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Abstract

Syntactic linearization algorithms take a bag
of input words and a set of optional con-
straints, and construct an output sentence and
its syntactic derivation simultaneously. The
search problem is NP-hard, and the current
best results are achieved by bottom-up best-
first search. One drawback of the method
is low efficiency; and there is no theoretical
guarantee that a full sentence can be found
within bounded time. We propose an alter-
native algorithm that constructs output struc-
tures from left to right using beam-search. The
algorithm is based on incremental parsing al-
gorithms. We extend the transition system so
that word ordering is performed in addition to
syntactic parsing, resulting in a linearization
system that runs in guaranteed quadratic time.
In standard evaluations, our system runs an or-
der of magnitude faster than a state-of-the-art
baseline using best-first search, with improved
accuracies.

1 Introduction

Linearization is the task of ordering a bag of words
into a grammatical and fluent sentence. Syntax-
based linearization algorithms generate a sentence
along with its syntactic structure. Depending on how
much syntactic information is available as inputs, re-
cent work on syntactic linearization can be classified
into free word ordering (Wan et al., 2009; Zhang et
al., 2012; de Gispert et al., 2014), which orders a
bag of words without syntactic constraints, full tree
linearization (He et al., 2009; Bohnet et al., 2010;
Song et al., 2014), which orders a bag of words

Initial State ([ ], [1...n], ∅)
Final State ([ ], [ ], A)

Induction Rules:

SHIFT
(σ, [i|β], A)
([σ| i], β, A)

LEFTARC
([σ|j i], β, A)

([σ|i], β, A ∪ {j ← i})
RIGHTARC

([σ|j i], β, A)
([σ|j], β, A ∪ {j → i})

Figure 1: The arc-standard parsing algorithm.

given a full-spanning syntactic tree, and partial tree
linearization (Zhang, 2013), which orders a bag of
words given some syntactic relations between them
as partial constraints.

The search space for syntactic linearization is
huge. Even with a full syntax tree being available as
constraints, permutation of nodes on each level is an
NP-hard problem. As a result, heuristic search has
been adopted by most previous work, and the best
results have been achieved by a time-constrained
best-first search framework (White, 2004a; White
and Rajkumar, 2009; Zhang and Clark, 2011b; Song
et al., 2014). Though empirically highly accurate,
one drawback of this approach is that there is no
asymptotic upper bound on the time complexity of
finding the first full sentence. As a result, it can take
5–10 seconds to process a sentence, and sometimes
fail to yield a full sentence at timeout. This issue is
more severe for larger bags of words, and makes the
algorithms practically less useful.

We study the effect of an alternative learning
and search framework for the linearization prob-

113



....NP ..VBD ..NP ..IN ..NP ...
..Dr. Talcott1 ..led2 ..a team3 ..of4 ..Harvard University5 ...6

.....

Figure 2: Example dependency tree.

lem, which has a theoretical upper bound on the
time complexity, and always yields a full sentence in
quadratic time. Our method is inspired by the con-
nection between syntactic linearization and syntactic
parsing: both build a syntactic tree over a sentence,
with the former performing word ordering in addi-
tion to derivation construction. As a result, syntac-
tic linearization can be treated as a generalized form
of parsing, for which there is no input word order,
and therefore extensions to parsing algorithms can
be used to perform linearization.

For syntactic parsing, the algorithm of Zhang and
Nivre (2011) gives competitive accuracies under lin-
ear complexity. Compared with parsers that use dy-
namic programming (McDonald and Pereira, 2006;
Koo and Collins, 2010), the efficient beam-search
system is more suitable for the NP-hard lineariza-
tion task. We extend the parser of Zhang and Nivre
(2011), so that word ordering is performed in addi-
tion to syntactic tree construction. Experimental re-
sults show that the transition-based linearization sys-
tem runs an order of magnitude faster than a state-of-
the-art best-first baseline, with improved accuracies
in standard evaluation. Our linearizer is publicly
available under GPL at http://sourceforge.
net/projects/zgen/.

