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Abstract

Gradable terms such as brief, lengthy and ex-
tended illustrate varying degrees of a scale and
can therefore participate in comparative con-
structs. Knowing the set of words that can be
compared on the same scale and the associ-
ated ordering between them (brief < lengthy
< extended) is very useful for a variety of
lexical semantic tasks. Current techniques to
derive such an ordering rely on WordNet to
determine which words belong on the same
scale and are limited to adjectives. Here we
describe an extension to recent work: we in-
vestigate a fully automated pipeline to extract
gradable terms from a corpus, group them into
clusters reflecting the same scale and estab-
lish an ordering among them. This method-
ology reduces the amount of required hand-
crafted knowledge, and can infer gradability
of words independent of their part of speech.
Our approach infers an ordering for adjec-
tives with comparable performance to previ-
ous work, but also for adverbs with an accu-
racy of 71%. We find that the technique is use-
ful for inferring such rankings among words
across different domains, and present an ex-
ample using biomedical text.

1 Introduction

Gradability (Sapir, 1944) is a property of words that
identifies different degrees of the quality the word
denotes. For example, adjectives such as large, huge
and gigantic present different degrees of size or vol-
ume. Similarly, adverbs such as approximately, al-
most and roughly present different degrees of how

accurate a measurement is. Thus, one of the charac-
teristics of gradable terms is that they participate in
a scale and can be ordered along that scale: for ex-
ample, good < great < excellent (Kennedy, 2007).
Another characteristic is that gradable terms can ap-
pear in comparative constructions, e.g., “A is larger
than B”. Such comparative judgments are a psycho-
logical process that precedes judgments of counting,
e.g., “A is twice as large as B” (Sapir, 1944).

Modern NLP systems face the challenge of inter-
preting language as close to human perception as
possible. Modeling gradable terms as well as their
associated meaning and ordering is an important as-
pect of this challenge. Such information can be very
useful for a variety of inference tasks, such as senti-
ment analysis (Pang and Lee, 2008) and textual in-
ference (Dagan et al., 2006). However, current lex-
ical resources, like WordNet (Fellbaum, 1998), lack
annotations capturing the gradability of words. This
weakens the notion of similarity: although words
such as small and minuscule illustrate varying de-
grees of size, they are listed as synonyms in Word-
Net.

Recently, there has been a lot of interest in ex-
ploring different approaches to derive an ordering
among gradable adjectives based on their semantics
(Ruppenhofer et al., 2014; Sheinman et al., 2013;
Schulam and Fellbaum, 2010). de Melo and Bansal
(2013) propose a novel Mixed Integer Linear Pro-
gramming (MILP) based approach, publish a gold
standard dataset and report the best performance on
ordering scalar adjectives on this dataset. However,
these approaches are limited in two ways. First,
they depend on a manually created resource, such
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as WordNet or FrameNet (Baker et al., 1998). Lex-
ical patterns (e.g., ‘not just x but y’) are used both
to extract words that belong to the same scale and to
determine the direction of the ordering (e.g., in the
above pattern, x is weaker than y). However, this
extraction process gives noisy results that require fil-
tering using an electronic thesaurus. The domain of
application is thus restricted to words that exist in
an electronic thesaurus. Second, previous work is
limited to the study of adjectives.

In this paper, we propose a fully automated
pipeline that uses structural patterns to extract grad-
able terms from a corpus, cluster them into groups
that reflect the same semantic scale of comparison,
and finally rank them using de Melo and Bansal’s
MILP technique to establish an ordering among
them. We also explore how the technique fares on
domain-specific (biomedical) text, deriving scales
for domain-specific terms that might not exist in the-
sauri. Our approach achieves a comparable perfor-
mance to previous studies on scalar adjectives, and
can be reliably extended to adverbs.

2 Related work

Hatzivassiloglou and McKeown (1993) present the
first work on automatically clustering adjectives that
belong to the same scale, identifying scalar adjec-
tives based on the intuition that similar nouns are
modified by similar adjectives. They use a hierar-
chical clustering algorithm on a newswire corpus for
grouping similar adjectives, but do not provide rank-
ing among a given cluster of related adjectives.

