
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 398–408,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Latent Domain Word Alignment for Heterogeneous Corpora

Hoang Cuong and Khalil Sima’an
Institute for Logic, Language and Computation

University of Amsterdam
Science Park 107, 1098 XG Amsterdam, The Netherlands

{c.hoang,k.simaan}@uva.nl

Abstract

This work focuses on the insensitivity of ex-
isting word alignment models to domain dif-
ferences, which often yields suboptimal re-
sults on large heterogeneous data. A novel
latent domain word alignment model is pro-
posed, which induces domain-conditioned
lexical and alignment statistics. We propose
to train the model on a heterogeneous corpus
under partial supervision, using a small num-
ber of seed samples from different domains.
The seed samples allow estimating sharper,
domain-conditioned word alignment statistics
for sentence pairs. Our experiments show
that the derived domain-conditioned statistics,
once combined together, produce notable im-
provements both in word alignment accuracy
and in translation accuracy of their resulting
SMT systems.

1 Introduction

Word alignment currently constitutes the basis for
phrase extraction and reordering in phrase-based
systems, and its statistics provide lexical parame-
ters used for smoothing the phrase pair estimates.
For over two decades since IBM models (Brown
et al., 1993) and the HMM alignment model (Vo-
gel et al., 1996), word alignment remains an active
research line, e.g., see recent work (Simion et al.,
2013; Tamura et al., 2014; Chang et al., 2014).

During the past years we witnessed an increas-
ing need to collect and use large heterogeneous par-
allel corpora from different domains and sources,
e.g., News, Wikipedia, Parliament Proceedings. It
is tacitly assumed that assembling a larger corpus

should improve a phrase-based system coverage and
performance. Recent work (Sennrich et al., 2013;
Carpuat et al., 2014; Cuong and Sima’an, 2014b;
Kirchhoff and Bilmes, 2014; Cuong and Sima’an,
2014a) shows that this is not necessarily true as
phrase translations as well as (bi- and monolingual)
word co-occurrence statistics could differ across do-
mains. This suggests that the word alignment qual-
ity obtained from IBM and HMM alignment models
might also be affected in heterogeneous corpora.

Intuitively, in heterogeneous data certain words
are present across many domains, whereas oth-
ers are more specific to few domains. This sug-
gests that the translation probabilities for words will
be as fractioned as the diversity of its translations
across the domains. Furthermore, because the IBM
and HMM alignment models use context-insensitive
conditional probabilities, in heterogeneous corpora
the estimates of these probabilities will be aggre-
gated over different domains. Both issues could lead
to suboptimal word alignment quality.

Surprisingly, the insensitivity of the existing IBM
and HMM alignment models to domain differences
has not received much attention thus far (see the
study of Bach et al. (2008) and Gao et al. (2011) for
reference in the literature). We conjecture that this is
because it is not fully clear how to define what con-
stitutes a (sub)-domain. In this paper we propose to
exploit the contrast between the alignment statistics
in a handful of seed samples from different domains
in order to induce domain-conditioned probabilities
for each sentence pair in the heterogeneous corpus.
Crucially, some sentence pairs will be more similar
to a seed domain than others, whereas some sentence
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pairs might be dissimilar to all seed domains. The
number and choice of seed domains depends largely
on the available resources but intuitively these seed
domains are chosen to be relevant to parts of the het-
erogeneous corpus. A small number of such seeds
can be expected to notably improve word alignment
accuracy. In fact, a single seed sample already al-
lows us to exploit the contrast between two parts in
the corpus: similar or dissimilar to the seed data.

Considering the small seed samples as partial su-
pervision, in this paper we explore the question:
how to obtain better word alignment in a heteroge-
neous, mix-of-domains corpus? We present a novel
latent domain HMM alignment model, which aims
to tighten the probability estimates of the genera-
tive alignment process of a sentence pair, and of
the probability estimates of the sentence pair itself
for a specific domain. We also present an accompa-
nying training regime guided by partial supervision
using the seed samples, exploiting the contrast be-
tween the domain-conditioned alignment statistics
in these samples. This way we aim for an align-
ment model that is more domain-sensitive than the
original HMM alignment model. Once the domain-
conditioned statistics are induced, we discuss how to
combine them together to express the probability of
a sentence pair as a mixture over specific domains.