2 Transition-Based Parsing

The task of dependency parsing is to find a depen-
dency tree given an input sentence. Figure 2 shows
an example dependency tree, which consists of de-
pendency arcs that represent syntactic relations be-
tween pairs of words. A transition-based depen-
dency parsing algorithm (Nivre, 2008) can be for-
malized as a transition system, S = (C, T, cs, Ct),
where C is the set of states, T is a set of transition
actions, cs is the initial state and Ct is a set of ter-
minal states. The parsing process is modeled as an
application of a sequence of actions, transducing the
initial state into a final state, while constructing de-

Transition σ β A
0 [] [1...6] ∅
1 SHIFT [1] [2...6]
2 SHIFT [1 2] [3...6]
3 SHIFT [1 2 3] [4...6]
4 SHIFT [1 2 3 4] [5,6]
5 SHIFT [1 2 3 4 5] [6]
6 RIGHTARC [1 2 3 4] [6] A ∪ {4→ 5}
7 RIGHTARC [1 2 3] [6] A ∪ {3→ 4}
8 RIGHTARC [1 2] [6] A ∪ {2→ 3}
9 SHIFT [1 2 6] []
10 RIGHTARC [1 2] [] A ∪ {2→ 6}
11 LEFTARC [2] [] A ∪ {1← 2}

Table 1: arc-standard transition action sequence for
parsing the sentence in Figure 2.

pendency arcs. Each state in the transition system
can be formalized as a tuple (σ, β,A), where σ is a
stack that maintains a partial derivation, β is a buffer
of incoming input words and A is the set of depen-
dency relations that have been built.

Our work is based on the arc-standard algorithm
(Nivre, 2008). The deduction system of the arc-
standard algorithm is shown in Figure 1. In this
system, three transition actions are used: LEFT-
ARC, RIGHTARC and SHIFT. Given a state s =
([σ| j i], [k|β], A),

• LEFTARC builds an arc {j ← i} and pops j off
the stack.
• RIGHTARC builds an arc {j → i} and pops i

off the stack.
• SHIFT removes the front word k from the buffer

β, and shifts it onto the stack.

In the notations above, i, j and k are word indices of
an input sentence. The arc-standard system assumes
that each input word has been assigned a part-of-
speech (POS) tag.

The sentence in Figure 2 can be parsed by the
transition sequence shown in Table 1. Given an input
sentence of n words, the algorithm takes 2n tran-
sitions to construct an output, because each word
needs to be shifted onto the stack once and popped
off once before parsing finishes, and all the transi-
tion actions are either shifting or popping actions.
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Initial State ([ ], set(1..n), ∅)
Final State ([ ], ∅, A)

Induction Rules:

SHIFT-i-POS
(σ, ρ, A)

([σ|i], ρ− {i}, A)

LEFTARC
([σ|j i], ρ, A)

([σ|i], ρ, A ∪ {j ← i})
RIGHTARC

([σ|j i], ρ, A)
([σ|j], ρ, A ∪ {j → i})

Figure 3: Deduction system for transition-based lin-
earization. Indices i, j do not reflect word order.

3 Transition-Based Linearization

The main difference between linearization and de-
pendency parsing is that the input words are un-
ordered for linearization, which results in an un-
ordered buffer ρ. At a certain state s = (σ, ρ,A),
any word in the buffer ρ can be shifted onto the
stack. In addition, unlike a parser, the vanilla lin-
earization task does not assume that input words are
assigned POS. To extend the arc-standard algorithm
for linearization, we incorporate word and POS into
the SHIFT operation, transforming the arc-standard
SHIFT operation to SHIFT-Word-POS, which selects
the word Word from the buffer ρ, tags it with POS
and shifts it onto the stack. Since the order of words
in an output sentence equals to the order in which
they are shifted onto the stack, word ordering is per-
formed along with the parsing process.

Under such extension, the sentence in Figure
2 can be generated by the transition sequence
(SHIFT-Dr. Talcott-NP, SHIFT-led-VBD, SHIFT-
of-NP, SHIFT-a team-NP, SHIFT-of-IN, SHIFT-
Harvard University-NP, RIGHTARC, RIGHTARC,
RIGHTARC, SHIFT-.-., RIGHTARC, LEFTARC),
given the unordered bag of words (Dr. Talcott, led,
a team, of, Harvard University, .).

