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Abstract

Tree trimming is the problem of extracting
an optimal subtree from an input tree, and
sentence extraction and sentence compres-
sion methods can be formulated and solved
as tree trimming problems. Previous ap-
proaches require integer linear programming
(ILP) solvers to obtain exact solutions. The
problem of this approach is that ILP solvers
are black-boxes and have no theoretical guar-
antee as to their computation complexity. We
propose a dynamic programming (DP) algo-
rithm for tree trimming problems whose run-
ning time is O(NL logN), where N is the
number of tree nodes and L is the length limit.
Our algorithm exploits the zero-suppressed bi-
nary decision diagram (ZDD), a data struc-
ture that represents a family of sets as a di-
rected acyclic graph, to represent the set of
subtrees in a compact form; the structure of
ZDD permits the application of DP to obtain
exact solutions, and our algorithm is applica-
ble to different tree trimming problems. More-
over, experiments show that our algorithm is
faster than state-of-the-art ILP solvers, and
that it scales well to handle large summariza-
tion problems.

1 Introduction

Extractive text summarization and sentence com-
pression are tasks that basically select a subset of
the input set of textual units that is appropriate as
a summary or a compressed sentence. Current text
summarization and sentence compression methods
regard the problem of extracting such a subset as a
combinatorial optimization problem (e.g., (Filatova
and Hatzivassiloglou, 2004; McDonald, 2007; Lin

and Bilmes, 2010)). Tree trimming, the problem of
finding an optimal subtree of an input tree, is one
kind of these combinatorial optimization problems,
and it is used in three classes of text summarizations:
sentence compression (Filippova and Strube, 2008;
Filippova and Altun, 2013), single-document sum-
marization (Hirao et al., 2013), and the combination
of sentence compression and single-document sum-
marization (Kikuchi et al., 2014). In these tasks, the
set of input textual units is represented as a rooted
tree whose nodes correspond to the minimum tex-
tual units such as sentences and words. Next, a sub-
set is made by forming a subtree by trimming the
input tree. Since the optimal trimmed subtree pre-
serves the relationships between textual units, it is
a concise representation of the original set that pre-
serves linguistic quality.

A shortcoming of tree trimming-based methods is
that they are formulated as integer linear program-
ming (ILP) problems and so an ILP solver is needed
to solve them. Although modern ILP solvers can
solve many instances of tree trimming problems in
a short time, there is no theoretical guarantee that
they obtain an optimal solution. Furthermore, even
if an optimal solution can be obtained, we cannot es-
timate the running time. Estimating the running time
is critical for practical applications.

In this paper, we propose a dynamic programming
(DP) algorithm for tree trimming problems that fo-
cus on text summarization. The algorithm can solve
all three different classes of tree trimming problems
proposed so far in a unified way, and it can always
find an optimal solution in O(NL logN) time for
these problems, where N is the number of nodes of
the input tree and L is the length limit. The running
time of our algorithm only depends on N and L and
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so is independent of the input trees structure. Find-
ing an exact solution is important since we can use it
to evaluate the performance of heuristic algorithms.

The key idea of our algorithm is to use the zero-
suppressed binary decision diagram (ZDD) (Minato,
1993) to represent the set of all subtrees of the input
tree. ZDD is a data structure that represents a fam-
ily of sets as a directed acyclic graph (DAG). It can
represent a family of sets in compressed form. We
use ZDD to represent the set of subtrees of the in-
put tree, and then run a DP algorithm on the ZDD to
obtain the optimal solution that satisfies the length
limit. The algorithm runs in time O(|Z|L), where
|Z| is the number of nodes of ZDD, and L is the
length limit. Although the number of ZDD nodes
depends on the set we want to represent, we can
give theoretical upper bounds when we represent
the set of all subtrees of an input tree. ZDD uses
O(N logN) nodes to represent the set of all sub-
trees of an N node input tree. Hence the DP algo-
rithm runs in O(NL logN) time. The main virtues
of the proposed algorithm are that (1) it can always
find an exact solution, (2) its running time is the-
oretically guaranteed, and (3) it can solve the three
known tree trimming problems. Furthermore, our al-
gorithm is fast enough to be practical and scalable.
Since text summarization methods are often applied
to large scale inputs (e.g., (Christensen et al., 2014;
Nakao, 2000)), scalability is important. We compare
it to state-of-the-art ILP solvers and confirm that the
proposed algorithm can be hundreds of times faster.