Assuming a pair of related adjectives, de Marn-
effe et al. (2010) use reviews from the Internet
Movie Database and their associated ratings to infer
an ordering in the adjective pair. Kim and de Marn-
effe (2013) also obtain an ordering given a pair of
adjectives, using distributional word vectors derived
from a recursive neural network.

Sheinman et al. (2013) and de Melo and Bansal
(2013) present similar approaches, which make use
of WordNet dumbbells to determine words that be-
long to the same scale as proposed in Sheinman
et al. (2012). A WordNet dumbbell is a represen-
tation involving an antonym pair (e.g., small and
large) as two ends of a semantic scale with seman-
tically similar adjectives arranged in a radial fash-

ion around each adjective. The antonym acting as
a centroid and its synonyms as members of a clus-
ter represent words that most likely participate in
the same scale. For example, the antonym pair
(small, large) results in the dumbbell with clusters
(small, tiny, pocket-size, smallish) and (large, gigan-
tic, monstrous, huge) at the two ends. It should be
noted that even with such a representation, there can
be words that fall into the same WordNet synset but
do not participate in the scalar relationship (e.g., vio-
lent with respect to supernatural and affected). This
is primarily because of polysemy and semantic drift
(de Melo and Bansal, 2013).

Sheinman et al. (2013) present a two-step ap-
proach for establishing an ordering among scalar ad-
jectives. They extract adjectives from the Web us-
ing lexical patterns indicative of the direction of the
scalar relationship between a pair of adjectives. Two
sets of patterns are defined: mild patterns in which
participating words are such that the first word has
a weaker semantic intensity than the second word
(e.g., ‘∗ but not ∗’ – good but not great); and intense
patterns, in which the first word has a stronger se-
mantic intensity than the second word (e.g., ‘not ∗
but still ∗’ – not freezing but still cold). In the first
step, they assign a positive score to an adjective if it
is seen as a part of the intense pattern and a nega-
tive score if seen as part of the mild pattern. In the
second step, they use these scores to partition the ad-
jectives into two subsets one representing mild and
the other representing intense adjectives. They per-
form this partitioning recursively to obtain a com-
plete ordering for a given cluster of adjectives from
a WordNet dumbbell.

de Melo and Bansal (2013) improve upon Shein-
man et al. (2013) by refining their lexical patterns,
and refer to them as “strong-weak” and “weak-
strong” patterns. Using frequencies of occurrence
for a pair of adjectives across the strong-weak and
weak-strong patterns in a corpus, they define an
overall weak-strong score. They optimize for this
score using MILP. The constraints of the MILP
model two types of strength relationships: the
strength relationships between two adjectives in a
pair with a possible third adjective, and synonymy
relationship between two adjectives based on infor-
mation from an external resource. Given a clus-
ter of terms, the MILP produces an ordering of the
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cluster members using frequency counts of instances
where these members are found in strong-weak and
weak-strong patterns. To evaluate their approach, de
Melo and Bansal construct a manually curated gold
standard of 88 clusters, each with a cardinality of
three or more adjectives. These 88 clusters are ran-
domly drawn from all possible clusters that are ei-
ther half of a WordNet dumbbell. Two annotators
manually examined these clusters to remove words
that did not belong to the same scale. Further, all
pairs within these clusters were annotated for scalar
relationship: is the adjective in a pair weaker than
the other, stronger than the other, or of equivalent in-
tensity. The output of the MILP was tested on these
88 clusters (569 word pairs). They achieve a pair-
wise accuracy of 78.2%.

3 Our approach

3.1 Extraction using structural patterns

As observed by Ruppenhofer et al. (2014), lexical
pattern-based approaches suffer from a coverage is-
sue. This is because these patterns consist of longer
n-grams, which are sparsely found in a small dataset.
Therefore, Sheinman et al. (2013) use the Web as
their corpus, and de Melo & Bansal use Google
N-grams (Brants and Franz, 2006). However, this
results in a large number of instances where satis-
fied lexical patterns do not correspond to adjectives
(e.g., sometimes but not always). Moreover, since
the Google N-grams corpus is limited to 5-grams,
adjective pairs of interest beyond a five-word win-
dow are lost.

