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Abstract

Incremental parsers have potential advantages
for applications like language modeling for
machine translation and speech recognition.
We describe a new algorithm for incremental
transition-based Combinatory Categorial
Grammar parsing. As English CCGbank
derivations are mostly right branching and
non-incremental, we design our algorithm
based on the dependencies resolved rather
than the derivation. We introduce two new ac-
tions in the shift-reduce paradigm based on the
idea of ‘revealing’ (Pareschi and Steedman,
1987) the required information during pars-
ing. On the standard CCGbank test data, our
algorithm achieved improvements of 0.88%
in labeled and 2.0% in unlabeled F-score over
a greedy non-incremental shift-reduce parser.

1 Introduction

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is an efficiently parseable, yet lin-
guistically expressive grammar formalism. In
addition to predicate-argument structure, CCG
elegantly captures the unbounded dependencies
found in grammatical constructions like relativiza-
tion, coordination etc. Availability of the English
CCGbank (Hockenmaier and Steedman, 2007) has
enabled the creation of several robust and accurate
wide-coverage CCG parsers (Hockenmaier and
Steedman, 2002; Clark and Curran, 2007; Zhang
and Clark, 2011). While the majority of CCG
parsers use chart-based approaches (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007), there
has been some work on developing shift-reduce

parsers for CCG (Zhang and Clark, 2011; Xu et al.,
2014). Most of these parsers model normal-form
CCG derivations (Eisner, 1996), which are mostly
right-branching trees : hence are not incremental
in nature. The dependency models of Clark and
Curran (2007) and Xu et al. (2014) model depen-
dencies rather than derivations, but do not guarantee
incremental analyses.

Besides being cognitively plausible (Marslen-
Wilson, 1973), incremental parsing is more useful
than non-incremental parsing for some applications.
For example, an incremental analysis is required
for integrating syntactic and semantic information
into language modeling for statistical machine
translation (SMT) and automatic speech recognition
(ASR) (Roark, 2001; Wang and Harper, 2003).

This paper develops a new incremental shift-
reduce algorithm for parsing CCG by building a
dependency graph in addition to the CCG derivation
as a representation. The dependencies in the graph
are extracted from the CCG derivation. A node can
have multiple parents, and hence we construct a
dependency graph rather than a tree. Two new ac-
tions are introduced in the shift-reduce paradigm for
“revealing” (Pareschi and Steedman, 1987) unbuilt
structure during parsing. We build the dependency
graph in parallel to the incremental CCG derivation
and use this graph for revealing, via these two
new actions. On the standard CCGbank test data,
our algorithm achieves improvements of 0.88% in
labeled F-score and 2.0% in unlabeled F-score over
a greedy non-incremental shift-reduce algorithm.
As our algorithm does not model derivations, but
rather models transitions, we do not need a treebank
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Figure 1: Normal form CCG derivation.

of incremental CCG derivations and can train on the
dependencies in the existing treebank. Our approach
can therefore be adapted to other languages with
dependency treebanks, since CCG lexical categories
can be easily extracted from dependency treebanks
(Cakici, 2005; Ambati et al., 2013).

The rest of the paper is arranged as follows.
Section 2 gives a brief introduction to related
work in the areas of CCG parsing and incremental
parsing. In section 3, we describe our incremental
shift-reduce parsing algorithm. Details about the
experiments, evaluation metrices and analysis of the
results are in section 4. We conclude with possible
future directions in section 5.

2 Related Work

In this section, we first give a brief introduction to
various available CCG parsers. Then we describe
approaches towards incremental and greedy parsing.

2.1 CCG Parsers

There has been a significant amount of work on
developing chart-based parsers for CCG. Both
generative (Hockenmaier and Steedman, 2002) and
discriminative (Clark et al., 2002; Clark and Curran,
2007; Auli and Lopez, 2011; Lewis and Steedman,
2014) models have been developed. As these parsers
employ a bottom-up chart-parsing strategy and use
normal-form CCGbank derivations which are right-
branching, they are not incremental in nature. In an
SVO (Subject-Verb-Object) language, these parsers
first attach the object to the verb and then the subject.