Since our method assumes known formuations for
text summarization, the summary created by our al-
gorithm is exactly the same as that obtained by ap-
plying previous methods. However, we believe that
algorithmic improvements in computational cost is
as important as improvements in accuracy in order
to make better practical systems.

2 Tree Trimming Problems

We briefly review the three tree trimming formula-
tions used in text summarization and sentence com-
pression. They all try to find the subtree that maxi-
mizes the sum of item weights while satisfying the
length limit. Let D = {e1, . . . , eN} be the input set
of textual units, where ei represents the i-th unit. We
use wi and li to represent the weight and length of

ei, respectively. Given length limit L, these methods
solve the following optimization problem:

Maximize
T⊆D

∑
ei∈T

wi

Subject to T ∈ T and
∑
ei∈T

li ≤ L ,
(1)

where T ⊆ D and T ⊆ 2D. We use T to represent
the set of subtrees that can be feasible solutions if
we ignore the length limit. The following problems
employ different T to match each problem setting. If
T = 2D, i.e., T equals the set of all possible subsets
of D, it is equivalent to the 0-1 knapsack problem,
and is solved with the standard DP algorithm.

Sentence Extraction Hirao et al. (2013) proposed
a single-document summarization algorithm to solve
a tree trimming problem. They represent a document
as a set of elementary discourse units (EDUs) and
then select an optimal subset to make a summary.
Each EDU is a minimal unit that composes the dis-
course structure of the document; it usually corre-
sponds to a clause. Their summarization method first
represents a document as a dependency discourse
tree (DEP-DT) that represents the dependency struc-
ture between EDUs. DEP-DT is a rooted tree in
which each node corresponds to an EDU. They then
select the rooted subtree that maximizes the sum of
weights and satisfies the length limit to make a sum-
mary, where we say a subtree is rooted if it contains
the root node of the input tree. This problem can be
formulated as the combinatorial optimization prob-
lem of Eq.(1), where T is the set of all rooted sub-
trees of the input DEP-DT.

Sentence Compression Filippova and Strube
(2008) proposed a sentence compression method
based on the trimming of a word dependency tree. Its
recently proposed variant shows state-of-the-art per-
formance (Filippova and Altun, 2013). They trim a
syntactical dependency tree to compress a sentence.
Their formulation is similar to the previous sentence
extraction method except that it allows the root node
of a subtree to be other than the root node of the
input tree. In other words, their formulation allows
multiple candidate root nodes for a subtree. We rep-
resent such a set of candidate root nodes as R, and
the set of possible solutions T for this formulation
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(a) Rooted tree (b) Multi-rooted tree

(c) Nested tree

Figure 1: Example trees.

is the set of all subtrees of the input tree whose root
node is contained in R.

Sentence Extraction & Compression Kikuchi et
al. (2014) proposed a single-document summariza-
tion method that can select compressed sentences.
It is an extension of the sentence extraction method
proposed in (Hirao et al., 2013). They represent a
document as a sentence dependency tree that is ob-
tained from DEP-DT, and then represent each sen-
tence in the sentence dependency tree as a word de-
pendency tree. In the following, inner trees refer to
the word dependency trees that correspond to sen-
tences, while the outer tree represents the sentence
dependency tree that represents a document. Hence
a document is represented as a nested tree where
each node of the outer tree corresponds to an inner
tree. They then make a summary by first selecting a
rooted subtree of the outer tree, and then selecting a
subtree for each inner tree that corresponds to a node
of the selected subtree of the outer tree. Each inner
tree has multiple root candidate nodes, and the root
node of a subtree of an inner tree is a root candidate
node of the tree. The set of feasible solutions, T ,
corresponds to all possible nested trees constructed
in this way1.