The deduction system for the linearization algo-
rithm is shown in Figure 3. Given an input bag of
n words, this algorithm also takes 2n transition ac-
tions to construct an output, by the same reason as
the arc-standard parser.

3.1 Search and Learning

We apply the learning and search framework of
Zhang and Clark (2011a), which gives state-of-the-

Algorithm 1: transition-based linearization
Input: C, a set of input syntactic constraints
Output: The highest-scored final state

1 candidates← ([ ], set(1..n), ∅)
2 agenda← ∅
3 for i← 1..2n do
4 for s in candidates do
5 for action in GETPOSSIBLEACTIONS(s,

C) do
6 agenda← APPLY(s, action)

7 candidates← TOP-K(agenda)
8 agenda← ∅
9 best← BEST(candidates)

10 return best

art transition-based parsing accuracies and runs in
linear time (Zhang and Nivre, 2011). Pseudocode of
the search algorithm is shown in Algorithm 1. It per-
forms beam-search by using an agenda to keep the
k-best states at each incremental step. When decod-
ing starts, the agenda contains only the initial state.
At each step, each state in the agenda is advanced by
applying all possible transition actions (GETPOSSI-
BLEACTIONS), leading to a set of new states. The
k best are selected for the new states, and used to
replace the current states in the agenda, before the
next decoding step starts. Given an input bag of n
words, the process repeats for 2n steps, after which
all the states in the agenda are terminal states, and
the highest-scored state in the agenda is taken for
the final output. The complexity of this algorithm
is n2, because it takes a fixed 2n steps to construct
an output, and in each step the number of possible
SHIFT action is proportional to the size of ρ.

The search algorithm ranks search hypotheses,
which are sequences of state transitions, by their
scores. A global linear model is used to score search
hypotheses. Given a hypothesis h, its score is calcu-
lated by:

Score(h) = Φ(h) · θ⃗,
where θ⃗ is the parameter vector of the model and
Φ(h) is the global feature vector of h, extracted by
instantiating the feature templates in Table 2 accord-
ing to each state in the transition sequence.

In the table, S0 represents the first word on the
top of the stack, S1 represents the second word on
the top of the stack, w represents a word and p rep-
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Unigrams
S0w; S0p; S0,lw; S0,lp; S0,rw; S0,rp;
S0,l2w; S0,l2p; S0,r2w; S0,r2p;
S1w; S1p; S1,lw; S1,lp; S1,rw; S1,rp;
S1,l2w; S1,l2p; S1,r2w; S1,r2p;
Bigram
S0wS0,lw; S0wS0,lp; S0pS0,lw; S0pS0,lp;
S0wS0,rw; S0wS0,rp; S0pS0,rw; S0pS0,rp;
S1wS1,lw; S1wS1,lp; S1pS1,lw; S1pS1,lp;
S1wS1,rw; S1wS1,rp; S1pS1,rw; S1pS1,rp;
S0wS1w; S0wS1p; S0pS1w; S0pS1p

Trigram
S0wS0pS0,lw; S0wS0,lwS0,lp; S0wS0pS0,lp;
S0pS0,lwS0,lp; S0wS0pS0,rw; S0wS0,lwS0,rp;
S0wS0pS0,rp; S0pS0,rwS0,rp;
S1wS1pS1,lw; S1wS1,lwS1,lp; S1wS1pS1,lp;
S1pS1,lwS1,lp; S1wS1pS1,rw; S1wS1,lwS1,rp;
S1wS1pS1,rp; S1pS1,rwS1,rp;
Linearizion
w0; p0; w−1w0; p−1p0; w−2w−1w0; p−2p−1p0;
S0,lwS0,l2w; S0,lpS0,l2p; S0,r2wS0,rw; S0,r2pS0,rp;
S1,lwS1,l2w; S1,lpS1,l2p; S1,r2wS1,rw; S1,r2pS1,rp;

Table 2: Feature templates.

resent a POS-tag. The feature templates can be clas-
sified into four types: unigram, bigram, trigram and
linearization. The first three types are taken from
the dependency parser of Zhang and Nivre (2011),
which capture context information for S0, S1 and
their modifiers. The original feature templates of
Zhang and Nivre (2011) also contain information of
the front words on the buffer. However, since the
buffer is unordered for linearization, we do not in-
clude these features.