Two major works in shift-reduce CCG parsing
with accuracies competitive with the widely used
Clark and Curran (2007) parser (C&C) are Zhang
and Clark (2011) and Xu et al. (2014). Zhang and
Clark (2011) used a global linear model trained
discriminatively with the averaged perceptron
(Collins, 2002) and beam search for their shift-
reduce CCG parser. Xu et al. (2014) developed a

dependency model for shift-reduce CCG parsing
using a dynamic oracle technique. Unlike the chart
parsers, both these parsers can produce fragmentary
analyses when a complete spanning analysis is not
found. Both these shift-reduce parsers are more
incremental than standard chart based parsers.
But, as they employ an arc-standard (Yamada and
Matsumoto, 2003) shift-reduce strategy on CCG-
bank, given an SVO language, these parsers are not
guaranteed to attach the subject before the object.

2.2 Incremental Parsers

A strictly incremental parser is one which computes
the relationship between words as soon as they
are encountered in the input. Shift-reduce CCG
parsers rely either on CCGbank derivations (Zhang
and Clark, 2011) which are non-incremental, or
on dependencies (Xu et al., 2014) which could be
incremental in simple cases, but do not guarantee
incrementality. Hassan et al. (2009) developed a
semi-incremental CCG parser by transforming the
English CCGbank into left branching derivation
trees. The strictly incremental version performed
with very low accuracy but a semi-incremental
version gave a balance between incrementality and
accuracy. There is also some work on incremental
parsing using grammar formalisms other than CCG
like phrase structure grammar (Collins and Roark,
2004) and tree substitution grammar (Sangati and
Keller, 2013).

2.3 Greedy Parsers

There has been a significant amount of work on
greedy shift-reduce dependency parsing. The Malt
parser (Nivre et al., 2007) is one of the earliest
parsers based on this paradigm. Goldberg and
Nivre (2012) improved learning for greedy parsers
by using dynamic oracles rather than a single static
transition sequence as the oracle. In all the standard
shift-reduce parsers, when two trees combine, only
the top node (root) of each tree participates in the
action. Sartorio et al. (2013) introduced a technique
where in addition to the root node, nodes on the right
and left periphery respectively are also available for
attachment in the parsing process. A non-monotonic
parsing strategy was introduced by Honnibal et
al. (2013), where an action taken during the parsing
process is revised based on future context.
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(1) S [ NPJohn

(2) S [ NPJohn (S\NP)/NPlikes

(3) S [ NPJohn (S\NP)/NPlikes NPmangoes

(4) S [ NPJohn (S\NP)/NPlikes NPmangoes (NP\NP)/NPfrom

(5) S [ NPJohn (S\NP)/NPlikes NPmangoes (NP\NP)/NPfrom NPIndia

(6) RR [ NPJohn (S\NP)/NPlikes NPmangoes NP\NPfrom

(7) RR [ NPJohn (S\NP)/NPlikes NPmangoes

(8) RR [ NPJohn S\NPlikes

(9) S [ NPJohn S\NPlikes (S\NP)\(S\NP)madly

(10) RR [ NPJohn S\NPlikes

(11) RL [ Slikes

likes

John mangoes

from

India

madly

(11) (10)
(8)

(7)

(6)

Figure 2: NonInc - Sequence of actions with parser configuration and the corresponding dependency graph.

Though the performance of these greedy parsers
is less accurate than related parsers using a beam
(Zhang and Nivre, 2011), greedy parsers are inter-
esting as they are very fast and are practically use-
ful in large-scale applications such as parsing the
web and online machine translation or speech recog-
nition. In this work, we develop a new greedy
transition-based algorithm for incremental CCG
parsing, which is more incremental than Zhang and
Clark (2011) and Xu et al. (2014) and more accu-
rate than Hassan et al. (2009). Our algorithm is not
strictly incremental as we only produce derivations
which are compatible with the Strict Competence
Hypothesis (Steedman, 2000) (details in §3.2.3).

3 Algorithms

We first describe the Zhang and Clark (2011) style
shift-reduce algorithm for CCG parsing. Then we
explain our incremental algorithm based on the “re-
vealing” technique for shift-reduce CCG parsing.

3.1 Non Incremental Algorithm (NonInc)

This is our baseline algorithm and is similar to
Zhang and Clark (2011)’s algorithm (henceforth
NonInc). It consists of an input buffer and a stack
and has four major parsing actions.