Fig. 1 shows example input trees used in the above
three tasks: (a) a rooted tree used in sentence extrac-
tion, (b) a multi-rooted tree used in sentence com-

1Kikuchi et al. (2014) set further constraints on possible sub-
trees of a syntactical tree. Our method can also cope with these
additional constraints (see Sect. 7).

Table 1: Examples of valid and invalid subtrees of
the input trees in Fig. 1

Valid Invalid
Rooted tree e1e2e3, e1e2e5 e2e3e4, e6

Multi-rooted tree e1e2e5, e2e3e4 e3, e5e6

Nested tree e1e2e4, e1e4e5e8 e4e5e6, e1e2e7

pression, and (c) a nested tree used in sentence ex-
traction & compression. Gray nodes are root candi-
date nodes. Each tree yields a different set of valid
subtrees. Tab. 1 shows examples of valid and invalid
subtrees of each input tree, where we assume that
each subtree in T is represented by a set of nodes
that is contained in the subtree.

3 Zero-suppressed Binary Decision
Diagram (ZDD)

The key idea of the proposed algorithm is to rep-
resent the set of candidate subtrees T as a zero-
suppressed binary decision diagram (ZDD) (Minato,
1993). ZDD is a variant of binary decision diagram
(BDD) (Bryant, 1986; Akers, 1978), and is a data
structure that can succinctly represent a family of
sets as a DAG. ZDD has two types of nodes, namely
branch nodes and terminal nodes. Branch nodes are
non-terminal nodes. Each branch node has exactly
two out edges, called low-edge and high-edge, and
a label that represents the item that the node corre-
sponds to. We use hi(i), lo(i), and v(i) to represent
the node pointed to by the high-edge, low-edge, and
the label of the i-th node of the ZDD, respectively.
The branch node that has no parent node is the root
node. Terminal nodes have no outgoing edges, and
a ZDD has exactly two terminal nodes whose labels
are > and ⊥. A path from the root node to termi-
nal node > represents a set of items contained in the
family of sets represented by the ZDD. We can re-
cover the set of items that corresponds to a path by
selecting the labels of the branch nodes whose high-
edges lie on the path.

Fig. 2(a) is a ZDD that represents the family of
sets {e1e2, e2e3, e1e3}. We use circles to represent
branch nodes and rectangles to represent the ter-
minal nodes. A dashed edge represents a low-edge
and full edge represents a high-edge. The number
on each circle node represents the label of the node.
For example, the label of the root node of the ZDD
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Figure 2: An example ZDD and how the dynamic
programming algorithm works with the ZDD. (a)
An example ZDD that represents the family of sets
{e1e2, e1e3, e2e3}, (b) table S and (c) table B after
completion of the table filling phase.

in Fig. 2(a) is 1. The ZDD has three different paths
that start at the root node and end at >. Each path
corresponds to an item contained in the family of
sets.

In the following, let z1, . . . , z|Z| be the nodes of
a ZDD. We use Z to represent a ZDD, and |Z| to
represent the number of nodes in Z. We assume
i < hi(i), lo(i) for every i = 1, . . . , |Z| − 2. z1
corresponds to the root node, and z|Z|−1, z|Z| cor-
responds to > and ⊥ terminal nodes, respectively.
We also assume that the ZDD is ordered, i.e., there
is a total order on the labels, and the label of a par-
ent node comes before that of a child node for every
parent-child node pair. The ZDD in Fig. 2(a) is an
ordered ZDD whose order is e1, e2, e3.