The linearization feature templates are specific
for linearization, and captures surface ngram infor-
mation. Each search state represents a partially lin-
earized sentence. We represents the last word in the
partially linearized sentence as w0 and the second
last as w−1.

Given a set of labeled training examples, the av-
eraged perceptron (Collins, 2002) with early update
(Collins and Roark, 2004; Zhang and Nivre, 2011)
is used to train the parameters θ⃗ of the model.

3.2 Input Syntactic Constraints

The use of syntactic constraints to achieve better lin-
earization performance has been studied in previous
work. Wan et al. (2009) employ POS constraints

.......NP ..VBD ..NP ..IN ..NP ...
..Dr. Talcott1 ..led2 ..a team3 ..of4 ..Harvard University5 ...6

....

Figure 4: Example partial tree. Words in the same
sub dependency trees are grouped by rounded boxes.
Word indices do not specify their orders. Base
phrases (e.g. Dr. Talcott) are treated as single words.

in learning a dependency language model. Zhang
and Clark (2011b) take supertags as constraints to a
CCG linearizer. Zhang (2013) demonstrates the pos-
sibility of partial-tree linearization, which allows a
whole spectrum of input syntactic constraints. In
practice, input syntactic constraints, including POS
and dependency relations, can be obtained from ear-
lier stage of a generation pipeline, such as lexical
transfer results in machine translation.

It is relatively straightforward to apply input con-
straints to a best-first system (Zhang, 2013), but less
so for beam-search. In this section, we utilize the
input syntactic constraints by letting the information
decide the possible actions for each state, namely
the return value of GETPOSSIBLEACTIONS in Al-
gorithm 1, thus, when input POS-tags and depen-
dencies are given, the generation system can achieve
more specified outputs.

3.2.1 POS Constraints
POS is the simplest form of constraints to the

transition-based linearization system. When the
POS of an input word is given, the POS-tag com-
ponent in SHIFT-Word-POS operation is fixed, and
the number of SHIFT actions for the word is reduced
from the number of all POS to 1.

3.2.2 Partial Tree Constraints
In partial tree linearization, a set of dependency

arcs that form a partial dependency tree is given to
the linearization system as input constraints. Fig-
ure 4 illustrate an example. The search space can
be reduced by ignoring the transition sequences that
do not result in a dependency tree that is consis-
tent with the input constraints. Take the partial
tree in Figure 4 for example. At the state s =
([Harvard University5], set(1..n)-{5}, ∅), it is illegal
to shift the base phrase a team3 onto the stack, be-
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Algorithm 2: GETPOSSIBLEACTIONS for par-
tial tree linearization, where C is a partial tree

Input: A state s = ([σ|j i], ρ, A) and partial tree C
Output: A set of possible transition actions T

1 if s.σ is empty then
2 for k ∈ s.ρ do
3 T ← T ∪ (SHIFT, POS, k)

4 else
5 if REDUCABLE(s, i, j, C) then
6 T ← T ∪ (LEFTARC)

7 if REDUCABLE(s, j, i, C) then
8 T ← T ∪ (RIGHTARC)

9 for k ∈ s.β do
10 if SHIFTLEGAL(s, k, C) then
11 T ← T ∪ (SHIFT, POS, k)

12 return T

..
stack σ

.. . .. 4. 3.

4

.

5

(a)

... . .. 3. 1.

3

.

4

.

5

(b)
Figure 5: Two conditions for a valid LEFTARC ac-
tion in partial-tree linearization. The indices corre-
spond to those in Figure 4. A shaded triangle repre-
sents the readily built arcs under a root word.

cause this action will result in a sub-sequence (Har-
vard University5, a team3, of4), which cannot have
the dependency arcs {3 → 4}, {4 → 5} by using
arc-standard actions.

Algorithm 3 shows pseudocode of GETPOSSI-
BLEACTIONS when C is a partial tree. Given a state
s = ([σ|j i], ρ, A) the LEFTARC action builds an
arc {j ← i} and pops the word j off the stack.
Since the popped word j cannot be linked to any
words in future transitions, all the descendants of j
should have been processed and removed from the
stack. In addition, constrained by the given partial
tree, the arc {j ← i} should be an arc in C (Fig-
ure 5a), or j should be the root of a sub dependency
tree in C (Figure 5b). We denote the conditions as
REDUCABLE(s, i, j, C) (lines 5-6). The case for
RIGHTARC is similar to LEFTARC (lines 7-8).