Finally, we report experimental results over het-
erogeneous corpora of 1M, 2M and 4M sentence
pairs, where we are provided domain information
for different samples of 10%, 5% and 2.5% of the
heterogeneous data respectively. A large number of
experiments are reported, showing that the latent do-
main HMM model produces notable improvements
in word alignment accuracy over the original HMM
alignment model. Furthermore, the translation ac-
curacy of the resulting SMT systems is significantly
improved across four different translation tasks.

2 HMM Alignment Model

In this section, we briefly review the HMM align-
ment model (Vogel et al., 1996). The generative
story of the model is shown in Figure 1. The latent
states take values from the target language words
and generate source language words.

Formally, we use e = (e1, . . . , eI) to denote the
target sentence with length I and f = (f1, . . . , fJ)

fj−1 fj fj+1

aj−1 aj aj+1

Observed layer
(source words)

Latent alignment
layer (target words)

Figure 1: HMM alignment model with observed and la-
tent alignment layers.

to denote the source sentence with length J . For an
alignment a = (a1, . . . , aJ) of a sentence pair 〈e, f〉,
the model factors P (f, a| e) into the word transla-
tion and transition probabilities:

P (f, a| e) =
∏J

j=1
P (fj | eaj )P (aj | aj−1). (1)

Here, P (fj | eaj ) represents the word translation
probabilities and P (aj | aj−1)1 represents the tran-
sition probabilities between positions. Note that
P (aj | aj−1) depends only on the distance (aj −
aj−1). Note also that the first-order dependency
model is an extension of the uniform dependency
model and zero-order dependency model of IBM
models 1 and 2, respectively.

In this work, we model explicitly distances in the
range ±5. Note that null-links are also explicitly
added in our implementation, following Och and
Ney (2003) and Graca et al. (2010).

Once the HMM alignment model is trained, the
most probable alignment, â for each sentence pair
can be computed by: â = argmaxa P (f, a| e).
Here, the search problem can be solved by the
Viterbi algorithm.

3 Latent Domain HMM Alignment Model

Because the heterogeneous data contains a mix of
diverse domains, the induced statistics derived from
word alignment models reflect translation prefer-
ences aggregated over these domains. In this sense,
they can be considered domain-confused statistics
(Cuong and Sima’an, 2014a). This work thus fo-
cuses on more representative statistics: the domain-
conditioned word alignment statistics, i.e., the statis-
tics with respect to each of the diverse domains.

By introducing a latent variable D represent-
ing domains of the heterogeneous data, we aim

1The “full” formula for transition probabilities would be
P (aj | aj−1, I). For convenience, we ignore I in our presen-
tation.
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fj−1 fj fj+1

aj−1 aj aj+1

D

Observed layer
(source words)

Latent alignment
layer (target words)

Latent domain layer

Figure 2: Latent domain HMM alignment model. An ad-
ditional latent layer representing domains has been con-
ditioned on by both the rest two layers.

to learn the D-conditioned word alignment model
P (f, a| e, D).2 Relying on the HMM alignment
model, our latent domain HMM alignment model
factors P (f, a| e, D) into the domain-conditioned
word translation and transition probabilities:

P (f,a|e, D) =
∏J

j=1
P (fj |eaj , D)P (aj |aj−1, D).

(2)
The generative story of the model is shown in Fig-
ure 2. Note how domain-conditioned alignment
statistics, P (·| ·, D) contain their former domain-
confused alignment statistics, P (·| ·) as special case

P (fj |eaj , D) =
P (fj |eaj )P (D|fj , eaj )∑
f P (fj |eaj )P (D|fj , eaj )

,

(3)

P (aj |aj−1, D) =
P (aj |aj−1)P (D|aj , aj−1)∑
aj
P (aj |aj−1)P (D|aj , aj−1)

.

(4)

With an additional latent domain layer, it becomes
crucial to train the model in an efficient way. As
suggested by Eq. 3 and 4, we could simplify train-
ing by breaking up the estimation process into two
steps. That is, we train alignment parameters, P (·| ·)
or domain parameters, P (D| ·, ·) first, hold them
fixed before training the other kind of the parame-
ters.3 Instead, in this work we design an algorithm
that trains both of them simultaneously via training
domain-conditioned parameters P (·| , ·, D) directly.

2Note that P (f, a| e, D) contains their former P (f, a| e) as
special case, i.e., P (f, a| e, D) = P (f, a| e)P (D| f, a, e)∑

f
∑

a P (f, a| e)P (D| f, a, e) .
3This training scheme is in fact applied in the work of Cuong

and Sima’an (2014a), however, for a different purpose.

