<alt ann="0">
<c start="5" end="6">helping</c>

</alt>
<alt ann="1">
<c start="4" end="5">to</c>

</alt>
</error>

</error-list>
</sentence>

Listing 1: An example annotated sentence.

By mixing and matching corrections from differ-
ent annotators, we avoid the performance underesti-
mation described in 1.(d).

2.2 Alignment

In order to compute matches for detection and cor-
rection, we generate a token-level alignment be-
tween a source sentence, a system’s hypothesis, and
a gold standard reference. Three-way alignments
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are a special case of multiple sequence alignment,
a well-known string matching problem in computa-
tional biology (Mount, 2004).

We generate an exact (globally optimal) align-
ment using a dynamic programming implementa-
tion of the Sum of Pairs (SP) alignment (Carrillo
and Lipman, 1988), shown in Listing 2. Under this
model, the score of a multiple alignment is the sum
of the scores of each pairwise alignment, so that a
globally optimal alignment has minimum SP score.
Time and space complexity of the dynamic program-
ming implementation for k strings of length n is
O(nk), which is acceptable for three average-length
sentences but can quickly become impractical for a
larger number of sequences.

In computational biology, edit costs are defined in
terms of mutation probabilities, which are irrelevant
to our task. However, we can find new optimal costs
by defining a set of constraints that are meaningful
for error correction:

(a) Matches have zero cost (cmatch = 0).

(b) Gaps (insertions or deletions) are more costly
than matches (cgap > cmatch).

(c) Mismatches (substitutions) are set to be more
costly than gaps (insertions or deletions) so as
to maximise matches (cmis > cgap).

Given these constraints, we can set cgap = 1
and cmis = 2; however, they will not necessarily
keep gaps aligned (see Table 4). To ensure this, we
must place a new constraint on the SP algorithm so
that a gap-aligned version (desired alignment) has
a lower cost than a gap-unaligned version (initial
alignment):

cost(A,–) + ...+ cost(B,–) > cost(A,C) + ...+ cost(B,–)

cgap + ...+ cgap > cmis + ...+ cgap

4cgap + cmis > 2cmis + 2cgap

2cgap > cmis

Therefore 2cgap > cmis > cgap > cmatch. For our
implementation, we adopted cgap = 2 and cmis = 3.

There can be more than one optimal alignment for
a given set of strings. Some of these alignments will
look more intuitive than others (see Table 5) but they
are equally optimal for our evaluation method and
will produce the same final results.

Initial alignment Desired alignment
A B A B
– C C –
A – A –

Table 4: Initial and desired alignments showing differ-
ences in the distribution of gaps.

/* Initialisation */

cmatch := cost of match
cmis := cost of mismatch
cgap := cost of gap

D[0, 0, 0] := 0

D1,2[i, j] := edit_distance(S1[1..i], S2[1..j])
D1,3[i, k] := edit_distance(S1[1..i], S3[1..k])
D2,3[j, k] := edit_distance(S2[1..j], S3[1..k])

/* Recurrences for boundary cells */

D[i, j, 0] := D1,2[i, j] + (i + j) * cgap,
D[i, 0, k] := D1,3[i, k] + (i + k) * cgap,
D[0, j, k] := D2,3[j, k] + (j + k) * cgap,

/* Recurrences for non-boundary cells */

for i := 1 to n1 do
for j := 1 to n2 do
for k := 1 to n3 do
begin
if (S1[i] = S2[j]) then cij := cmatch
else cij := cmis;
if (S1[i] = S3[k]) then cik := cmatch
else cik := cmis;
if (S2[j] = S3[k]) then cjk := cmatch
else cjk := cmis;

d1 := D[i-1, j-1, k-1] + cij + cik + cjk;
d2 := D[i-1, j-1, k] + cij + 2 * cgap;
d3 := D[i-1, j, k-1] + cik + 2 * cgap;
d4 := D[i, j-1, k-1] + cjk + 2 * cgap;
d5 := D[i-1, j, k] + 2 * cgap;
d6 := D[i, j-1, k] + 2 * cgap;
d7 := D[i, j, k-1] + 2 * cgap;

D[i, j, k] := Min(d1,d2,d3,d4,d5,d6,d7);
end;

Listing 2: The Sum of Pairs dynamic programming algo-
rithm for the alignment of three sequences, S1, S2 and S3
(adapted from Gusfield (1997)).