• Shift - X (S) : Pushes a word from the input
buffer to the stack and assigns a CCG category
X. This action performs category disambigua-
tion as well, as X can be any of the categories
assigned by a supertagger.

• Reduce Left - X (RL) : Pops the top two nodes
from the stack, combines them into a new node
and pushes it back onto the stack with a cate-
gory X. This corresponds to binary rules in the
CCGbank (e.g. CCG combinators like function

application, composition etc., and punctuation
rules). In this action the right node is the head
and hence the left node is reduced.

• Reduce Right - X (RR) : This action is similar
to the RL (Reduce Left -X) action, except that
in this action the right node is reduced since the
left node is the head.

• Unary - X (U) : Pops the top node from the
stack, converts it into a new node with category
X and pushes it back on the stack. The head
remains the same in this action. This action
corresponds to unary rules in the CCGbank
(unary type-changing and type-raising rules).

Figure 1 shows a normal-form CCG derivation
for an example sentence ‘John likes mangoes from
India madly’. Figure 2 shows the sequence of steps
using the NonInc algorithm for parsing the sentence.
For simplicity and space reasons, unary productions
leading to NP are not described. From step 1
through step 5, the first five words in the sentence
(John, likes, mangoes, from, India) are shifted with
corresponding categories using shift actions (S).
In step 6, (NP\NP)/NP:from and NP:India
are combined using the Reduce-Right (RR) action
to form NP\NP:from which is combined with
NP:mangoes in step 7 to form NP:mangoes.
Step 8 combines (S\NP)/NP:likes with
NP:mangoes to form S\NP:likes using RR ac-
tion. Then the next word ‘madly’ is shifted in step 9,
which is then combined with S\NP:likes in step
10. In step 11, NP:John and S\NP:likes are
combined using Reduce-Left (RL) action leading to
S:likes. The parsing process terminates at this
step as there are no more tokens in the input buffer
and as there is only a single node left in the stack.
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(1) S [ NPJohn

(2) S [ NPJohn (S\NP)/NPlikes

(3) RL [ S/NPlikes

(4) S [ S/NPlikes NPmangoes

(5) RR [ Slikes

(6) S [ Slikes (NP\NP)/NPfrom

(7) S [ Slikes (NP\NP)/NPfrom NPIndia

(8) RR [ Slikes NP\NPfrom

(9) RRev [ Slikes

(10) S [ Slikes (S\NP)\(S\NP)madly

(11) LRev [ Slikes

likes

John mangoes

from

India

madly

(3) (11)
(5)

(9)

(8)

Figure 3: RevInc - Sequence of actions with parser configuration and the corresponding dependency graph.

We use indexed CCG categories (Clark et al.,
2002) and obtain the CCG dependencies after every
action to build the dependency graph in parallel
to the CCG derivation. This is similar to Xu et
al. (2014) but differs from Zhang and Clark (2011),
who extract the dependencies at the end after ob-
taining a derivation for the entire sentence. Figure
2 also shows the dependency graph generated and
the arc labels give the step ID after which the
dependency is generated.

3.2 Revealing based Incremental Algorithm
(RevInc)

The NonInc algorithm described above is not incre-
mental because it relies purely on the mostly right-
branching CCG derivation. In our example sentence,
the verb (likes) combines with the subject (John)
only at the end (step ID = 11) after all the remain-
ing words in the sentence are processed, making
the parse non-incremental. In this section we de-
scribe a new incremental algorithm based on a ‘re-
vealing’ technique (Pareschi and Steedman, 1987)
which tries to build the most incremental derivation.

3.2.1 Revealing
Pareschi and Steedman (1987)’s original version

of revealing was defined in terms of (implicitly
higher-order) unification. It was based on the fol-
lowing observation. If we think of categories as
terms in a logic programming language, then while
we usually think of CCG combinatory rules like the
following as applying with the two categories on the
left X/Y and Y as inputs, say instantiated as S/NP
and NP , to define the category X on the right as
S, in fact instantiating any two of those categories
defines the third.