3.1 Training
Basically, our model can be viewed as having a
set, Θ of N subsets of domain-conditioned pa-
rameters, ΘD for N different domains, i.e., Θ =
{ΘD1 , . . . , ΘDN

}. In this work, to simplify the
learning problem we assume that the domains are
very different from each other. If this assumption
does not hold, the learning problem would shift from
single-label learning to multiple-label learning. We
leave this extension for future work.

Our training procedure seeks the parameters Θ
that maximize the log-likelihood, L of the data:
L =

∑
〈f, e〉 log

∑
D

∑
a PΘD(f, e, D, a). There,

however, does not exist a closed-form solution for
maximizing L, and EM comes as an alternative so-
lution to fit the model. EM maximizes L via block-
coordinate ascent on a “free energy” lower bound
F(q, Θ) (Neal and Hinton, 1999), using an aux-
iliary distribution q over both the latent variables:
F(q, Θ) =

∑
〈f, e〉

∑
D

∑
a q log

PΘD
(a, D, f, e)

q .
In the E-step of the EM algorithm, we fix Θ

and aim to find the distribution q∗ that maximizes
F(q,Θ) over the heterogeneous data. Simple math-
ematics lead to F(q, Θ) =

∑
〈f, e〉 logPΘ(f, e) −

KL[q || PΘD(a, D| f, e)], where KL[· || ·] is the
Kullback-Leiber divergence between two distribu-
tions. The distribution q∗ can be thus derived as

q∗ = argmaxq F(q, Θ)

= argminq KL[q || PΘD(a, D| f, e)]

=
PΘD(f, a| e, D)∑
a PΘD(f, a| e, D)

PΘD(D| f, e).

Here, PΘD(D| f, e) aims to exploit the contrast
between the domain-sensitive alignment statistics.
Assigning higher probability to one domain forces
lower probability assignment to other domains.

Note that PΘD(f, a| e, D) is given in Eq. 2
and

∑
a PΘD(f, a| e, D) can be computed effi-

ciently using dynamic programming.4 Meanwhile,
PΘD(D| f, e) can be derived by Bayes’ rule, i.e.,

PΘD(D| f, e) ∝ PΘD(f, e| D)PΘD(D).

Here, the estimation of the domain prior parameters
is easy, PΘD(D) ∝∑〈f, e〉 PΘD(D| f, e). The esti-
mation of PΘD(f, e| D) raises a task of defining a

4Its time complexity is O(J × I2) for each sentence pair
〈f, e〉 with their length J and I respectively.
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E-step ∀D ∈ {D1, . . . , DN} do

c(D; f, e) = P (c)(D| f, e)

c(f | e; f, e, D) = P (c)(D| f, e)
∑

a
P (c)(a| f, e, D)

∑J

j=1
δ(f, fj)

∑I

i=0
δ(e, ei)

c(i| i′; f, e, D) = P (c)(D| f, e)
∑

a
P (c)(a| f, e, D)

∑J

j=1
δ(aj , i)δ(aj−1, i

′)

M-step ∀D ∈ {D1, . . . , DN} do

P (+)(f |e,D) =

∑
〈f,e〉 c(f |e; f, e, D)∑

f

∑
〈f,e〉 c(f |e; f, e, D)

P (+)(i|i′, D) =

∑
〈f,e〉 c(i|i′; f, e, D)∑

i

∑
〈f,e〉 c(i|i′; f, e, D)

P (+)(D) =

∑
〈f,e〉 c(D; f, e)∑

D

∑
〈f,e〉 c(D; f, e)

Figure 3: Pseudocode for the training algorithm for the latent domain HMM alignment model. Note that notation P (c)

denotes current iteration estimates, and P (+) denotes the re-estimates.

generative process for every sentence pair in the het-
erogeneous data with respect to a specific domain.
Following (Cuong and Sima’an, 2014b), we factor
it into two kinds of models in a symmetrized strat-
egy: PΘD(f, e| D) ∝ (PΘD(e| D)PΘD(f| e, D) +
PΘD(f| D)PΘD(e| f, D)

)
.

Basically, PΘD(·| ·, D) can be thought of as the
domain-conditioned translation models, aiming to
model how well a target/source sentence is gener-
ated over a source/target sentence with respect to a
domain.5 Meanwhile, PΘD(·| D) can be thought of
as the domain-conditioned language models (LMs),
aiming to model how fluent a source/target sentence
with respect to a domain. For simplicity, once the
domain-conditioned LMs are trained, they will stay
fixed during training, i.e., LM probabilities are not
parameters in our model.