2.3 Metrics

Once we have an optimal alignment between a
source, a hypothesis and a reference, we compute a
number of metrics that measure different aspects of
performance and can be used for ranking systems.
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Their is wide spread usage of technology . A A A A A A A A
There is widespread use of technology . ⇔ B A B B - A A A
There is widespread use of technology . B A B B - A A A
Their is wide spread usage of technology . A A A A A A A A
There is widespread use of technology . ⇔ B A B - B A A A
There is widespread use of technology . B A B - B A A A

Table 5: Two equally optimal alignments under the SP alignment model.

Tokens Classification
Source Hypothesis Reference Detection Correction

a a a TN TN
a a b FN FN
a a - FN FN
a b a FP FP
a b b TP TP
a b c TP FP, FN, FPN
a b - TP FP, FN, FPN
a - a FP FP
a - b TP FP, FN, FPN
a - - TP TP
- a a TP TP
- a b TP FP, FN, FPN
- a - FP FP
- - a FN FN

Table 6: Our extended WAS evaluation scheme.

The limitation in 1.(j) is addressed by computing
these metrics for both detection and correction.

We adopt an extended version of the Writer-
Annotator-System (WAS) evaluation scheme
(Chodorow et al., 2012) where each token align-
ment is classified as a true positive (TP), true
negative (TN), false positive (FP) or false negative
(FN). As noted by Chodorow et al. (2012), cases
where source 6= hypothesis 6= reference1 are both
a FP and a FN for correction,2 so we introduce a
new FPN class to count such cases and adjust our
metrics accordingly. Our extended WAS scheme is
shown in Table 6.

With these counts, we can compute P , R and Fβ
using their standard definitions:

P =
TP

TP + FP
R =

TP
TP + FN

Fβ = (1 + β2) · P ·R
(β2 · P ) +R

1Note that we use different terminology where source =
writer, hypothesis = system and reference = annotator.

2From a correction perspective, an alignment where a 6=
b 6= c generates a FP for the b class and a FN for the c class.

As mentioned in Section 1, the F measure does
not shed light on the error rates in the data and is un-
able to discriminate between a ‘do-nothing’ baseline
and other systems unless TP > 0. However, because
we now have a TN count, we can address problems
1.(b) and 1.(c) by computing accuracy (Acc) as fol-
lows:

Acc =
TP + TN

TP + TN + FP + FN− FPN

Unlike in information retrieval, for example,
where the whole document collection is usually un-
known to the user so TNs are perhaps less relevant,
the sentences fed into an error correction system will
be provided by users. In this context, TNs are rele-
vant because they indicate what parts of the text are
already correct, allowing users to focus on problem-
atic regions. For this reason, accuracy seems a more
appropriate measure of text quality than F -score.

2.3.1 Weighted accuracy
Accuracy treats all counts equally, which has two

main side effects. A system that introduces the same
number of TPs and FPs will have the same accuracy
as the ‘do-nothing’ baseline, in which case we would
prefer to keep the original text and rank the system
lower, in accord with the choice of F0.5 for evaluat-
ing the 2014 shared task. Accuracy is also unable to
discriminate between systems with different TP and
TN counts if their sum is the same.

It is clear that for error correction these counts
should be weighted differently. In particular, we
would like to:

• Reward correction more than preservation (i.e.
weightTP > weightTN).

• Penalise unnecessary corrections more than un-
corrected errors (i.e. weightFP > weightFN).
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Figure 2: Effect of w on weighted accuracy (WAcc).