X/Y Y =⇒ X

For example, if we define X and X/Y as S and
S/NP , we clearly define Y as NP . They pro-
posed to use unification-based revealing to recover
unbuilt constituents in from the result of overly-
greedy incremental parsing. A related second-
order matching-based mechanism was used by
(Kwiatkowski et al., 2010) to decompose logical
forms for semantic parser induction.

The present incremental parser uses a related
revealing technique confined to the right periphery.
Using CCG combinators and rules like type-raising
followed by forward composition, we combine
nodes in the stack if there is a dependency between
them. However, this can create problems for the
newly shifted node as its dependent might already
have been reduced. For instance, if the object
‘mangoes’ is reduced after it is shifted to the stack,
then it won’t be available for the preposition phrase
(PP) ‘from India’ (of course, this goes for more
complex NPs as well). We have to extract ‘man-
goes’, which is hidden in the derivation, so as to
make the correct attachment to the PP. This is where
revealing comes into play. Mangoes is ‘revealed’
so that it is available to attach to the PP following
it, although it has already been reduced. To handle
this, in addition to the four actions of the NonInc
algorithm, we introduce two new actions: Left
Reveal (LRev) and Right Reveal (RRev). For this,
after every action, in addition to updating the stack
we also keep track of the dependencies resolved
and update the dependency graph accordingly1. In
other words, we build the dependency graph for the

1Xu et al. (2014) also obtain CCG dependencies after every
action. But they don’t have a dependency graph which is up-
dated based on the CCG derivation and used in the CCG parsing
(in our case for LRev and RRev actions).
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Slikes NP\NPfrom
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S/NPlikes NPmangoes
<

NP
>

S

(a) RRev

Slikes (S\NP)\(S\NP)madly
R <
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<

S\NP
<

S

(b) LRev
Figure 4: RRev and LRev actions.

sentence in parallel to the CCG derivation. As these
dependencies are extracted from the CCG deriva-
tion, a node can have multiple parents and hence we
construct a dependency graph rather than a tree.

• Left Reveal (LRev) : Pop the top two nodes in
the stack (left, right). Identify the left node’s
child with a subject dependency. Abstract over
this child node and split the category of left
node into two categories. Combine the nodes
using CCG combinators accordingly. VP mod-
ifiers like VP coordination require this action.

• Right Reveal (RRev) : Pop the top two nodes
in the stack (left, right). Check the right
periphery of the left node in the dependency
graph, extract all the nodes with compatible
CCG categories and identify all the possible
nodes that the right node can combine with.
Abstract over this node (e.g. object), split the
category into two categories accordingly and
combine the nodes using CCG combinators.
Constructions like NP coordination, and PP
attachment require this action.

3.2.2 Worked Example
Figure 3 shows the sequence of steps for the ex-

ample sentence described above. In steps 1 and
2, the first two words in the sentence: ‘John’ and
‘likes’, are shifted from the input buffer to the stack.
In addition to standard CCG combinators of appli-
cation and composition, we also use type-raising
followed by forward composition2. In step 3, the
category of the left node ‘John’, NP, is type-raised
to S/(S\NP) which is then combined with the
category of right node ‘likes’, (S\NP)/NP, using
forward composition operator to yield the category
S/NP. This step also updates the dependency graph
with an edge between ‘John’ and ‘likes’, where
‘likes’ is the parent and ‘John’ is the child. The

2Type-raising followed by forward composition is treated as
a single step. Without this, after type-raising, the parser has to
check all possible actions before applying forward composition,
making it slower.

next word ‘mangoes’ is shifted in step 4 and com-
bined with S/NP:likes in step 5 using RR action
yielding S:likes. After this step, the dependency
graph will have ‘likes’ as the root, with ‘John’ and
‘mangoes’ as its children. In this way, as our algo-
rithm tries to be more incremental, both subject and
object arguments are resolved as soon as the corre-
sponding tokens are shifted to the stack.