4 Dynamic Programming Algorithm for
Tree Trimming Problems

Our algorithm takes the following three-step proce-
dure. First, we represent the set of subtrees T for
each tree trimming problem as a ZDD. Then we ap-
ply a bottom-up and table-filling style DP algorithm
to the ZDD. Finally, we backtrack the filled table to
obtain an optimal solution.

Our algorithm is similar to the standard DP al-
gorithm for the 0-1 knapsack problem, which solves
the problem inO(NL) time withN items and length
limit L. The DP algorithm solves a knapsack prob-
lem by filling anN×(L+1) table by recursively ex-
ploiting previously computed partial solutions. Our
algorithm also fills a table for problem solving, but
the table’s size is |Z| × (L + 1). That is, the size
of the table equals the number of nodes of the ZDD

Algorithm 1 Dynamic Programming Algorithm
Input: ZDD Z that represent T , length limit L, and wi, li for

1 ≤ i ≤ N
Output: Optimal subtree r
1: Initialize S[i][j]← −∞ for all i, j.
2: S[|Z| − 1][0]← 0.
3: for i = |Z| − 2, . . . , 1 do
4: for j = 0, . . . , L do
5: if j ≥ lv(i) and

S[hi(i)][j − lv(i)] + wv(i) > S[lo(i)][j] then
6: S[i][j]← S[hi(i)][j − lv(i)] + wv(i)

7: B[i][j]← HI
8: else
9: S[i][j]← S[lo(i)][j], B[i][j]← LO

10: k∗ ← argmax0≤k≤LS[1][k]
11: i← 1, j ← k∗, r← ∅
12: while (i, j) 6= (|Z| − 1, 0) do
13: if B[i][j] = HI then
14: r← r ∪ {v(i)}, i← hi(i), j ← j − lv(i)

15: else
16: i← lo(i)
17: return r

that represents a set of subtrees T . The tables can be
seen as the set of |Z| arrays with (L+1) entries, and
each array is associated with each ZDD node. We fill
these tables by referring to previously computed re-
sults by using the ZDD’s structure.

Alg. 1 is the DP algorithm that can solve the prob-
lem of Eq.(1), given the ZDD that represents the
family of sets T . We first prepare two tables, S and
B; both have |Z| × (L+ 1) entries. Table S is used
for storing intermediate weights, and B is used for
storing information used in recovering the optimal
solution. We first fill the elements in S and B while
traversing the ZDD in order from the terminal nodes
to the root node. We then use B to recover the so-
lution that maximizes the weight. In the table filling
phase (lines 1 to 9), we update S[i][j] and B[i][j],
recursively. Weight S[i][j] represents the maximum
weight of the ZDD path from the i-th node to the
> terminal node, whose total length is j. We com-
pare S[hi(i)][j − lv(i)] + wv(i) and S[lo(i)][j], and
select the maximum weight to set S[i][j]. The value
of B[i][j] stores which candidate we set to S[i][j]. If
we use the former one, we set label HI to B[i][j],
otherwise LO. After filling the table, we run a back-
tracking procedure to obtain an optimal solution. In
the backtracking phase (lines 10 to 16), we start from
B[i][k∗] and repeat backtracking using the entries of
B.

465



We give here a proof of the correctness of the al-
gorithm. We use the fact that the ZDD is constructed
recursively; given the i-th branch node zi of a ZDD,
the subgraph induced by the set of nodes that are de-
scendants of zi is also a ZDD. Let the ZDD whose
root node is zi be Zi, and the family of sets repre-
sented by Zi be Ti. Family of sets Ti, Tlo(i) and Thi(i)

satisfy the following relationship.

Ti = Tlo(i) ∪ {ev(i) ∪ T |T ∈ Thi(i)}

Proposition 1. Alg. 1 can find the optimal solution
of the problem of Eq.(1), where we assume T is rep-
resented as an ordered ZDD.