We can reformulate accuracy to satisfy these con-
ditions by including a weight factor w > 1:

WAcc =
w · TP + TN

w · TP + TN + w · (FP− FPN
2

)
+
(
FN− FPN

2

)
=

w · TP + TN
w · TP + TN + w · FP− w · FPN

2 + FN− FPN
2

=
w · TP + TN

w · (TP + FP) + TN + FN− (w + 1) · FPN
2

Higher values of w will reward and penalise sys-
tems more heavily, bringing those below the base-
line closer to the lower bound and those above the
baseline closer to the upper bound (see Figure 2).
As w increases, differences between WAccsys and its
bounds become less pronounced, which is why we
adopt w = 2. Regardless of w, WAcc will always
reduce to Acc for the ‘do-nothing’ baseline.

2.3.2 Metric behaviour
Before we set out to evaluate and compare sys-

tems, we must understand how metrics behave and
to what extent they are comparable.

Table 6 indicates that the metrics will always pro-
duce the same results for detection and correction
unless source 6= hypothesis 6= reference for at least
one position in the alignment. A ‘do-nothing’ base-
line will always produce the same results for both
aspects, since source = hypothesis for all positions.

Whenever a gold standard allows for alternative
corrections, references that maximise the target met-
ric should be chosen. Nevertheless, we note that the
(maximum) score obtained by a system only applies
to a given set of chosen references and is therefore
only directly comparable to results on the same ref-
erence set.

System Chosen references P R F0.5
S1 1.2, 2.1, 3.1 0.60 0.20 0.43
S2 1.2, 2.1, 3.1 0.80 0.05 0.20
S1 1.1, 2.1, 3.2 0.30 0.30 0.30
S2 1.1, 2.1, 3.2 0.30 0.40 0.32

Table 7: S1 outperforms S2 in terms of overall F0.5 but S2
outperforms S1 when evaluated on different references.

To illustrate this, consider two systems (S1 and
S2) evaluated on a gold standard containing 3 sen-
tences with 2 correction alternatives each (i.e. six
possible references: 1.1, 1.2, 2.1, 2.2, 3.1 and 3.2
respectively). Table 7 shows that, while S1 achieves
a higher maximum score than S2, comparing their
F0.5 scores directly is not possible as they are com-
puted on a different set of references. In fact, S2
could outperform S1 on other reference sets.

2.3.3 Measuring improvement

We know that whenever P > 0.5, the error rate
decreases (and therefore Acc increases) so the text
is improved.3 However, an increase in P , R or F
alone does not necessarily imply an increase in Acc
or WAcc, as illustrated in Table 8.

In order to determine whether a system improves
on the source text, we must compare its performance
(WAccsys) with that of the baseline (WAccbase). Be-
cause each WAccsys is computed from a different set
of references, we must compute WAccbase individ-
ually for each system using its chosen references.
This is done by using the source sentence as the hy-
pothesis in the existing alignment. Once we have
WAccsys and WAccbase for each system, we can com-
pare them to determine if the text has improved.
When these two values are equal, there is no ben-
efit to deploying the system.

If we want to compare and rank systems, we need
to measure how much the text has been improved
or degraded. This can be done using a baseline-
normalised metric that measures relative coverage of
the area between the baseline and WAcc bounds (see
Figure 3). This metric, henceforth Improvement or

3In theory, applying more correct edits than incorrect edits
will yield a positive balance. However, in practice, this depends
on the edits, especially if they are variable-length phrases. The
P > 0.5 criterion also only holds for Acc and not WAcc, as the
latter modifies the original proportions by introducing weights.
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System TP FP TN FN P R F0.5 Acc WAcc
Baseline 0 0 6 4 1.00 0.00 0.00 0.60 0.60

S1 4 1 5 0 0.80 1.00 0.83 0.90 0.87
S2 1 0 6 3 1.00 0.25 0.62 0.70 0.73
S3 1 1 5 3 0.50 0.25 0.42 0.60 0.58
S4 4 6 0 0 0.40 1.00 0.45 0.40 0.40

Table 8: An increase in P , R or F does not necessarily translate into an increase in Acc, assuming all systems are
evaluated on the same set of references.