In the M-step of the EM algorithm, we fix the de-
rived q∗ and aim to find the parameter set Θ∗ that
maximizes F(q,Θ) over the data. This can be (eas-
ily) done by using q∗ to softly fill in the values of a
and D to estimate model parameters.

Pseudocode
In summary, the model has three kinds of parame-

ters - word translation, word transition, and domain
prior parameters. We now summarize the training
via presenting the pseudocode.

First, we present expected count notations with
respect to domains for the parameters. We use
c(f | e; f, e, D) to denote the expected counts that
word e aligns to word f . We use c(i| i′; f, e, D)
to denote the expected counts that two certain con-

5Note that PΘD (·| ·, D) =
∑

a PΘD (·, a| ·, D) and it can
be thus computed efficiently using dynamic programming.

secutive source words j and j−1 align to two target
words i and i′ respectively, i.e., j aligns to i and j−1
aligns to i′. Finally, we also use c(D; f, e) to denote
the expected count of domain priors. Note that all
the expected counts are in the translation (f| e).

Figure 3 represents the pseudocode.

4 Learning with Partial Supervision

We now discuss remaining issues on how to guide
the learning with partial supervision, i.e., how to
use the given domain information of seed samples
to guide the learning.

Number of Domains The values of D ∈ [1..(N +
1)] depends on theN available seed samples plus the
so-called “out-domain,” i.e., the part of the heteroge-
neous data that is dissimilar to all of the N sample
domains.

Parameter Initialization We first discuss how to
initialize the domain prior parameters. If a sentence
pair 〈f, e〉 belongs to a sample with a pre-specified
domainDi, we initialize P (Di| f, e) close to 1, and,
P (Di′ | f, e) close to 0 for other domains i′, i′ 6= i.
Furthermore, we uniformly create the domain prior
parameters for the rest of sentence pairs.

Uniform initialization for the domain-conditioned
alignment parameters is also a reasonable option.
Nevertheless, a more effective way is to make use of
the domain-specific seed samples and the pool of the
rest sentence pairs in the heterogeneous data.6 That
is, we train the model on each of the samples, assign-

6During the initialization, we assume that the pool of the
rest sentence pairs in the heterogeneous data is the exemplifying
sample of the out-domain.
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ing the derived probabilities as the initialization for
their corresponding domain-conditioned alignment
parameters. In our implementation, one EM itera-
tion is usually dedicated for this. It should be noted
that we ignore the domain prior parameters in the
model during the period.

Parameter Constraints During training, it would
be also necessary to keep the domain prior parame-
ters fixed for all sentence pairs that belong to seed
samples. This can be thought of as the constraints
derived from the partial knowledge, guiding the
learning to a desirable parameter space.

Domain-conditioned LMs training We now dis-
cuss how to train the domain-conditioned LMs with
partial supervision. It would be reasonable to use
the domain-specific seed samples to train their ex-
emplifying domain-conditioned LMs, and the pool
of the rest sentence pairs to train the out-domain
LMs. Nevertheless, the out-domain LMs trained
on such a big corpus could dominate the other
domain-conditioned LMs. Following Cuong and
Sima’an (2014b), we rather create a “pseudo” out-
domain sample to train the out-domain LMs, i.e.,
the creation is via an inspired burn-in period. In
brief, an EM iteration is dedicated just to compute
P (DOUT | f, e) for all sentences, ranking them and
select a small subset with highest score as the (on
the fly) pseudo out-domain sample.

Note that our partial learning framework is very
simple. There are various advanced learning frame-
work that are also applicable with the partial su-
pervision, e.g., Posterior Regularization (Ganchev et
al., 2010). This leaves much space for future work.

5 Domain-conditioned Decoding

At test time, assigning each sentence pair to a sin-
gle most likely domain (hard decision) is likely to
result in sub-optimal performance.7 Instead we av-
erage over domains (soft decision) while predict-
ing the translation. Formally for each sentence pair,
〈e, f〉, we can find their best Viterbi alignment, â as

7Later experiments on word alignment will confirm this.

follows:

â = argmaxa

∑
D
P (f,a, D|e)

= argmaxa

∑
D
P (f,a|e, D)P (D|e)

= argmaxa

∑
D
P (f,a|e, D)P (e|D)P (D).