In steps 6 and 7, the next two words ‘from’
and ‘India’ are shifted to the stack. Step 8 com-
bines (NP\NP)/NP:from and NP:India using
RR action to form NP\NP:from. Now, we ap-
ply the RRev action in step 9 to correctly attach
‘from’ to ‘mangoes’. In RRev we first check the
right periphery and identify a possible node to be
attached, ‘mangoes’, which is the object argument
of the verb ‘likes’. We abstract over this object and
split the category in the following manner: If X is
the category of the left node and Y\Y is the cate-
gory of the right node, then X is split into X/Y and
Y with corresponding heads. The head of the left
node will be the head of X/Y, and the dependency
graph helps in identifying the correct head for Y.
Now, Y and Y\Y can be combined using the back-
ward application rule to form Y, which can be com-
bined with X/Y to form X back. In our example
sentence, S:likes is split into S/NP:likes and
NP:mangoes. NP:mangoes is combined with
NP\NP:from to form NP:mangoes, which in re-
turn combines with S/NP:likes and forms back
S:likes. Figure 4(a) sketches this process. This
action also updates the dependency graph with a de-
pendency between ‘mangoes’ and ‘from’.

The next word ‘madly’ is shifted in step 10,
after which the stack has two nodes S:likes and
(S\NP)\(S\NP):madly. We apply the LRev
action to combine these two nodes. We abstract over
the subject of the left node, ‘likes’, and split the cat-
egory. Here, S:likes is split into NP:John and
S\NP:likes. S\NP:likes is combined with
(S\NP)\(S\NP):madly to form S\NP:likes,
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which in return combines with NP:John and forms
back S:likes. The dependency graph is updated
with a dependency between ‘likes’ and ‘madly’.
Note that the final output is a standard CCG tree.
Figure 4(b) shows this LRev action.

3.2.3 Analysis
Our incremental algorithm uses a combination

of the CCG derivation and a dependency graph
that helps to ‘reveal’ unbuilt structure in the CCG
derivation by identifying heads of the revealed
categories. For example in Figure-4a, in RRev
action, S:likes is split into S/NP:likes and
NP:mangoes. The splitting of categories is deter-
ministic but the right periphery of the dependency
graph helps in identifying the head, which is ‘man-
goes’. The theoretical idea of ‘revealing’ is from
Pareschi and Steedman (1987), but they used only a
toy grammar without a model or empirical results.
Checking the right periphery is similar to Sartorio et
al. (2013) and abstracting over the left or right argu-
ment is similar to Dalrymple et al. (1991). Currently,
we abstract only over arguments. Adding a new
action to abstract over the verb as well will make our
algorithm handle ellipses in the sentences like ‘John
likes mangoes and Mary too’ similar to Dalrymple
et al. (1991) but we leave that for future work.

Our system is monotonic in the sense that the set
of dependency relationships grows monotonically
during the parsing process. Our algorithm gives
derivations almost as incremental as Hassan et
al. (2009) but without changing the lexical cate-
gories and without backtracking. The only change
we made to the CCGbank is making the main verb
the head of the auxiliary rather than the reverse as in
CCGbank derivations. In the right derivational trees
of CCGbank, the main verb is the head for its right
side arguments and the auxiliary verb is the head for
the left side arguments in the derivation. Not chang-
ing the head rule would make our algorithm use the
costly reveal actions significantly more, which we
avoid by changing the head direction. 3% of the
total dependencies are affected by this modification.

Though our algorithm can be completely incre-
mental, we currently compromise incrementality in
the following cases:
(a) no dependency between the nodes in the stack
(b) unary type-changing and non-standard binary

rules

(c) adjuncts like VP modifiers and coordinate con-
structions like VP, sentential coordination.

We find empirically that extending incrementality
to cover these cases actually reduces parsing perfor-
mance significantly. It also violates the Strict Com-
petence Hypothesis (SCH) (Steedman, 2000), which
argues on evolutionary and developmental grounds
that the parser can only build constituents that are ty-
pable by the competence grammar. We explored the
adjunct case of attaching only the preposition first
rather than creating a complete prepositional phrase
and then attaching it to correct parent. In our exam-
ple sentence, this would be the case of attaching the
preposition ‘from’ to its parent using RRev and then
combining the NP ‘India’ accordingly as opposed to
creating the preposition phrase ‘from India’ first and
then using RRev action to attach it to the correct
parent. Though the former is more incremental, it
is inconsistent with the SCH. The latter analysis
is consistent with strict competence and also gave
better parsing performance while compromising in-
crementality only slightly. The empirical impact of
these differing degrees of incrementality on extrin-
sic evaluation of our algorithm in terms of language
modeling for SMT or ASR is left for future work.