For the SHIFT action, the conditions are more
complex. Due to space limitation, we briefly sketch

... . ..
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stack σ
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k
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(e)
Figure 6: 5 relations between k and l. The indices
correspond to those in Figure 4. The words in green
boxes must have arcs with k in future transitions.

the SHIFTLEGAL function below. Detailed algo-
rithm pseudocode for SHIFTLEGAL is given in the
supplementing material. For a word k in ρ to be
shifted onto the stack, all the words on the stack
must satisfy certain constraints. There are 5 possi-
ble relations between k and a word l on the stack.
(1) If l is a child of k in C (Figure 6a), all the words
on the stack from l to the top of the stack should be
reducable to k, because only LEFTARC can be ap-
plied between k and these words in future actions.
(2) If l is a grand child of k (Figure 6b), no legal
sentence can be constructed if k is shifted onto the
stack. (3) If l is the parent of k (Figure 6c), legal
SHIFTs require all the words on the stack from l to
the top to be reducable to k. (4) If l is a grand parent
of k, all the words on the stack from l to the top will
become descendants of l in the output (Figure 6e).
Thus these words must be descendants of l in C, or
the root of different subdependency trees. (5) If l is
a siblings of k, we denote a as the least common an-
cestor of k and l. a will become in the buffer and l
should be a direct child of a. All the words from l
to the top of the stack should be the descendants of
a in the output (Figure 6d), and thus a should have
the same conditions as in (4). Finally, if no word on
the stack is in the same subdependency tree as k in
C, then k can be safely shifted.
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Algorithm 3: GETPOSSIBLEACTIONS for full
tree linearization, where C is a full tree

Input: A state s = ([σ|j i], ρ, A) and gold tree C
Output: A set of possible transition actions T

1 T ← ∅
2 if s.σ is empty then
3 for k ∈ s.ρ do
4 T ← T ∪ (SHIFT, POS, k)

5 else
6 if ∃j, j ∈ (DESCENDANTS(i) ∩ s.ρ) then
7 for j ∈ (DESCENDANTS(i) ∩ s.ρ) do
8 T ← T ∪ (SHIFT, POS, j)

9 else
10 if {j → i} ∈ C then
11 T ← T ∪ (RIGHTARC)

12 else if {j ← i} ∈ C then
13 T ← T ∪ (LEFTARC)

14 else
15 for

k ∈ (SIBLINGS(i)∪HEAD(i))∩ s.ρ do
16 T ← T ∪ (SHIFT, POS, k)

17 return T

3.2.3 Full Tree Constraints
Algorithm 2 can also be used with full-tree con-

straints, which are a special case of partial-tree con-
straints. However, there is a conceptually simpler
algorithm that leverages full-tree constraints. Be-
cause tree linearization is frequently studied in the
literature, we describe this algorithm in Algorithm
3. When the stack is empty, we can freely move
any word in the buffer ρ onto the stack (line 2-4). If
not all the descendants of the stack top i have been
processed, the next transition actions should move
them onto the stack, so that arcs can be constructed
between i and these words (line 6-8). If all the de-
scendants of i have been processed, the next action
should eagerly build arcs between top two words i
and j on the stack (line 10-13). If no arc exists be-
tween i and j, the next action should shift the parent
word of i or a word in i’s sibling tree (line 14-16).

4 Experiments

We follow previous work and conduct experiments
on the Penn Treebank (PTB), using Wall Street Jour-
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iteration
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beamsize X1 X4 X16 X64 X128

Figure 7: Dev. results with different beam sizes.

nal sections 2–21 for training, 22 for development
testing and 23 for final testing. Gold-standard de-
pendency trees are derived from bracketed sentences
in the treebank using Penn2Malt1, and base noun
phrases are treated as a single word (Wan et al.,
2009; Zhang, 2013). The BLEU score (Papineni et
al., 2002) is used to evaluate the performance of lin-
earization, which has been adopted in former liter-
als (Wan et al., 2009; White and Rajkumar, 2009;
Zhang and Clark, 2011b) and recent shared-tasks
(Belz et al., 2011). We use our implementation of
the best-first system of Zhang (2013), which gives
the state-of-the-art results, as the baseline.