To deal with these shortcomings, we use Tregex
(Levy and Andrew, 2006), which enables pat-
tern matching on parse trees based on syntactic
relationships and regular expression matches on
nodes. Using Tregex, we transform de Melo and
Bansal’s weak-strong and strong-weak lexical pat-
terns into structural patterns. For example, one
way of expanding the lexical pattern ‘∗ but not
∗’ into a structural Tregex pattern for adjectives
is ‘ADJP< ((ADJP<JJ) $ (CC<but)$(RB<not)$
(ADJP<JJ)).’ Similarly, a structural pattern for ad-
verbs can be written as ‘ADVP< ((ADVP<RB) $
(CC<but)$(RB<not)$ (ADVP<RB)).’ These pat-
terns are available for download1.

1http://web.cse.ohio-state.edu/˜shivade/naacl2015

Introducing tree patterns requires parsing a cor-
pus: while this additional step in the pipeline might
lead to error propagation, the advantages of the
structural patterns are that (i) they are more robust
than the lexical ones and (ii) restricting results to
a desired part-of-speech comes for free. In the ex-
periments reported here, we use the Stanford parser
v3.3.1 (Klein and Manning, 2003).

3.2 Automatic clustering

In order to determine a ranking of words based on
their semantic intensity, the first step is to deter-
mine words that belong to the same scale of mean-
ing. As pointed out earlier, previous work (de
Melo and Bansal, 2013; Sheinman et al., 2013) use
WordNet dumbbells, and this restricts the utility of
these approaches to the scope of a manually cre-
ated lexical resource. We overcome this limitation
by automatically clustering words that belong to the
same scale. As the clustering algorithm, we use
the Matlab (2014) implementation of K-means++
(Arthur and Vassilvitskii, 2007), a hard clustering al-
gorithm2 with cosine similarity as a distance metric.
Following Hatzivassiloglou and McKeown (1993),
we use context vectors to represent the words to
cluster. They make use of standard context vectors
for clustering adjectives, where context for every ad-
jective comprises of nouns it modifies across all sen-
tences in a corpus.

However, recent work shows promise for context
vectors embedded in a compressed semantic space
that are derived using neural networks: Baroni et al.
(2014) compare standard context vectors with em-
bedded vectors for a wide range of lexical seman-
tic tasks and found embedded vectors to yield better
results. We therefore generate context vectors and
compare the utility of both skip-gram and contin-
uous bag of words (CBOW) representations using
the word2vec tool (Mikolov et al., 2013) for our
task. These two representations have demonstrated
varying degrees of success in different NLP tasks
(Baroni et al., 2014; Bansal et al., 2014). Given a

2The choice of a hard-clustering algorithm was mostly for
implementational convenience, but carries with it the issue that
polysemous words can only appear in one semantic cluster. We
leave the issue of deriving a soft clustering approach that works
with context vectors, a separate research problem in its own
right, to future work.
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window size w, the CBOW model predicts the cur-
rent word given the neighboring words as context. In
contrast, the skip-gram model predicts the neighbor-
ing words given the current word. We used w = 5
and found CBOW to yield better results for our task.
Thus the terms extracted from a corpus by the struc-
tural patterns are automatically clustered, and these
clusters are used as an input to the ranking algo-
rithm.

3.3 Ranking based on semantic intensity

Once the terms have been clustered, the second step
is to provide a ranking between the cluster members.
To do so, we use the MILP implementation provided
by de Melo and Bansal (2013). This method com-
putes an overall weak-strong score for a pair of ad-
jectives based on the frequency of that pair in the
matches for weak-strong and strong-weak patterns.
The MILP then uses these scores among all rele-
vant pairs of adjectives belonging to the same scale,
capturing complex interactions to infer an ordering
among them.