Here, we derive the last equation by applying Bayes’
rule to P (D| e), i.e., P (D| e) ∝ P (e| D)P (D). In-
terestingly, our Viterbi decoding now relies on a mix
of domain-conditioned statistics for each sentence
pair. The computing of term

∑
D(a) for all possi-

ble alignments, a, however, is intractable, making
the search problem difficult. Inspired by Liang et al.
(2006), we opt instead for a heuristic objective func-
tion as follows8:

â = argmax
a

∏
D
P (f, a| e, D)P (e| D)P (D). (5)

Here, note that
∏
p is a lower bound for

∑
p, when

0 ≤ p ≤ 1, according to Jensen’s inequality. With
Eq. 5, it is straightforward to design a dynamic pro-
gramming algorithm to decoding, e.g., the Viterbi
algorithm. In practice, we observe that the approx-
imation yields good results. Later experiments on
word alignment will present this in detail.

6 Experimental Setup

In the following experiments, we use three hetero-
geneous English-Spanish corpora consisting of 1M ,
2M and 4M sentence pairs respectively. These cor-
pora combine two parts. The first part respectively
0.7M , 1.7M and 3.7M is collected from multiple
domains and resources including EuroParl (Koehn,
2005), Common Crawl, United Nation, News Com-
mentary. The second part consists of three domain-
exemplifying samples consisting of roughly 100K
sentence pairs for each one (total 300K). Each of
these three samples (manually collected by a com-
mercial partner) exemplifies a specific domain re-
lated to Legal, Hardware and Pharmacy.

Outlook In Section 7 we examine the word align-
ment yielded by the HMM alignment model and our
latent domain HMM alignment model. In Section 8
we proceed further to examine the translation pro-
duced by derived SMT systems.

8Alternative solutions could be Lagrangian relaxation-based
decoder (DeNero and Macherey, 2011; Chang et al., 2014).
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Model Domain Prior Prec.↑ ∆ Rec.↑ ∆ AER↓ ∆
1 Million

Model 4 (ref.) - 71.56 - 64.59 - 32.10 -
Baseline - 66.95 - 61.29 - 36.00 -

Latent

Pharmacy 67.85 +0.90 61.72 +0.43 35.36 -0.64
Legal 67.57 +0.62 62.29 +1.00 35.17 -0.83
Hardware 69.41 +2.46 63.58 +2.29 33.63 -2.37
Legal + Hardware + Software 69.64 +2.69 63.30 +2.01 33.68 -2.32

2 Million
Model 4 (ref.) - 74.13 - 65.30 - 30.56 -
Baseline - 68.34 - 61.58 - 35.22 -

Latent

Pharmacy 68.85 +0.51 62.58 +1.00 34.43 -0.79
Legal 69.98 +1.64 64.01 +2.43 33.13 -2.09
Hardware 69.45 +1.11 63.23 +1.65 33.81 -1.41
Legal + Hardware + Software 71.51 +3.17 63.87 +2.29 32.53 -2.69

4 Million
Model 4 (ref.) - 75.53 - 65.95 - 29.58 -
Baseline - 69.37 - 64.30 - 33.26 -

Latent

Pharmacy 69.69 +0.32 62.80 -1.50 33.94 +0.68
Legal 70.51 +1.14 63.94 -0.36 32.93 -0.33
Hardware 71.75 +2.38 64.44 +0.14 32.10 -1.16
Legal + Hardware + Software 72.16 +2.79 64.30 ±0.0 31.99 -1.27

Table 1: Alignment accuracy over heterogeneous corpora.

7 Word Alignment Experiment

For alignment accuracy evaluation, we use a data set
of 100 sentence pairs with their “golden” alignment
from Graca et al. (2008). Here, the golden alignment
consists of sure links (S) and possible links (P ) for
each sentence pair. Counting the set of generating
alignment links (A), we report the word alignment
accuracy by precision ( |A∩P |

|P | ), recall ( |A∩S|
|S| ), align-

ment error rate (AER) (1 − |A∩P |+|A∩S|
|A|+|S| ) (Och and

Ney, 2003).9

For all experiments, we use the same training con-
figuration for both the baseline/the latent domain
alignment model: 5 iterations for IBM model 1/the
latent domain model; 3 iterations for HMM align-
ment model/the latent domain model. For evalu-
ation, we first align the sentence pairs in both di-
rections and then symmetrize them using the grow-
diag-final heuristic (Koehn et al., 2003).

For reference we also report the performance of
a considerably more expressive Model 4, capable of
capturing more structure, but at the expense of in-
tractable inference. Using MGIZA++ (Gao and Vo-

9Note that better results correspond to larger Precision, Re-
call and to smaller AER.

gel, 2008), we run 5 iterations for training Model 1,
3 iterations for training the HMM alignment model,
Model 3 and Model 4.