4.1 Influence of Beam size

We first study the influence of beam size by per-
forming free word ordering on the development test
data. BLEU score curves with different beam sizes
are shown in Figure 7. From this figure, we can see
that the systems with beam 64 and 128 achieve the
best results. However, the 128-beam system does
not improve the performance significantly (48.2 vs
47.5), but runs twice slower. As a result, we set the
beam size to 64 in the remaining experiments.

4.2 Input Syntactic Constraints

To test the effectiveness of GETPOSSIBLEACTIONS

under different input constraints, we follow Zhang
(2013) and feed different amounts of POS-tags and
dependencies to our transition-based linearization
system. Input syntactic constraints are obtained by
randomly sampling POS and dependencies from the
gold dependency tree. Nine development experi-
ments under different inputs are performed, and the

1http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html
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no pos 50% pos all pos no pos 50% pos all pos no pos 50% pos all pos
no dep no dep no dep 50% dep 50% dep 50% dep all dep all dep all dep

BL SP BL SP BL SP BL SP BL SP BL SP BL SP BL SP BL SP
Z13 42.9 4872 43.4 4856 44.7 4826 50.5 4790 51.4 4737 52.2 4720 73.3 4600 74.7 4431 76.3 4218
Ours 47.5 155 47.9 119 48.8 74 54.8 132 55.2 91 56.2 41 77.8 40 79.1 28 81.1 22

Table 3: Partial-tree linearizion results on the development test set. BL – the BLEU score, SP – number of
milliseconds to order one sentence. Z13 refers to the best-first system of Zhang (2013).

0.900

0.925

0.950

0.975

1.000

1−
8

9−
11

12
−

14

15
−

17

18
−

20

21
−

24

25
−

32

33
−

16
4

 

 

system

bestfirst

ours

Figure 8: Comparison between transition-based and
best-first systems on surface string brevity.

Precision Recall F
len Z13 ours Z13 ours Z13 ours
< 5 24.63 20.45 14.56 21.82 18.3 21.11
< 10 15.20 16.33 10.59 15.88 12.48 16.1
< 15 10.82 14.73 9.38 14.08 10.05 14.4
< 30 8.18 12.54 8.26 12.43 8.22 12.49

Table 4: Precision, recall and F-score comparison on
different spans lengths.

BLEU scores along with the average time to order
one sentence are shown in Table 3.

With more syntactic information in the input, our
linearization system achieves better performance,
showing that GETPOSSIBLEACTIONS can take ad-
vantage of the input constraints and yield more spec-
ified output. In addition, because input constraints
reduce the search space, the systems with more syn-
tactic information achieve faster decoding speeds. In
comparison with Zhang (2013), the transition-based
system achieves improved accuracies under the set-
tings, and the decoding speed can be over two orders
of magnitude faster (22ms vs. 4218ms). We give
more detailed analysis next.

4.3 Comparison with Best-First
The beam-search linearizer takes a very differ-
ent search strategy compared with best-first search,
which affects the error distribution. As mentioned
earlier, one problem of best-first is the lack of the-
oretical guarantee on time complexity. As a result,
a time constraint is used and default output can be
constructed when no full output is found (White,
2004b; Zhang and Clark, 2011b). This may result
in incomplete output sentences and intuitively, this
problem is more severe for larger bag of words. In
contrast, the transition-based linearization algorithm
takes |2n| steps to generate a sentence and thus guar-
antees to order all the input words. Figure 8 shows
the results by comparing the brevity scores (i.e. the
number of words in the output divided by the num-
ber of words in reference sentence) on different sizes
of inputs. Best-search can fail to order all the in-
put words even on bags of 9 – 11 words, and the
case is more severe for larger bag of words. On the
other hand, the transition-based method uses all the
input words to generate output and the brevity score
is constant 1. Since the BLEU score consists two
parts: the n-gram precision and brevity, this com-
parison partly explains why the transition-based lin-
earization algorithm achieves higher BLEU scores.