3.4 Data: PubMed corpus

In this work, we want to provide an approach that
can infer scalar orderings for any domain-specific
terms. Such terms might be absent from existing
thesauri. Our approach is thus corpus-based as out-
lined above. We chose to test the robustness of our
technique on PubMed, a large domain-specific cor-
pus of biomedical texts. It is a free resource de-
veloped and maintained by the National Center for
Biotechnology Information at the National Library
of Medicine. It provides access to scientific ab-
stracts, full text articles and associated resources.
We used 10, 875, 982 freely available abstracts (not
full text articles) from PubMed as our corpus. This
corresponds to 88, 303, 272 sentences in total, where
the average length of a sentence is 28 words (in-
cluding punctuations). We used this corpus to find
instances of the structural strong-weak and weak-
strong patterns, both for adjectives and adverbs.

4 Comparison with the gold standard of de
Melo & Bansal

To evaluate our approach, we need to establish how
good the clustering step is, as well as how good the

ranking step is. Each step is evaluated separately us-
ing annotations obtained from Amazon Mechanical
Turk.

4.1 Clustering

In order to evaluate the automatic clustering pro-
cedure that uses K-means++ and word vectors, we
start with the gold standard provided by de Melo and
Bansal (2013): as mentioned above, their data set
has 88 gold standard clusters, corresponding to 346
adjectives, annotated by humans for scale ordering.
One problem with evaluating a hard clustering algo-
rithm is that the same word may appear in multiple
WordNet synsets, corresponding to multiple clusters
(soft clustering). We therefore made a “hard cluster
version” of the de Melo & Bansal dataset by remov-
ing any adjectives that occur in multiple clusters,
and then eliminating any singleton clusters. This re-
sulted in a gold standard set of 256 adjectives be-
longing to 84 clusters.

We clustered the 256 adjectives from the gold
standard data subset into 84 clusters: the represen-
tation for each adjective was a neural embedding
derived using the word2vec tool trained on our
PubMed data. We experimented with both the skip-
gram and continuous bag of words (CBOW) models
to derive vectors of dimension sizes varying from
200 to 800 in increments of 100. To choose the
right dimensionality and the best model, we evalu-
ated the quality of the automatically derived 84 clus-
ters against the gold standard. As a metric of evalu-
ation for cluster quality, we follow Hatzivassiloglou
and McKeown (1993) and use F1 calculated by com-
paring equivalence relations generated by the clus-
ters (as implemented in LingPipe (2008)). We found
that the CBOW model gave clusters closer to the
gold standard than the skip-gram model. We found
that a dimension size of 600 for the vectors yielded
clusters with a maximum F1 score of 57%. Thus,
we were able to fix the parameters for our clustering
task. Figure 1 summarizes the results of this experi-
ment.

In their study, Hatzivassiloglou and McKeown
(1993) evaluate the results of their clustering on a
small set of 21 adjectives. They presented the 21
adjectives to 9 annotators and asked them to parti-
tion these adjectives such that each partition contain
adjectives that belong to the same scale. They re-
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Figure 1: Comparison of CBOW and skip-gram for clus-
tering of adjectives.

port a best F1 score of 48% but note that such score
does not seem to reflect the quality of the clustering.
We observe the same problem: our automatically de-
rived clusters have a different organization for words
that belong to the same cluster than the gold standard
clusters, but in a way that seems intuitive. Some
differences between our automatically derived clus-
ters and the gold standard clusters are illustrated in
Table 1. For example, the adjectives false and mis-
leading belong to the same cluster in both the gold
standard as well as the automatic clustering output.
However, the automatic clustering groups the ad-
jectives false and misleading together with unreli-
able and wrong, whereas the gold standard groups
false and misleading with deceptive and fraudulent.
Both clusterings are plausible, though. The adjec-
tives fraudulent and deceptive become part of new
clusters in our automatic clustering. It could be ar-
gued that the gold standard cluster “deceptive, false,
fraudulent, misleading” represents different degrees
of “trickery,” whereas the automatic cluster “false,
misleading, unreliable, wrong” represent different
degrees of “wrongness.” Thus, although both clus-
ters contain different adjectives, they group adjec-
tives that are on the same scale of a different mean-
ing.