Proof. We use induction to give a proof that
S[i][j] = maxT

∑
ei∈T wi after running our algo-

rithm, where T is a set of tree nodes that satisfies
T ∈ Ti and

∑
ei∈T li = j. If i = |Z| − 1, then

Ti = {∅} and S[i][0] = 0 and S[i][j] = −∞ for
j 6= 0, which satisfies the condition. Suppose that
S[lo(i)][j] and S[hi(i)][j] both satisfy the condition
for j = 0, . . . , L. If the set that maximizes S[i][j]
does not have ev(i), then the set is contained in Tlo(i),
and its size is j. Therefore, the maximum weight
equals S[lo(i)][j] (Alg.1 line 9). Otherwise, the set
that maximizes S[i][j] has ev(i), so the item is con-
tained in {ev(i) ∪ T |T ∈ Thi(i)}, and its weight is
S[hi(i)][j−lv(i)]+wv(i) (Alg.1 line 6). SinceZ1 cor-
responds to the root node and it represents all possi-
ble solutions, maxj S[1][j] is the maximum weight
of the subset that satisfies the length limit and is con-
tained in T .

Proposition 2. The time and space complexity of
Alg. 1 are both O(|Z|L).

Proof. We have to store tables S,B and solution r.
The tables have |Z| × (L+ 1) entries and |Z| ≥ |r|,
the space complexity is O(|Z|L). For the time com-
plexity, filling entries in S and B requires O(|Z|L)
time since to fill an entry requires constant time.
Backtracking requires at most N updates, hence the
time complexity is O(|Z|L).

We show an example of our algorithm in Fig. 2.
Suppose that D = {e1e2, e1e3, e2e3}, (l1, l2, l3) =
(1, 1, 3) and (w1, w2, w3) = (2, 1, 3). Set D is rep-
resented as the ZDD in Fig. 2(a). Let L = 4 and run
the DP algorithm yielding tables S and B shown in

(a) (b) (c)

Figure 3: Example ZDDs representing the set of
trimmed subtrees of the trees in Fig. 1. (a) Rooted-
tree, (b) multi-rooted tree, and (c) nested-tree

Fig. 2(b,c). Suppose that we want to fill entry S[1][4]
(the upper right cell). There are two possible paths
to reach the entry; the first path takes the high-edge
from S[2][3], and the second path takes the low-edge
from S[3][4]. We use hollow and black arrows to rep-
resent these paths in Fig. 2(b). Since the former path
results in weight 5, which is higher than that of the
later path, hence we set S[1][4] = 5 and B[1][4] =
HI. After filling all the entries in tables, we can see
S[1][4] has the maximum weight, and the backtrack-
ing from B[1][4]→ B[2][3] → B[4][3] → B[5][0].
B[5][0] corresponds to the > terminal node, and the
backtracking yields the optimal solution e1e3.

5 ZDD Sizes

We give upper bounds on the size of the ZDD rep-
resenting the family of sets T of Eq.(1) for the three
problems. The number of subtrees contained in T
may grow exponentially with the size of the original
tree, however, we can represent them as a ZDD with
very few nodes. Since the running time of our algo-
rithm isO(|Z|L), these theoretical upper bounds de-
termine the running time of the proposed tree trim-
ming algorithms.

We first give a proof of the size of the ZDD that
represents all rooted subtrees of a given tree.

Proposition 3. Given a tree with N nodes, we can
construct a ZDD that represents all rooted subtrees
of the tree whose number of nodes is N + 2, if we
use a depth first pre-order of tree nodes as the order
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of ZDD labels.

This result can be derived from the result of
(Knuth, 2011), Chap.7.1.4, exercise 266. Fig. 3(a) is
a ZDD that represents the set of all rooted subtrees of
the tree in Fig. 1(a), where we employ pre-ordering
e1, e2, e3, e4, e5, e6.

We next show the size of the ZDDs that represent
the set of all subtrees of a multi-rooted tree.