Using our incremental algorithm, we converted
the CCGbank derivations into a sequence of shift-
reduce actions. We could convert around 98% of the
derivations, which is the coverage of our algorithm,
recovering around 99% dependencies. Problematic
cases are mainly the ones which involve non-
standard binary rules, and punctuations with lexical
CCG categories other than ‘conj’, used as a conjunc-
tion, or ‘,’ which is treated as a punctuation mark.

4 Experiments and Results

We re-implemented Zhang and Clark (2011)’s
model for our experiments. We used their global
linear model trained with the averaged perceptron
(Collins, 2002). We applied the early-update strat-
egy of Collins and Roark (2004) while training. In
this strategy, when we don’t use a beam, decoding is
stopped when the predicted action is different from
the gold action and weights are updated accordingly.
We use the feature set of Zhang and Clark (2011)
(Z&C) for the NonInc algorithm. This feature set
comprises of features over the top four nodes in the
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stack and the next four words in the input buffer.
Complete details of the feature set can be found in
their paper. For our own model, RevInc, in addition
to these features used for NonInc, we also provide
features based on the right periphery of top node
in the stack. For nodes in the right periphery, we
provide uni-gram and bi-gram features based on the
node’s CCG category. For example, if S0 is the node
on the top of the stack, B1 is the bottom most node in
the right periphery, and c represent the node’s CCG
category, then B1c, and B1cS0c are the uni-gram
and bi-gram features respectively.

Unlike Z&C, we do not use a beam for our ex-
periments, although we use a beam of 16 for com-
parison of our results with their parser. The lat-
ter gives competitive results with the state-of-the-
art CCG parsers. Z&C and Xu et al. (2014), use
C&C’s generate script and unification mecha-
nism respectively to extract dependencies for eval-
uation. C&C’s grammar doesn’t cover all the lex-
ical categories and binary rules in the CCGbank.
To avoid this, we adapted Hockenmaier’s scripts
used for extracting dependencies from the CCGbank
derivations. These are the two major divergences in
our re-implementation from Z&C.

4.1 Data and Settings

We use standard CCGbank training (sections 02 −
21), development (section 00) and testing (section
23) splits for our experiments. All sentences in
the training set are used to train NonInc. But for
RevInc, we used 98% of the training set (the cover-
age of our algorithm). We use automatic POS-tags
and lexical CCG categories assigned using the
C&C POS tagger and supertagger respectively for
development and test data. For training data, these
tags are assigned using ten-way jackknifing. Also,
for lexical CCG categories, we use a multitagger
which assigns k-best supertags to a word rather than
1-best supertagging (Clark and Curran, 2004). The
number of supertags assigned to a word depends
on a β parameter. Unlike Z&C, the default value of
β gave us better results rather than decreasing the
value. Not using a beam could be the reason for this.

Following Z&C and Xu et al. (2014), during
training, we also provide the gold CCG lexical
category to the list of CCG lexical categories for a
word if it is not assigned by the supertagger.

4.2 Connectedness and Waiting Time
Before evaluating the performance of our algorithm,
we introduce two measures of incrementality:
connectedness and waiting time. In a shift-reduce
parser, a derivation is fully connected when all the
nodes in the stack are connected leading to only
one node in the stack at any point of time. We
measure the average number of nodes in the stack
before shifting a new token from input buffer to
the stack, which we call as connectedness. For
a fully connected incremental parser like Hassan
et al. (2009), connectedness would be one. As
our RevInc algorithm is not fully connected, this
number will be greater than one. For example, in
a noun phrase ‘the big book’, when ‘the’ and ‘big’
are in the stack, as there is no dependency between
these two words, our algorithm doesn’t combine
these two nodes resulting in having two nodes in the
stack3. Second column in Table 1 gives this number
for both NonInc and RevInc algorithms. Though our
algorithm is not fully connected, connectedness of
our algorithm is significantly lower than the NonInc
algorithm as our algorithm is more incremental.

Algorithm Connectedness Waiting Time
NonInc 4.62 2.98
RevInc 2.15 0.69

Table 1: Connectedness and waiting time.