Therefore, to evaluate the quality of the automatic
clustering, we sampled 50 clusters containing three
or more adjectives (corresponding to a total of 190
adjectives) from all the generated clusters and ob-
tained annotations using Amazon Mechanical Turk

(AMT), a crowdsourcing platform that has been
shown useful for a number of NLP tasks (Snow et
al., 2008). Annotators (workers, in AMT parlance)
were presented with 15 clusters in each worker ses-
sion, whose members were each associated with a
checkbox. For each cluster, workers had to uncheck
the adjectives that did not belong to the same scale.
The nature of the annotation task does involve inher-
ent subjectivity which cannot be avoided. We tried
to minimize this by giving detailed instructions with
accompanying examples to achieve coherent anno-
tations. To make sure workers were paying attention
to the task, 2 clusters among the 15 clusters they saw
were clusters for which we a priori knew which ad-
jectives should be removed (e.g., beautiful, pretty,
and rainy where rainy had to be unchecked). Most
workers did the task well: we only had to discard an-
notations from 4 worker sessions (out of 140). We
ended up with annotations from 8 to 10 workers per
cluster. To create a gold standard, we retained in
each cluster only those words that were ascertained
to be in the same cluster by 6 or more annotators.

For each cluster, we calculated an accuracy score
equivalent to the number of correct adjectives (de-
termined to be on the same scale by the annotators)
divided by the total number of adjectives in the gen-
erated cluster. This accuracy was averaged across
all 50 clusters, and yielded a final micro-averaged
accuracy of 74.36% as seen in Table 2.

4.2 Ranking

Since our end goal is to establish an ordering among
scalar adjectives, we use the automatically derived
clusters (rather than the WordNet dumbbells) as in-
put to the MILP algorithm. To determine the per-
formance of the ranking produced by the MILP al-
gorithm, we use AMT to obtain pairwise ranking
annotations for all unique adjective pairs within a
cluster. Workers were presented with 15 word pairs
in each worker session. For each pair (a1, a2), the
worker had to pick one of four options: (1) a1 is
stronger than a2, (2) a2 is stronger than a1, (3) both
are equally strong, and (4) a1 and a2 are not com-
parable. Option (4) was present because our clus-
ters possibly contained adjectives that are not on the
same scale. As in the previous task for getting an-
notations for clusters, we inserted two items with a
clear ranking (e.g., hot, hotter) for every set of 15
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Gold standard clusters Automatic clusters

deceptive, false, fraudulent, misleading false, misleading, unreliable, wrong

evil, immoral, sinful, wrong desperate, humiliated, immoral, insane, sinful

dangerous, risky, suicidal, unreliable dangerous, harmful, toxic

Table 1: Example comparison of automatically derived clusters against gold standard clusters from WordNet.

Data Corpus for strength counts Clustering Ranking
in MILP ranking Accuracy Pairwise Accuracy

Clusters automatically derived from Google N-grams 74.36 84.74
non-polysemous WordNet adjectives PubMed 74.36 69.23

PubMed-derived clustering:
Regular adjectives PubMed 86.26 70.37
Domain-specific adjectives PubMed 64.30 –

PubMed-derived clustering:
Regular adverbs PubMed 89.36 71.00
Domain-specific adverbs PubMed 53.80 –

Table 2: AMT-based evaluations of cluster accuracy and pairwise ranking accuracy of systems that vary in the source
of clustering data, source of strength counts, and part of speech. For comparison, the approach used by de Melo and
Bansal (2013) achieves a pairwise ranking accuracy of 76.1% on the non-polysemous WordNet clusters.

pairs to avoid random annotations. Each set was an-
notated by 10 workers. All workers passed all the
checks and we did not discard any annotations for
this task. To create a gold standard we assigned each
pair one of four labels, weaker, stronger, equal, or
not comparable. A value was assigned based on a
majority vote. In case of a tie, the pair was assigned
a label of being equal.