7.1 Learning with Single Domain

We first examine the binary case, where we are
given domain information in advance for each kind
of samples only, e.g., Legal, or Pharmacy, or Hard-
ware. For the different sizes of the heterogeneous
data (1M , 2M and 4M ) the seed sample size is
thus 10%, 5% and 2.5% respectively. Note that
in such cases, training the latent domain alignment
model induces two domain-conditioned statistics:
in-domain vs. out-domain (D1 andD2 respectively).
Once the model is trained, we combine the induced
domain-conditioned statistics together (Eq. 5) and
examine the produced word alignment output.

Table 1 presents the results. Most importantly, it
shows that as long as providing domain information
for reasonably large enough data, learning the latent
domain alignment model notably improves the word
alignment accuracy. For instance, given in advance
the domain information for a sample of 10%, and
5% of the heterogeneous corpora, our model con-
sistently improves the word alignment accuracy in
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all cases. Meanwhile, given in advance the domain
information for a relatively small sample of 2.5%
of the heterogeneous data, the results are mixed.
We obtain a good performance/slightly better per-
formance/worse performance with the case of Hard-
ware/Legal/Pharmacy respectively.

What do domain-conditioned statistics look like?
To have an idea what the induced statistics

look like, we investigate their conditional en-
tropy. Here, we present the conditional entropy
for the domain-confused/-conditioned word trans-
lation statistics induced from the HMM alignment
model/its latent domain model. Note that similar re-
sults are observed for transition tables.

Model Prior Statistics H(F| E)
Baseline - Domain-confused 1348.53

Latent

Hardware D1-conditioned 1124.43
D2-conditioned 1354.58

Legal D1-conditioned 1104.58
D2-conditioned 1385.35

Pharmacy D1-conditioned 1115.52
D2-conditioned 1342.54

Table 2: Conditional entropy of the statistics.

Formally, for a translation table, 〈F, E〉, its
conditional entropy, H(F | E) can be estimated
from its possible word pairs, 〈e, f〉: H(F | E)
= −∑e P (e)

∑
f P (f | e) logP (f | e). Table 2 re-

veals that the induced D1-conditioned statistics
need much less bits to represent than the induced
domain-confused statistics, e.g., 1124.43, 1104.58,
1115.52 vs. 1348.53. This implies the induced D1-
conditioned statistics are much more predictable
compared to the domain-confused statistics. Mean-
while, the inducedD2-conditioned statistics are sim-
ilar to the domain-confused statistics in terms of the
conditional entropy, e.g., 1354.58, 1385.35, 1342.54
vs. 1348.53.

7.2 Learning with Multiple Domains

It would be more interesting to learn the latent do-
main alignment model for multiple domains, rather
than learning with each of them separately. In detail,
using all the seed samples from different domains,
we aim to learn four different domain-conditioned

statistics simultaneously. Under this setting, we ob-
tain good results, as described in Table 1. For the
two cases with the training corpora of 2M and 4M
sentence pairs respectively, learning with the com-
bining domain prior knowledge produces the best
word alignment accuracy compared to the rest. In
the last case with the training corpus of 1M sen-
tence pairs, learning with the combining domain
prior knowledge produces compatible with the case
of Hardware, i.e., the best binary domain case.

Table 1 also reveals that the performance of our
model approaches Model 4, even though Model 4
is much more complex and computationally expen-
sive.

Domain-conditioned statistics combination
We also investigate the relation between the num-

ber of domain-conditioned statistics “involved” in
the Viterbi decoding (Eq. 5) and the word align-
ment accuracy. Table 3 presents the results in case
of using only the induced D1-/, D2-/, D3-/, D4-
conditioned statistics separately, and also using their
different combinations. Interestingly, we observe
that using more domain-conditioned statistics for
decoding incrementally improves the word align-
ment accuracy over the heterogeneous data. While
the domain-conditioned statistics are very different
in their characteristics from each other, the results
reveal how they are complementary to the others,
conveying a mix of domains for each sentence pair.

Decoding’s Statistics Prec.↑ Rec.↑ AER↓
Hard Decision (ref.) 68.49 62.80 34.48
D1 (Pharmacy) 64.78 59.86 37.78
D2 (Legal) 66.54 61.15 36.27
D3 (Hardware) 66.98 61.36 35.95
D4 (OUT) 68.46 63.01 34.38
D1 + D2 66.80 61.72 35.84
D1 + D2 + D3 68.54 62.80 34.46
D1 + D2 + D3 + D4 69.64 63.30 33.68

Table 3: Domain-conditioned statistics combination
for Viterbi decoding. The reported results are for the
heterogeneous corpus of 1M sentence pairs. Similar
results are observed for other training data.