0 1WAccbaseWAcca WAccb

{{

IMPROVEMENT AREADEGRADATION AREA

{1.00 +1.000
Ia Ib

Figure 3: Graphical representation of improvement for
two hypothetical systems, a and b. Values of I are shown
at the top while values of WAcc are shown at the bottom.

Value Interpretation
1 100% improvement (100% correct text).

> 0 Relative improvement.
0 Baseline performance (no change).

< 0 Relative degradation.
-1 100% degradation (100% incorrect text).

Table 9: Interpretation of I values.

I , is defined as:

I =



bWAccsysc if WAccsys = WAccbase

WAccsys −WAccbase

1−WAccbase
if WAccsys > WAccbase

WAccsys
WAccbase

− 1 otherwise

Values of I lie in the [−1; 1] interval and should
be interpreted as per Table 9. The use of this metric
provides a solution to problems 1.(h) and 1.(i).

The I-measure should be computed after max-
imising system WAcc at the sentence level, so as to
ensure all the evaluated hypotheses are paired with
their highest scoring references.

3 Experiments and results

We tested our evaluation method by re-ranking sys-
tems in the CoNLL 2014 shared task on grammatical
error correction. Re-ranking was limited to the 12

participating teams that made their system’s output
publicly available.

For the gold standard, we used the shared task test
set containing corrections from the two official an-
notators as well as alternative corrections provided
by three participating teams. This version allowed
us to generate many more references than the origi-
nal test set and thus reduce annotator bias.

The corrections extracted from the gold standard
were automatically clustered into groups of inde-
pendent errors based on token overlap. This means
that overlapping corrections from different annota-
tors are considered to be mutually exclusive (i.e.
alternative) corrections of the same error and are
therefore grouped together (the error elements in
Listing 1). Provided the original annotations are cor-
rect, the combination of alternatives will generate all
possible valid references. Sentences containing cor-
rections that could not be automatically clustered be-
cause they require human knowledge were excluded,
leaving a subset of 711 sentences (out of 1,312).

We restrict our analysis to correction, since that is
the only aspect reported by the M2 Scorer. Table 10
shows the results of the M2 Scorer using the original
annotations as well as a modified version containing
mixed-and-matched corrections. Results of our pro-
posed evaluation method are included in Table 11.

As expected, rankings are clearly distinct between
the two methods, as they use different units of evalu-
ation (phrase-level edits vs tokens) and maximising
metrics (F0.5 vs WAcc). Results show that only the
UFC system is able to beat the baseline (by a small
but statistically significant margin), being also the
one with consistently highest P (much higher than
the rest).

These rankings are affected by the fact that sys-
tems were probably optimised for F0.5 during de-
velopment, as it was the official evaluation metric
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System TP TN FP FN FPN P R F0.5 Acc WAcc WAccbase I ↓
UFC 19 13062 7 665 2 73.08 2.78 12.06 95.13 95.09 95.03 1.35
BASELINE 0 13078 0 673 0 100.00 0.00 0.00 95.11 95.11 95.11 0.00
IITB 11 13057 26 668 4 29.73 1.62 6.65 94.98 94.82 95.06 -0.25
SJTU 54 12947 114 649 8 32.14 7.68 19.64 94.51 93.79 94.89 -1.16
CUUI 290 12697 337 553 34 46.25 34.40 43.27 93.82 91.86 93.91 -2.18
PKU 128 12800 283 625 66 31.14 17.00 26.70 93.89 92.28 94.53 -2.38
AMU 219 12761 322 556 41 40.48 28.26 37.26 93.94 92.06 94.39 -2.47
UMC 179 12761 314 603 26 36.31 22.89 32.50 93.56 91.67 94.35 -2.84
IPN 25 12848 251 680 40 9.06 3.55 6.91 93.53 92.00 94.88 -3.04
POST 231 12588 454 574 46 33.72 28.70 32.58 92.88 90.23 94.17 -4.18
RAC 147 12723 426 623 49 25.65 19.09 24.00 92.79 90.28 94.45 -4.41
CAMB 386 12402 641 502 78 37.59 43.47 38.63 92.31 88.77 93.59 -5.15
NTHU 196 12620 521 575 54 27.34 25.42 26.93 92.48 89.44 94.44 -5.29