In order to compute a ranking, the MILP needs
two inputs: 1) the cluster of terms that are on
the same scale, and 2) the counts for how many
times all pairs of adjectives in that cluster satisfied
the weak-strong and strong-weak patterns (hence-
forth referred to as “strength counts”). In the first
experiment of ranking adjectives, we ran the full
pipeline used by (de Melo and Bansal, 2013) on the
256 adjective (84 hard cluster) subset of their gold
standard (see Section 4.1). Thus, this experiment
uses hand-corrected WordNet dumbbells to deter-
mine adjectives on the same scale of semantic in-
tensity, followed by the MILP using strength counts
from the Google N-gram corpus, to determine the
ranking. Their pipeline resulted in a pairwise accu-

racy of 76.1% which serves as a baseline for com-
parison. In the second experiment of ranking ad-
jectives, we used the 50 automatically derived ad-
jective clusters described in Section 4.1 as an input
for the MILP. Since these adjectives originate from
WordNet dumbbells, we refer to them as “Word-
Net adjective clusters.” We determined the ranking
for adjectives within these clusters using strength
counts obtained from our PubMed corpus. We ob-
tained an accuracy of 69.23% across 105 pairs. The
strength counts for all adjectives in these clusters,
from Google N-grams corpus, used in the exper-
iments of (de Melo and Bansal, 2013) were also
available to us by the authors. We repeated the previ-
ous experiment by substituting strength counts from
PubMed corpus with these strength counts from the
Google N-grams corpus and obtained an accuracy of
84.74% across 119 pairs.3 It appears from our ex-
periment that pattern counts from a general corpus

3The MILP does not produce a strength relationship be-
tween a pair of adjectives if there are no strength counts for this
pair. Hence, we observe a difference in the number of pairs for
which accuracy is determined in the two ranking experiments.
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is a better match for determining the adjective or-
dering than a more-limited domain corpus, despite
the limitation of Google N-grams being restricted
to 5-word sequences. We think this is because of
two reasons: First, Google N-grams is a very large
corpus compared to the one we use. Second, our
corpus consists of abstracts and not full text of sci-
entific articles from PubMed. Hence there is less
variety in the language used; capturing fewer com-
parative constructs than Google N-grams. However,
it is interesting that we can still extract patterns from
domain-specific corpora to act as constraints for the
MILP process.

5 Rankings for adjectives extracted from
PubMed

We also desired to see how well our approach
does on terms that are not specifically in Word-
Net, but present in a domain-specific corpus such
as PubMed. We therefore also evaluate the cluster-
ing and ranking steps on a set of adjectives extracted
from the PubMed data using structural patterns.

5.1 Clustering

Since there was no gold standard reflecting ideal
clustering of data, we explored heuristic measures
to choose parameters for our clustering step. We
used CBOW vectors over skip-gram vectors since
these were more effective in the previous experi-
ment. Since the true value for number of clusters
k was unknown, we chose k such that the average
cardinality of a cluster was three. The value of k
was found to be the same (k = 375) for all cluster-
ing experiments conducted using vector dimension
sizes varying from 200 to 800 in increments of 100.
To choose the right dimension size d of the CBOW
vectors for this fixed value of k, we obtained clusters
for incremental values of d from 200 to 800 in incre-
ments of 100. We determined the number of iden-
tical clusters obtained using a particular value of d
with its next increment. The lowest value of d which
resulted in a maximum number of identical clusters
with its next increment was chosen: d = 400.