Finally, it is also tempting to make a compari-
son between the hard vs. soft domain assignment
in Viterbi decoding. Here, for hard domain decision
we simply do decoding with the following objec-
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tive function: â = argmaxa P (f, a| e, D̂), where
D̂ = argmaxD P (D| e). Table 3 presents the re-
sults. It reveals that a soft domain assignment on the
domain of sentence pairs results in a better align-
ment accuracy than a hard domain assignment.10

8 Translation Experiment

In this section, we investigate the contribution of our
model in terms of the translation accuracy. Here,
we run experiments on the heterogeneous corpora
of 1M, 2M, and 4M sentence pairs, testing the trans-
lation accuracy over four different domain-specific
test sets related to News, Pharmacy, Legal, and
Hardware.

We use a standard state-of-the-art phrase-based
system as the baseline. Our dense features include
MOSES (Koehn et al., 2007) baseline features, plus
hierarchical lexicalized reordering model features
(Galley and Manning, 2008), and the word-level fea-
ture derived from IBM model 1 score, c.f., (Och et
al., 2004).11 The interpolated 5-grams LMs with
Kneser-Ney are trained on a very large monolingual
corpus of 2B words. We tune the systems using k-
best batch MIRA (Cherry and Foster, 2012). Finally,
we use MOSES (Koehn et al., 2007) as decoder.

Our system has exactly the same setting with the
baseline, except: (1) To learn the translation, we use
the alignment result derived from our latent domain
HMM alignment model, rather than the HMM align-
ment model; and (2) We replace the word-level fea-
ture with our four domain-conditioned word-level
features derived from the latent domain IBM model
1. Here, note that our latent model is learned with
the supervision from the combining domain knowl-
edge of all three domain-specific seed samples.

10Note that similar results are also observed for training, in
which a soft domain assignment using soft EM produces better
alignment accuracy than a hard domain assignment using hard
EM. (See (Gao et al., 2011) for reference to hard domain assign-
ment to training data.) This is perhaps due to the characteristics
of the data we use. For instance, News sentence pairs are useful
for translating Legal, Financial or EuroParl to varying degrees.

11For every phrase pair 〈f̃ , ẽ〉 with their length of mf̃ and
lẽ respectively, the lexical feature estimates a probability in
Model 1 style between their word pairs 〈fj , ei〉 (i.e. P (f̃ | ẽ) =
ε
lẽ

∏m
f̃

j=1

∑lẽ
i=1 P (fj |ei)). Note that adding word-level features

from both translation sides does not help much, as observed by
(Och et al., 2004). We thus add only an one from a translation
side.

Data System BLEU↑ METEOR↑ TER↓
News test

1M
Model 4 (ref.) 23.6 30.8 58.3
Baseline 23.2 30.6 58.9
Our System 23.5/+0.3 30.8/+0.2 58.7/-0.2

2M Baseline 25.9 32.4 56.1
Our System 26.3/+0.4 32.6/+0.2 55.6/-0.5

4M Baseline 26.8 33.0 55.0
Our System 27.0/+0.2 33.1/+0.1 54.7/-0.3

Pharmacy

1M
Model 4 (ref.) 54.7 43.8 33.4
Baseline 53.9 43.4 34.6
Our System 54.4/+0.5 43.8/+0.4 34.0/-0.6

2M Baseline 54.5 43.7 34.4
Our System 55.3/+0.8 44.3/+0.6 33.5/-0.9

4M Baseline 54.8 43.9 33.8
Our System 55.0/+0.2 44.0/+0.1 33.7/-0.1

Legal

1M
Model 4 (ref.) 56.6 44.7 34.1
Baseline 56.0 44.2 35.0
Our System 57.2/+1.2 44.4/+0.2 34.0/-1.0

2M Baseline 55.8 43.9 35.4
Our System 58.3/+2.5 44.7/+0.8 33.4/-2.0

4M Baseline 55.9 43.9 34.3
Our System 57.3/+1.4 44.4/+0.5 33.4/-0.9

Hardware

1M
Model 4 (ref.) 75.4 53.6 17.7
Baseline 74.9 53.1 19.0
Our System 76.8/+1.9 53.9/+0.8 17.3/-1.7

2M Baseline 75.7 53.5 18.6
Our System 77.4/+1.7 54.3/+0.8 17.0/-1.6

4M Baseline 77.1 54.2 17.3
Our System 77.9/+0.8 54.5/+0.3 16.7/-0.6

Table 4: Metric scores for the systems, which are
averages over multiple runs. Bold results indicate
that the comparison is significant over the baseline.