To further compare the difference between the
two systems, we evaluate the qualities of projective
spans, which are dependency treelets. Both systems
build outputs bottom-up by constructing projective
spans, and a break-down of span accuracies against
span sizes shows the effects of the different search
algorithms. The results are shown in Table 4. Ac-
cording to this table, the best-first system tends to
construct smaller spans more precisely, but the re-
call is relatively lower. Overall, higher F-scores are
achieved by the transition-based system.

During the decoding process, the best-first sys-
tem compares spans of different sizes and expands
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Figure 9: Distributions of spans outputted by the
best-first, transition-based systems and the gold
trees.

no pos all pos all pos
no dep no dep all dep

Wan et al. (2009) - 33.7 -
Zhang and Clark (2011b) - 40.1 -
Zhang et al. (2012) - 43.8 -
Zhang (2013) 44.7 46.8 76.2
This paper 49.4 50.8 82.3

Table 5: Final results.

those that have higher scores. As a result, the num-
ber of expanded spans do not have a fixed correlation
with the size, and there can be fewer but better small
spans expanded. In contrast, the transition-based
system models transition sequences rather than indi-
vidual spans, and therefore the distribution of spans
of different sizes in each hypothesis resembles that
of the training data. Figure 9 verifies the analysis by
counting the distributions of spans with respect to
the length, in the search algorithms of the two sys-
tems and the gold dependency trees. The distribu-
tion of the transition-based system is closer to that
of gold dependency trees, while the best-first sys-
tem outputs less smaller spans and more longer ones.
This explains the higher precision for the best-first
system on smaller spans.

4.4 Final Results

The final results on the test set of Penn Treebank are
shown in Table 5. Compared with previous studies,
our transition-based linearization system achieves
the best results on all the tests. Table 6 shows some
example output sentences, when there are no input
constraints. For longer sentences, the transition-
based method gives noticeably better results.

output BL
ref. There is no asbestos in our products now .
Z13 There is no asbestos now in our products . 43.5
ours There is now our products in no asbestos . 17.8
ref. Previously , watch imports were denied

such duty-free treatment .
Z13 such duty-free treatment Previously ,

watch imports were denied .
67.6

ours Previously , watch imports were denied
such duty-free treatment .

100

ref. Despite recent declines in yields , investors
continue to pour cash into money funds .

Z13 continue yields investors pour to recent de-
clines in cash , into money funds

20.1

ours Despite recent declines in yields into
money funds , investors continue to pour
cash .

67.0

Table 6: Example outputs.

5 Related Work

The input to practical natural language generation
(NLG) system (Reiter and Dale, 1997) can range
from a bag of words and phrases to a bag of lem-
mas without punctuation (Belz et al., 2011). The
linearization module of this paper can serve as the
final stage in a pipeline when the bag of words and
their optional syntactic information are given. There
has also been work to jointly perform linearization
and morphological generation (Song et al., 2014).

There has been work on linearization with unla-
beled and labeled dependency trees (He et al., 2009;
Zhang, 2013). These methods mostly use greedy or
best-first algorithms to order each tree node. Our
work is different by performing word ordering using
a transition process.

Besides dependency grammar, linearization with
other syntactic grammars, such as CFG and CCG
(White and Rajkumar, 2009; Zhang and Clark,
2011b), has also been studied. In this paper, we
adopt the dependency grammar for transition-based
linearization. However, since transition-based pars-
ing algorithms has been successfully applied to dif-
ferent grammars, including CFG (Sagae et al., 2005)
and CCG (Xu et al., 2014), our linearization method
can be applied to these grammars.
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6 Conclusion

We studied transition-based syntactic linearization
as an extension to transition-based parsing. Com-
pared with best-first systems, the advantage of our
transition-based algorithm includes bounded time
complexity, and the guarantee to yield full sen-
tences when given a bag of words. Experimen-
tal results show that our algorithm achieves im-
proved accuracies, with significantly faster decod-
ing speed compared with a state-of-the-art best-first
baseline. We publicly release our code at http:
//sourceforge.net/projects/zgen/.

For future work, we will study the incorporation
of large-scale language models, and the integration
of morphology generation and linearization.
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