Using vectors of 400 dimensions, we obtained
375 adjective clusters with cardinality varying from
1 to 9. Since these clusters were derived from
our biomedical dataset, they comprised of domain-

specific adjectives, which are quite unfamiliar even
to native English speakers. We manually partitioned
the clusters into two sets: (i) containing domain-
specific words, and (ii) containing words used in
day-to-day English (henceforth referred to as “regu-
lar” terms). Examples of clusters from both sets are
summarized in Table 3. The clusters we obtain look
reasonable, grouping together adjectives that per-
tain to the same scale. The first cluster of domain-
specific adjectives qualifies the nouns correspond-
ing to different types of protein with varying degree
of specificity, the second cluster contains different
qualifications of a tumor, and adjectives in the third
cluster qualify different parts of a living cell. For
the regular adjective clusters, the clusters look intu-
itive too, except for the first cluster. The adjectives
male and female are not scalar, but match the struc-
tural patterns, and are grouped together with adjec-
tives describing age qualifications, due to a strong
context overlap in which these words are used.

Clusters of domain-specific adjectives

cytokine, gm-csf, ifn-gamma, il-10, il-12, il-2

benign, malignant, metastatic, neoplastic, squamous

mitochondrial, nuclear, ribosomal

Clusters of regular adjectives

female, male, middle-aged, older, young, younger

accurate, precise, reliable, reproducible, robust

additive, insignificant, negligible

Table 3: Examples of automatically derived adjective
clusters from PubMed abstracts.

We randomly sampled 25 clusters from each
set, “regular adjectives” and “domain-specific adjec-
tives”, for our evaluation. We evaluated the cluster-
ing quality of the regular adjectives using the exact
same approach as described in Section 4.1. We ob-
tained a clustering accuracy of 86.26% for 25 clus-
ters across 101 regular adjectives. This is substan-
tially better than the performance of clustering in the
previous experiment. We believe that this is due to
the fact that the adjectives in the dataset used in the
previous experiment originate from WordNet and
contain many words (e.g., handsome, crazy, spicy),
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which are less likely to be found in scientific ab-
stracts. Therefore, the context vectors learnt for
these words are possibly less accurate compromis-
ing the clustering quality.

For the domain-specific adjectives, the annota-
tions require specialized skills. PubMed hosts sci-
entific articles from different disciplines of biolog-
ical sciences. We obtained annotations from three
annotators specializing in disciplines of Biomedical
Informatics, Biochemistry, and Nursing. To create
the gold standard, a word was retained or discarded
from a cluster if two or more annotators agreed on
it. We obtained a clustering accuracy of 64.3% for
25 clusters across 101 domain-specific adjectives.

5.2 Ranking

We obtained gold standard annotations for ranking
using AMT for these 25 “regular adjective” clus-
ters derived from the PubMed corpus using the ex-
act same methodology as described in Section 4.2.
The strength counts for these adjectives were also
derived from the PubMed corpus. We obtained an
accuracy of 70.37% across 109 pairs, indicating a
similar level of performance to WordNet-based clus-
ters.

Our expert annotators for the domain-specific ad-
jectives faced problems in assessing an ordering be-
tween adjectives in a cluster. They report that for
majority of the clusters, the ordering of the words
would vary given the context. For example, con-
sider the following modifications of the domain spe-
cific adjectives of the third cluster in Table 3: ri-
bosomal particles, mitochondiral compartments and
nuclear compartments, representing different parts
of a living cell. If we consider “number of” as the
relation in context, we get (ribosomal > mitochon-
drial > nuclear) as an ordering since number of ri-
bosomal particles is greater than number of mito-
chondrial compartments, and number of mitochon-
drial compartments is greater than number of nu-
clear compartments. However, if we consider “size
of” as the context, the ordering is reversed.

6 Extension to adverbs

A novelty of our approach is that we can also apply
the technique to other parts of speech (e.g., adverbs).
The structural patterns we describe in Section 3.1

Clusters of domain-specific adverbs

anteriorly, caudally, distally, proximally

chromosomally, clonally, genetically, phenotypically

neonatally, prenatally, postnatally

Clusters of regular adverbs

always, certainly, inevitably, invariably, universally

marginally, modestly, slightly, somewhat

excessively, inappropriately, overly

Table 4: Examples of automatically derived adverb clus-
ters from PubMed abstracts.

also enable us to extract candidate scalar adverbs.
We follow a similar approach to adjectives: extract
adverbs, derive strength counts and rank them using
the MILP.