For the News translation task, we tune systems on
the News-test 2008 of 2, 051 sentence pairs and test
them on the News-test 2013 of 3, 000 sentence pairs
from the WMT 2013 shared task (Bojar et al., 2013).
For the Pharmacy, Legal, and Hardware translation
tasks, we tune systems on three domain-specific dev
sets of 1, 000 sentence pairs and test them on three
domain-specific test sets of 1, 016, 1, 326 and 1, 721
sentence pairs. We report three metrics - BLEU
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2011) and TER (Snover et al., 2006), with
statistical significance at 95% confidence interval
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under paired bootstrap re-sampling.12 For every sys-
tem reported, we run the optimizer three times, be-
fore running MultEval (Clark et al., 2011) for resam-
pling and significance testing.

Data BLEU↑ METEOR↑ TER↓
1M +1.0 +0.4 -0.9
2M +1.4 +0.6 -1.3
4M +0.7 +0.3 -0.5

Table 5: Averaged improvements across the tasks.

Results are in Table 4, showing significant improve-
ments across four different test sets over different
heterogeneous corpora sizes. Table 5 gives a sum-
mary of the improvements. On average, over hetero-
geneous corpora of 1M, 2M and 4M sentence pairs,
our system outperforms the baseline by 1.0 BLEU,
1.4 BLEU and 0.7 BLEU, respectively. Finally, we
observe that our system produces comparably good
performance to the MGIZA++-based system. When
1M data is considered, on three of four tasks, our
system produces at least compatible translation ac-
curacy to the corresponding MGIZA++-based sys-
tem.

Further analysis reveals that the improvement is
due to not only the reduction in alignment error rate,
but also the use of the domain-sensitive lexical fea-
tures. Moreover, the domain-sensitive lexical fea-
tures is particularly useful when the domain of the
test data matches with the domain of seed samplers.
This is also widely observed in the literature, e.g.,
see (Eidelman et al., 2012; Hasler et al., 2014; Hu et
al., 2014).

9 Related Work and Conclusion

In terms of domain-conditioned statistics for word
alignment, a distantly related research line (Tam et
al., 2007; Zhao and Xing, 2008) focuses on using
document topics to improve the word alignment. In
terms of learning word alignment with partial su-
pervision, another distantly related research line fo-
cuses on semi-supervised training with partial man-
ual alignments (Fraser and Marcu, 2006; Gao and
Vogel, 2010; Gao et al., 2010). Finally, recent

12Note that better results correspond to larger BLEU, ME-
TEOR and to smaller TER.

work also focuses on data selection (Kirchhoff and
Bilmes, 2014; Cuong and Sima’an, 2014b), mix-
ture models (Carpuat et al., 2014), instance weight-
ing (Foster et al., 2010) and latent variable mod-
els (Cuong and Sima’an, 2014a) over heterogeneous
corpora.

One main contribution of this work is the nov-
elty of exploring the quality of word alignment in
heterogeneous corpora. This, surprisingly, has not
received much attention thus far (see the study of
Bach et al. (2008) and Gao et al. (2011) for refer-
ence in the literature). Another major contribution
of this work is a learning framework for latent do-
main word alignment with partial supervision using
seed domains. We present its benefits for improv-
ing not only the word alignment accuracy, but also
the translation accuracy resulting SMT systems pro-
duce. We hope this study sparks a new research di-
rection for using domain samples, which is cheap to
gather, but has not been exploited before.

One obvious direction for future work might be
to integrate the model into fertility-based align-
ment models (Brown et al., 1993), as well as
other recently advanced alignment frameworks, e.g.,
(Simion et al., 2013; Tamura et al., 2014; Chang et
al., 2014). Another interesting direction might be to
integrate our model into advanced mixing multiple
translation models, improving SMT systems trained
on the heterogeneous data (Razmara et al., 2012;
Sennrich et al., 2013; Carpuat et al., 2014). Finally,
an open question is whether it is possible to learn the
latent domain alignment model in a fully unsuper-
vised style. This challenge deserves more attention
in future work.
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