Table 11: Results of our new evaluation method (in percentages). All values of I are statistically significant (two-tailed
paired T-test, p < 0.01).

System Original annotations Mixed annotations
P R F0.5 ↓ P R F0.5 ↓

CUUI 47.66 33.87 44.07 47.57 39.60 45.73
AMU 44.68 29.44 40.48 44.56 33.49 41.80
CAMB 39.22 41.65 39.69 39.04 48.72 40.66
POST 36.39 29.13 34.67 36.39 33.79 35.84
NTHU 33.56 28.10 32.31 33.62 31.52 33.18
UMC 34.86 20.86 30.73 34.86 23.31 31.71
RAC 33.67 19.08 29.21 33.67 21.59 30.28
PKU 32.17 19.60 28.51 32.42 21.63 29.48
SJTU 28.00 7.08 17.60 28.00 7.46 18.06
UFC 73.08 3.26 13.83 73.08 3.39 14.31
IPN 9.16 3.87 7.20 9.16 4.09 7.34
IITB 30.30 1.74 7.07 30.30 1.81 7.31
BASELINE 100.00 0.00 0.00 100.00 0.00 0.00

Table 10: M2 Scorer results (in percentages).

for the shared task. Rankings by F0.5 are almost
identical for the two methods (Spearman’s rank cor-
relation is 0.9835 with p < 0.01), suggesting that
there is a statistically significant difference between
phrase-level edits and tokens, despite phrases being
only 1.12 tokens on average in this dataset.

Spearman’s ρ between both scorers (F0.5 vs I)
is −0.5330, which suggests they generally produce
inverse rankings. Pearson’s correlation between
token-level F0.5 and I is −0.5942, confirming the
relationship between rankings and our intuition that
F0.5 is not a good indicator of overall correction
quality. While the I-measure reflects improvement,
F0.5 indicates error manipulation. We argue that I is
better suited to the needs of end-users (as it indicates
whether the output of the system is better than the

original text) whereas F0.5 is more relevant to sys-
tem developers (since they need to analyse P and R
in order to tune their systems).

Lastly, we verify that mixing and matching cor-
rections from different annotators improves R (see
Table 10) and ensures systems are always assigned
the maximum possible score.

4 Discussion

Automatic evaluation metrics that are based on com-
parisons with a gold standard are inherently limited
by the number of available references. Although this
does not pose much problem for tasks such as part-
of-speech tagging, it does constrain evaluation for
text generation tasks (such as error correction, ma-
chine translation or summarisation), where the num-
ber of ‘correct answers’ goes beyond a few collected
references.

Sentences can be corrected in many different
ways and the fact that a given correction is not
matched by any of the references does not neces-
sarily mean that it is not valid. Therefore, we must
accept that any metric used in such scenarios will
not be perfect. However, it is worth noting that this
limitation does not extend to evaluation of error de-
tection per se using such metrics.

Finding independent evidence to support one cor-
rection over another is also difficult, since the notion
of sentence quality is somewhat subjective. Eval-
uation metrics that rely on a gold standard are es-
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System hypotheses
Best

F0.5 I
a. The son was died after one year ’s treatment and a couple got divorced later after that . ×
b. The son had died after one year ’s and the couple got divorced later after that . ×
a. Although there might be a lot of challenges along the way in seeking medical attention ,

such as a financial issues , everyone should be given right of knowing their family ’s
inherented medical conditions .

