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Abstract

We present a method of improving the perfor-
mance of dialog act tagging in identifying mi-
nority classes by using per-class feature opti-
mization and a method of choosing the class
based not on confidence, but on a cascade of
classifiers. We show that it gives a minor-
ity class F-measure error reduction of 22.8%,
while also reducing the error for other classes
and the overall error by about 10%.

1 Introduction

In this paper, we discuss dialog act tagging, the
task of assigning a dialog act to an utterance, where
a dialog act (DA) is a high-level categorization of
the pragmatic meaning of the utterance. Our data is
email. Our starting point is the tagger described in
(Hu et al., 2009), which uses a standard multi-class
classifier based on support vector machines (SVMs).
While the performance of this system is pretty good
as measured by accuracy, it performs badly on the
DA REQUEST-ACTION, which is a rare class. Multi-
class SVMs are typically implemented as a set of
SVMs, one per class, with the overall choice of class
being determined by the SVM with the highest con-
fidence (“one-against-all”). Multi-class SVMs are
typically packaged as a single system, whose inner
workings are ignored by the NLP researcher. In this
paper we show that, for our problem of DA classi-
fication, we can boost the performance of the rare
classes (while maintaining the overall performance)
by performing feature optimization separately for
each individual classifier. But we also show that we

can achieve an all-around error reduction by alter-
ing the method by which the multi-class classifier
combines the individual SVMs. This new method
of combination is a simple cascade: we run the in-
dividual classifiers in ascending order of frequency
of the classes in the training corpus; the first classi-
fier to classify the data point positively determines
the choice of the overall classifier. If no classifier
classifies the data point positively, we use the usual
confidence-based method. This new method obtains
a 22.8% error reduction for the minority class, and
around 10% error reduction for the other classes and
for the overall classifier.

This paper is structured as follows. We start out
by discussing related work (Section 2). We then
present our data in Section 3, and in Section 4 we
present the experiments with our systems and the re-
sults. We report the results of an extrinsic evaluation
in Section 5, and conclude.

2 Related Work

Dialog act (DA) annotations and tagging, inspired
by the speech act theory of Austin (1975) and Searle
(1976), have been used in the NLP community to un-
derstand and model dialog. Initial work was done on
spoken interactions (see for example (Stolcke et al.,
2000)). Recently, studies have explored dialog act
tagging in written interactions such as emails (Co-
hen et al., 2004), forums (Kim et al., 2006; Kim et
al., 2010b), instant messaging (Kim et al., 2010a)
and Twitter (Zhang et al., 2012). Most DA tagging
systems for written interactions use a message/post
level tagging scheme, and allow multiple tags for
each message/post. In such a tagging scheme, indi-
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vidual binary classifiers for each tag are independent
of one another. However, recent studies have found
merit in segmenting each message into functional
units and assigning a single DA to each segment (Hu
et al., 2009). Our work falls in this paradigm (we
choose a single DA for smaller textual units). We
build on the work by (Hu et al., 2009); we improve
their dialog act predicting performance on minority
classes using per-class feature optimization.

3 Data

In this study, we use the email corpus presented in
(Hu et al., 2009), which is manually annotated for
DA tags. The corpus contains 122 email threads
with a total of 360 messages and 20,740 word to-
kens. This set of email threads is chosen from a ver-
sion of the Enron email corpus with some missing
messages restored from other emails in which they
were quoted (Yeh and Harnly, 2006; Agarwal et al.,
2012). Most emails are concerned with exchanging
information, scheduling meetings, or solving prob-
lems, but there are also purely social emails.

Dialog Act Tag Count (%)
REQUEST-ACTION (R-A) 35 (2.5%)
REQUEST-INFORMATION (R-I) 151 (10.7%)
CONVENTIONAL (CONV) 357 (25.4%)
INFORM (INF) 853 (60.7%)
Total # of DFUs 1406

Table 1: Annotation statistics

Each message in the thread is segmented into Di-
alog Functional Units (DFUs). A DFU is a con-
tiguous span within an email message which has
a coherent communicative intention. Each DFU
is assigned a single DA label which is one of the
following: REQUEST-ACTION (R-A), REQUEST-
INFORMATION (R-I), CONVENTIONAL (CONV)
and INFORM (INF). There are three other DA labels
— INFORM-OFFLINE, COMMIT, and NODA for no
dialog act — which occurred 5 or fewer times in the
corpus. We ignore these DA labels in this paper. The
corpus also contains links between the DFUs, but we
do not use those annotations in this study. Table 1
presents the distribution of DA labels in our corpus.
We now describe each of the DAs we consider in our
experiments.