Proposition 4. Given an N node tree and the set of
candidate root nodes R, the set of all possible sub-
trees can be represented by a ZDD whose number of
nodes is O(N log |R|).
Proof. (Sketch) The set of all possible subtrees can
be represented as the union of the sets of rooted sub-
trees for different root r ∈ R. The set of rooted sub-
trees for a root node r can be represented as a ZDD
that has O(N) nodes, hence the set of ZDDs for dif-
ferent root nodes has O(N |R|) nodes in total. We
can further reduce this upper bound by employing
appropriate depth first pre-ordering so as to share as
many ZDD substructures as possible, and this order-
ing results in a union ZDD whose number of nodes
is O(N log |R|).

This proposition is related to a recently proved re-
sult that the set of all subtrees of an N -node tree can
be represented as a ZDD whose number of nodes
is O(N logN) (Yasuda et al., 2014). This is a spe-
cial case of the above theorem that R equals the set
of all nodes of the tree, i.e., |R| = N . The key
point is to use the heaviest-last depth first pre-order
as the ZDD label order. In this order, a node with
the heaviest weight always comes after other sib-
lings, where we define the weight of a node as the
size of the maximum rooted subtree T ∈ T that
is contained in its descendant tree. Fig. 3(b) is an
example of the ZDD that represents the set of all
possible rooted subtrees of the multi-rooted tree in
Fig. 1(b), where the heaviest-last depth first pre-
order is e1, e5, e6, e2, e3, e4.

The upper bound size of a ZDD for nested sub-
trees can be estimated by combining the above two
theoretical results on rooted subtrees and multi-
rooted subtrees.

Proposition 5. For a nested tree whose sum of
the number of nodes of inner trees is N , and the
sets of candidate root nodes for inner trees are

R1, . . . , RM , where M is the number of inner trees,
we can represent the set of possible nested subtrees
by O(N log |R∗|), where |R∗| = maxi |Ri|.

Proof. (Sketch) The ZDD corresponding to the set
of nested subtrees can be constructed as follows:
first we make ZDDs that represent the set of rooted
subtrees of the outer tree and inner trees. The outer
tree is represented as a ZDD with O(N) nodes, and
the i-th inner tree is represented as a ZDD with
O(Ni log |Ri|) nodes, where Ni is the number of
nodes of the i-th inner tree. Then we can construct
the ZDD for the nested tree by replacing each ZDD
node of the outer-tree ZDD with the inner-tree ZDD
corresponding to that node.

Fig. 3(c) is a ZDD that represents the set of nested
subtrees of the tree in Fig. 1(c), where we employ the
order e1, e2, e3, e4, e5, e6, e7, e8.

We can directly prove the running time of the DP
algorithm by exploiting the above three results to
show the DP algorithm for the three problems takes
O(NL), O(NL log |R|), and O(NL log |R∗|) time,
respectively. Here we assume that a ZDD that repre-
sents the set T is given. We need additional time for
constructing a ZDD that represents T i.e. the input
tree. However, ZDD construction also can be done
in O(|Z|) for the three tree trimming problems. We
show details of ZDD construction in the next sec-
tion.

6 Efficient ZDD Construction

We introduce here an efficient algorithm for con-
structing a ZDD that is used in the tree trimming
problems. A ZDD can be constructed by repeatedly
applying set operations between intermediate ZDDs,
however, this process may be too slow since the run-
ning time of the set operations depends on the size
of input and output ZDDs.

We first show the flow of an efficient ZDD con-
struction algorithm for multi-rooted trees. This al-
gorithm also can be used for constructing a ZDD for
all rooted subtrees of a tree since a single-root tree
is also a multi-rooted tree. The algorithm consists
of two steps: first, we determine the appropriate or-
der of ZDD nodes. We then use the top-down ZDD
construction algorithm shown in (Knuth, 2011)
(Chap.7.1.4, Exercise 55) to construct a ZDD. The
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top-down algorithm can efficiently construct a ZDD
that represents the set of all connected components
of a graph, and we can use it for constructing the set
of all rooted subtrees with small modification. The
running time of top-down construction algorithms
may not be O(|Z|), but our modified algorithm can
obtain the ZDD in O(|Z|) time by exploiting the
structure of the input tree to avoid to make unnec-
essary ZDD nodes.