We define waiting time as the number of nodes
that need to be shifted to the stack before a de-
pendency between any two nodes in the stack is
resolved. In our example sentence, there is a de-
pendency between ‘John’ and ‘likes’. For NonInc,
this dependency is resolved only after all the four
remaining words in the sentence are shifted. In other
words, it has to wait for four more words before
this dependency is resolved and hence the waiting
time is four. Whereas, in our RevInc algorithm,
this dependency is resolved immediately, without
waiting for more words to be shifted, and hence
the waiting time is zero. The third column in Table
1 gives the waiting time for both the algorithms.
Since we compromised incrementality in cases like
coordination, waiting time for our RevInc algorithm
is not zero but it is significantly lower than the

3This is a case where the dependencies are not true to the
CCG grammar, and make our algorithm less incremental than
SCH would allow.
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Algorithm UP UR UF LP LR LF Cat Acc.
NonInc (beam=1) 92.57 82.60 87.30 85.12 75.96 80.28 91.10
RevInc (beam=1) 91.62 85.94 88.69 83.42 78.25 80.75 90.87
NonInc (beam=16) 92.71 89.66 91.16 85.78 82.96 84.35 92.51
Z&C (beam=16)* - - - 87.15 82.95 85.00 92.77

Table 2: Performance on the development data. *: These results are from the Z&C paper.

NonInc algorithm and hence more incremental.
This property is likely to be crucial for future
applications in ASR and SMT language modeling.

4.3 Results and Analysis
We trained the perceptron for both NonInc and
RevInc algorithms using the CCGbank training data
for 30 iterations, and the models which gave best
results on development data are directly used for test
data. Table 2 gives the unlabeled precision (UP), re-
call (UR), F-score (UF) and labeled precision (LP),
recall (LR), F-score (LF) results of both NonInc and
RevInc approaches on the development data. Last
column in the table gives the category accuracy. We
used the modified CCGbank for all experiments,
including NonInc, for consistent comparisons.
For NonInc, the modification decreased unlabeled
F-score by 0.45%, without a major difference in
labeled F-score.

Our incremental algorithm gives 1.39% and
0.47% improvements over the NonInc algorithm
in unlabeled and labeled F-scores respectively. For
both unlabeled and labeled scores, precision of
RevInc is slightly lower than NonInc but the recall
of RevInc is much higher than NonInc resulting in
a better F-score for RevInc. As NonInc is not incre-
mental and as it uses more context to the right while
making a decision, it makes more precise actions.
But, on the other hand, if a node is reduced, it is not
available for future actions. This is not a problem
for our RevInc algorithm which is the reason for
higher recall. For example, in the example sentence,
‘John likes mangoes from India madly’, if the object
‘mangoes’ is reduced after it got shifted to the stack,
then in case of NonInc, the preposition phrase ‘from
India’ can never be attached to ‘mangoes’. But,
RevInc makes the correct attachment using RRev
action. Category accuracy of NonInc is better than
RevInc, since NonInc can use more context before
taking a complex action and is less prone to error
propagation compared to RevInc.

To compare these results in the perspective of
Z&C’s parser we also trained our NonInc parser
with a beam size of 16 similar to Z&C. The second
last row in Table 2 (NonInc (beam=16)) shows
these results and the last row presents the results
from their paper. Results with our implementation
of Z&C are 0.65% lower than the published results,
possibly due to the modification made in the head
rule, and other minor differences like the supertag-
ger beta value. Unlabeled and labeled F-scores of
our RevInc parser are lower than these numbers.
But, given that our RevInc parser doesn’t use any
beam, these margins are reasonable.

We also analyzed the label-wise scores of
both NonInc and RevInc. In general, NonInc is
better in precision and RevInc is better in recall.
In the case of verbal arguments ((S\NP)/NP)
and verbal modifiers ((S\NP)\(S\NP)), the
F-score of RevInc is better than that of NonInc.
But NonInc performed better than RevInc in
the case of preposition phrase (PP) attachments
((NP\NP)/NP, ((S\NP)\(S\NP))/NP). More
context is required for better PP attachment which
is provided by the fact that NonInc has a context
of several unreduced types for the model to work
with, whereas RevInc has fewer. Whereas actions
like LRev are required to correctly attach the verbal
modifiers (‘madly’) if the subject argument (‘John’)
of the verb (‘likes’) is reduced early. Table 3 gives
the results of these CCG lexical categories.