6.1 Clustering

We used CBOW vectors to perform clustering and
derived k = 300 and d = 250 using the approach
described in Section 5. As with the adjective clus-
ters, we found that there were also domain-specific
adverbs, illustrated in Table 4. Again, the clus-
ters obtained look reasonable. The first cluster of
domain-specific adverbs describes relative position
of a body part, the second cluster corresponds to ad-
verbs describing identity of a gene that may have an
observable effect, the third cluster represents tem-
poral descriptions that relate an event to child birth.
The clustering of regular adverbs is accurate, ex-
cept for the third cluster where inappropriately was
found to be an outlier based on our annotations. We
followed a similar approach to the adjective exper-
iment, creating two partitions for domain-specific
and regular adverbs and sampling 25 clusters from
each. Annotations for regular adverbs were obtained
from AMT while annotations for domain-specific
adverbs were obtained from 3 domain experts. The
annotation process for both clusters of adverbs was
identical to that of adjectives. We obtained a micro-
averaged accuracy of 89.36% for 25 clusters across
104 regular adverbs and a 53.8% for 25 clusters
across 89 domain-specific adverbs.
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Accuracy POS Examples
Good Adj serious

< life-threatening
< fatal

Good Adv considerably
< significantly
< dramatically

Average Adj common
< frequent
= prevalent

Average Adv slightly
< modestly
< marginally

Bad Adj useful < helpful

Bad Adv continuously = regularly

Table 5: Example rankings for adjectives and adverbs
from PubMed data.

6.2 Ranking

As in the case of adjectives, our annotators for
domain-specific adverbs faced a challenge in rank-
ing adverbs due to lack of context. Therefor we do
not report results on ranking of adverbs. We ob-
tained gold standard annotations for ranking using
AMT for 25 clusters of regular adverbs derived from
the PubMed corpus, using the exact same method-
ology as described in Section 4.2. The strength
counts for these adverbs were also derived from
the PubMed corpus. We obtained an accuracy of
71.00% across 38 pairs – a performance similar to
the adjectives. However, we observe that there are a
large number of pairs for which there are no strength
counts, and the MILP does not generate a ranking.
Table 5 shows sample results for ranking adjectives
and adverbs from the PubMed data.

7 Limitations and future work

We present an approach to gradable modifier order-
ing that replaces WordNet-based clusters with au-
tomatically derived word clusters, replaces lexical
patterns with structural patterns, and show that the
approach has utility for not only discovering adjec-
tive patterns but also adverb patterns in biomedical
text. We observe that while automatic ranking based

on semantic intensity can be successful established
between regular terms, doing so for domain-specific
terms requires knowledge of context.

We plan to expand the structure patterns derived
from the lexical patterns of de Melo and Bansal
(2013), looking for new patterns that could be more
suited for adverbs. We also plan to investigate soft
clustering algorithms such as (Pereira et al., 1993)
that may allow us to model polysemous words bet-
ter. Furthermore, recent studies have compared tra-
ditional vectors against embedded vectors (such as
the CBOW vectors used in this study) for different
lexical semantic tasks (Levy and Goldberg, 2014;
Baroni et al., 2014), which suggests that such a com-
parison for our clustering task could be insightful.

Our experimental results show that automatic
clustering of gradable words produces promising re-
sults. However, we also observe that with domain-
specific words, context is important for establishing
a ranking between words that is based on seman-
tic intensity. Thus, rather than clustering adjectives
or adverbs in isolation, a joint with the clustering
of nouns or verbs with which they occur is a pos-
sible direction of research. Finally, studies deriving
a ranking based on semantic intensities are limited
to unigrams belonging to different parts of speech.
Our future work would focus on performing a sim-
ilar task on bigrams consisting of adverb-adjective
pairs (e.g., somewhat unclear < quite hard < very
difficult) that exhibit properties of gradability.
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