We can extend this ZDD construction algorithm to
create ZDDs that represent the set of nested subtrees.
We first compute the orders of outer tree and each in-
ner tree, and then construct ZDDs for them using the
top-down construction algorithm. Finally, we obtain
the required ZDD by replacing ZDD nodes of the
outer tree with the corresponding inner ZDDs. These
procedure also can be done in O(|Z|) time, since
constructing the ZDDs for each tree takes time pro-
portional to its size, and the ZDD substitution phase
also takes time proportional to ZDD size.

7 Discussion

When solving a tree trimming problem, we some-
times want to add constraints to the problem so as
to obtain better results. For example, Kikuchi et al.
(2014) use additional constraints to set the mini-
mum number of words (say θ words) extracted from
a sentence if the sentence is contained in a sum-
mary, and require each selected inner tree to con-
tain at least one verb and noun if the inner tree has
them. Since our tree trimming approach can work
once the ZDD that represents the set of feasible so-
lutions is constructed, adding new constraints to the
set of solutions can be easily performed by apply-
ing ZDD operations. These operations can be per-
formed efficiently for many cases and the proposed
approach will still work well. Moreover, we can ex-
tend the algorithm to construct ZDDs that represent
the extended set of feasible solutions. We can also
give theoretical upper bounds for the new constraint-
added problem. In this nested tree case, we can prove
that the number of ZDD nodes is O(Nθ log |R∗|).

8 Experiments

We conduct experiments on the three tree trimming
tasks of text summarization, sentence compression,
and the combination of summarization and text com-

pression. For the text summarization experiments,
we use the test collection for summarization evalua-
tion contained in the RST Discourse Treebank (RST-
DTB) (Carlson et al., 2001), which is used in the pre-
vious work. The test collection consists of 30 docu-
ments with the reference summaries whose length is
about 10% of the original document. We used the
same parameters used in the previous papers. For
sentence compression, we use the English compres-
sion corpus used in (Filippova and Strube, 2008),
which consists of 82 news stories selected from the
British National Corpus and American News Text
Corpus, and consists of more than 1,300 sentences.
We set the sizes of compressed sentences to be 70%
of the original length, which is used in the origi-
nal paper. We compare the proposed algorithm to
Gurobi 5.5.0, a widely used commercial ILP solver2.
It was run in the default settings and we used single-
thread mode. We run Gurobi until it finds an optimal
solution. Our algorithm was implemented in C++,
and all experiments were conducted on a Linux ma-
chine with a Xeon E5-2670 2.60 GHz CPU and 192
GB RAM.

Fig. 4 compares the running time of our algorithm
(includes ZDD construction time) and Gurobi. Each
plotted marker in the figures represents a test in-
stance, and if the position of a marker is below the
dashed line, it means that our method is faster than
Gurobi. We can see that our method is always faster
than Gurobi; it was, at most, 300, 10, and 50 times
faster in sentence extraction, sentence compression,
and extraction & compression, respectively. Fig. 5,6
shows the relation between the input tree size and
the ZDD construction times, and the relation be-
tween the input tree size and converted ZDD size
respectively. These results show that both ZDD sizes
and construction time were linear to the number of
input tree nodes. The number of ZDD nodes looks
like smaller than the O(N logN) bounds for multi-
rooted trees and nested trees. This result is caused
since the set of root candidate nodesR is small com-
paring with N for a typical input document.