×
b. Although there might be a lot of challenges along the way in seeking medical attention ,

such as finance , everyone should be given the right of knowing their family ’s
inherented medical conditions .

×
a. Taking Angeline Jolie , for example , she is famous but she still reveal the truth about

her genetic testing to the development of her breast cancer risk . ×
b. Taking Angeline Jolie for example , she is famous but she still revealed the truth about

her genetic testing on the development of her breast cancer risk . ×
Table 12: Example hypotheses produced by two error correction systems (a and b). The last two columns indicate the
highest-scoring hypothesis from each pair according to each evaluation metric.

sentially distance metrics, but judging between hy-
potheses without looking at the source or reference
sentences is a distinct task, which is more similar to
sentence quality estimation for machine translation
output.

Our evaluation method overcomes many of the
limitations of previous approaches by using a stable
unit of evaluation, weighting edit operations in line
with the goals of grammatical error correction and
making the most of the available annotations. Val-
ues of F are always positive, with no clear interpre-
tation or threshold that would indicate improvement
of the original text whereas the I-measure provides
meaningful indicators (I < 0 for degradation, I = 0
for no change and I > 0 for improvement). Table
12 shows a few examples where the M2 Scorer dif-
fers from our method, revealing how the I-measure
is able to pick hypotheses in accord with (at least
our) intuitions.

5 Conclusion

We have presented a new evaluation method for
grammatical error detection and correction that
overcomes many of the limitations of previous ap-
proaches and provides more meaningful indicators
of system performance.

The method is designed to evaluate improvement
in correction of the input text by analysing post-

system error rate. Improvement is measured using
a reformulation of accuracy where TPs and FPs are
weighted higher than TNs and FNs, in an attempt
to model desirable aspects of correction. We also
combine individual corrections from different anno-
tators, as this improves R and ensures systems get
the maximum possible score from the available an-
notations.

Experiments show I and F0.5 are inversely corre-
lated and account for different aspects of system per-
formance. Choosing one metric over the other poses
a fundamental question about the aims of error cor-
rection, whether we prefer a system that tackles few
errors but improves the original text or one that han-
dles many more errors but degrades the original. We
believe that, from a user perspective, a system that
reliably improves text is more desirable.

Future work might usefully explore automated
sentence quality estimation, as a component both
of grammatical error correction systems and of their
evaluation, in order to ameliorate the issue that any
set of gold standard references will underspecify the
set of possible corrections.

An open-source implementation of our evalua-
tion method is available for download at https:
//github.com/mfelice/imeasure.

586



Acknowledgments

We would like to thank Øistein Andersen and Zheng
Yuan for their constructive feedback, as well as the
anonymous reviewers for their comments and sug-
gestions. We are also grateful to Cambridge English
Language Assessment for supporting this research
via the ALTA Institute.

References

Humberto Carrillo and David Lipman. 1988. The mul-
tiple sequence alignment problem in biology. SIAM J.
Appl. Math., 48(5):1073–1082, October.

Martin Chodorow, Markus Dickinson, Ross Israel, and
Joel Tetreault. 2012. Problems in evaluating gram-
matical error detection systems. In Proceedings of
COLING 2012, pages 611–628, Mumbai, India, De-
cember. The COLING 2012 Organizing Committee.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evalu-
ation for grammatical error correction. In Proceedings
of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL 2012, pages
568 – 572, Montreal, Canada.

Robert Dale and Adam Kilgarriff. 2011. Helping Our
Own: The HOO 2011 Pilot Shared Task. In Pro-
ceedings of the Generation Challenges Session at the
13th European Workshop on Natural Language Gener-
ation, pages 242–249, Nancy, France, September. As-
sociation for Computational Linguistics.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A Report on the Preposition
and Determiner Error Correction Shared Task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 54–62,
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