Category RevInc NonInc
(NP\NP)/NP 81.36 83.21
(NP\NP)/NP 78.66 82.94
((S\NP)\(S\NP))/NP 65.09 66.98
((S\NP)\(S\NP))/NP 62.69 65.89
((S[dcl]\NP)/NP 78.96 78.29
((S[dcl]\NP)/NP 76.71 75.22
(S\NP)\(S\NP) 80.49 76.90

Table 3: Label-wise F-score of RevInc and NonInc
parsers (both with beam=1). Argument slots in the
relation are in bold.
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Algorithm UP UR UF LP LR LF Cat Acc.
NonInc (beam=1) 92.45 82.16 87.00 85.59 76.06 80.55 91.39
RevInc (beam=1) 91.83 86.35 89.00 84.02 79.00 81.43 91.17
NonInc (beam=16) 92.68 89.57 91.10 86.20 83.32 84.74 92.70
Z&C (beam=16)* - - - 87.43 83.61 85.48 93.12
Hassan et al. 09* - - 86.31 - - - -

Table 4: Performance on the test data. *: These results are from their paper.

We also analyzed the performance of the greedy
(beam=1) NonInc and RevInc parsers in terms of
parsing speed (excluding pos tagger and supertag-
ger time). NonInc and RevInc parse 110 and 125
sentences/second respectively. Despite the complex-
ity of the revealing actions, RevInc is faster than
the NonInc. Significant amount of parsing time is
spent on the feature extraction step. Features from
top four nodes in the stack and their children are ex-
tracted for both the algorithms. Since the average
connectedness of RevInc and NonInc are 4.62 and
2.15 respectively, on average, all four nodes in the
stack are processed for NonInc and only two nodes
are processed for RevInc. Because of this there is
significant reduction in the feature extraction step
for RevInc compared to NonInc. Also, the complex
LRev and RRev actions only constituted 5% of the
total actions in the parsing process.

Table 4 presents the results of our approaches on
test data. Our incremental algorithm, RevInc, gives
2.0% and 0.88% improvements over NonInc in un-
labeled and labeled F-scores respectively on the test
data. Results of RevInc without a beam are rea-
sonably close to the results of Z&C which uses a
beam of 16. We compare our results with Incre-
mental+Lookahead model of Hassan et al. (2009).
They reported 86.31% unlabeled F-score on test
data which is 2.69% lower. Note that these F-
scores are not directly comparable since Hassan
et al. (2009) use simplified lexicalized CCG cate-
gories. Our evaluation is based on CCG dependen-
cies which are different from dependencies in the de-
pendency grammar. Hence, we can’t directly com-
pare our results with dependency parsers like Zhang
and Nivre (2011) and Honnibal et al. (2013).

5 Conclusion and Future Plan

We have designed and implemented a new incre-
mental shift-reduce algorithm based on a version of

revealing for parsing CCG (Pareschi and Steedman,
1987). On the standard CCGbank test data, our
algorithm achieved improvements of 0.88% and
2.0% in labeled and unlabeled F-scores respectively
over the baseline non-incremental shift-reduce
algorithm. We achieved this without changing any
CCG lexical categories and only changing a single
head rule of making the main verb rather than the
auxiliary verb the head. Our algorithm models
transitions rather than incremental derivations, and
hence we don’t need an incremental CCGbank. Our
approach can therefore be adapted to languages
with dependency treebanks, since CCG lexical
categories can be easily extracted from dependency
treebanks (Cakici, 2005; Ambati et al., 2013). We
also designed new measures of incrementality and
showed that our algorithm is more incremental than
the standard shift-reduce CCG parsing algorithm.

We expect to improve our current model in a
number of ways. Providing information about lex-
ical category probabilities (Auli and Lopez, 2011)
assigned by the supertagger can be useful during
parsing. We would like to explore the limited use of
a beam to handle lexical ambiguity by only keeping
analyses derived from distinct lexical categories in
the beam. Following Xu et al. (2014), we also plan
to explore a dynamic oracle strategy. Ultimately,
we intend to evaluate the impact of our incremental
parser extrinsically in terms of language modeling
for SMT or ASR.
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