Next we conduct experiments to assess the scala-
bility of the proposed method by solving problems
with different input sizes. We choose the nested tree

2We also used CPLEX 12.5.1.0, but Gurobi shows better
performance in most cases.
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Figure 4: Performance comparison between the proposed method and Gurobi
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Figure 5: ZDD construction time with number of input tree nodes
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Figure 6: ZDD sizes with number of input tree nodes

trimming problem since it is the most complex prob-
lem. We make a large artificial nested tree by con-
catenating outer-trees of the nested trees of 30 RST-
DT datasets. The results are shown in Fig. 7, and it
shows that out method scales well with large inputs
comparing with Gurobi.

9 Related Work

Recently proposed text summarization and sentence
compression methods solve a task by formulating it
as a combinatorial optimization problem (McDon-
ald, 2007; Woodsend and Lapata, 2010; Martins
and Smith, 2009; Clarke and Lapata, 2008). These
combinatorial optimization-based formulations en-
able flexible models that can reflect the properties re-
quired. However, their complexity makes it difficult

to solve optimization problems efficiently. These
problems can be solved by using ILP solvers, how-
ever, they may fail to find optimal solutions and they
have no guarantee on the running time. Since the
proposed method is a DP algorithm and it has a the-
oretical guarantee, it always find an optimal solution
in time proportional to the size of the input tree.

Our method also can be seen as a kind of fast
text summarization algorithm. Previous fast algo-
rithms are approximate algorithms (Qian and Liu,
2013; Lin and Bilmes, 2010; Lin and Bilmes, 2011;
Davis et al., 2012), while our algorithm is an ex-
act algorithm. Of course, there is a difference in
task hardness since previous methods were designed
for multi-document summarization and ours for sin-
gle document summarization. Those works suggest
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Figure 7: Solution time of our algorithm and Gurobi
with different input tree sizes.

that algorithms that have guarantees on both running
time and quality of solutions are highly demanding,
and the proposed pseudo-polynomial time exact al-
gorithm is valuable.

The Zero-suppressed Binary Decision Diagram
(ZDD) (Minato, 1993) is a variant of the Binary De-
cision Diagram (BDD) (Akers, 1978; Bryant, 1986).
BDD is a data structure that represents a Boolean
function as a DAG, and ZDD can represent a fam-
ily of sets in a compact form. Recently, ZDD and
BDD have been used for solving optimization prob-
lems (Bergman et al., 2014a; Bergman et al., 2014b);
they find the optimal solution by representing the set
of feasible solutions in a BDD or its variants. Com-
pared to these optimization methods, the proposed
method differs in two main points. First, the pro-
posed algorithm extends the ZDD-based optimiza-
tion algorithm to solve knapsack problems. Second,
it offers proofs of the size of ZDDs representing
trimmed subtrees.

The ZDD-based method presented in this paper is
related to our previous work of a BDD-constrained
search (BCS) method (Nishino et al., 2015). In BCS,
a BDD is used to solve constraints-added variants of
shortest path problems on a DAG, and a 0-1 knap-
sack problem with additional constraints also can
be solved by BCS. The main advantage of the DP-
algorithm shown in this paper is that it has a theoret-
ical guarantee on its running time which depends on
only the size of the input tree. This advantage comes
from using ZDD instead of BDD, and designing an
algorithm specialized for variants of the knapsack
problem. Though not obvious, it is possible to ex-
tend BCS to use ZDD instead of BDD and employ

the label order used in this paper to give a theoretical
bound that only depends on the size of an input tree.
Nevertheless, the bound attained with this extension
is worse than that shown in this paper.

10 Conclusion

We have proposed a DP algorithm for the tree trim-
ming problems that appear in text summarization.
Our approach always finds an optimal solution, and
it runs in O(NL logN) time, where N is the num-
ber of tree nodes and L is the length limit. The key
to our approach is to represent a set of subtrees of an
input tree as a ZDD. By using ZDD, we can give a
theoretical guarantee of the running time of the al-
gorithm. Experiments show that the proposal allows
three different tree trimming problems to be solved
in the same way.
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