In a REQUEST-ACTION, the writer signals
her desire that the reader perform some non-
communicative act, i.e., an act that cannot in itself
be part of the dialogue. For example, a writer can
ask the reader to write a report or make coffee.

In a REQUEST-INFORMATION, the writer signals
her desire that the reader perform a specific com-
municative act, namely that he provide information
(either facts or opinion).

In an INFORM, the writer conveys information, or
more precisely, the writer signals that her desire that
the reader adopt a certain belief. It covers many dif-
ferent types of information that can be conveyed in-
cluding answers to questions, beliefs (committed or
not), attitudes, and elaborations on prior DAs.

A CONVENTIONAL dialog act does not signal any
specific communicative intention on the part of the
writer, but rather it helps structure and thus facilitate
the communication. Examples include greetings, in-
troductions, expressions of gratitude, etc.

4 System

We developed four systems for our experiments: a
baseline (BAS) system which is close to the system
described in (Hu et al., 2009), and three variants of
our novel divide and conquer (DAC) system. Fea-
tures used in both systems are extracted as explained
in Section 4.2. Section 4.3 describes the baseline
system, the basic DAC system, and two variations
of the DAC system.

4.1 Experimental Framework
In all our experiments, we use linear kernel Sup-
port Vector Machines (SVM). However, across the
systems, there are differences in how we use them.
Our framework was built with the ClearTK toolkit
(Ogren et al., 2008) with its wrapper for SVMLight
(Joachims, 1999). The ClearTK wrapper internally
shifts the prediction threshold based on posterior
probabilistic scores calculated using the algorithm
of Lin et al. (2007). We report results from 5-fold
cross validation performed on the entire corpus.

4.2 Feature Engineering
In developing our system, we classified our features
into three categories: lexical, verbal and message-
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level. Lexical features consists of n-grams of words,
n-grams of POS tags, mixed n-grams of closed class
words and POS tags (Prabhakaran et al., 2012), as
well as a small set of specialized features — Start-
POS/Lemma (POS tag and lemma of the first word),
LastPOS/Lemma (POS tag and lemma of the last
word), MDCount (number of modal verbs in the
DFU) and QuestionMark (is there a question mark
in the DFU). We used the POS tags produced by the
OpenNLP POS tagger. Verbal features capture the
position and identity of the first verb in the DFU. Fi-
nally, message-level features capture aspects of the
location of the DFU in the message and of the mes-
sage in the thread (relative position and size). In
optimizing each system, we first performed an ex-
haustive search across all combinations of features
within each category. For the lexical n-gram fea-
tures we varied the n-gram window from 1 to 5. This
step gave us the best performing feature combination
within each category. In a second step, we found the
best combination of categories, using the previously
determined features for each category. In this pa-
per, we do not report best performing feature sets
for each configuration, due to lack of space.

4.3 Experiments

Baseline (BAS) System This system uses the
ClearTK built-in one-versus-all multiclass SVM in
prediction. Internally, the multi-class SVM builds
a set of binary classifiers, one for each dialog act.
For a given test instance, the classifier that obtains
the highest probability score determines the overall
prediction. We performed feature optimization on
the whole multiclass classifier (as described in Sec-
tion 4.2), i.e., the same set of features was available
to all component classifiers. We optimized for sys-
tem accuracy. Table 2 shows results using this sys-
tem. In this and all tables, we give the performance
of the system on the four DAs, using precision, re-
call, and F-measure. The DAs are listed in ascend-
ing order of frequency in the corpus (least frequent
DA first). We also give an overall accuracy evalua-
tion. As we can see, detecting REQUEST-ACTION is
much harder than detecting the other DAs.

Basic Divide and Conquer (DAC) System Like
the BAS system, the DAC system also builds a bi-
nary classifier for each dialog act separately, and the

Prec. Rec. F-meas.
R-A 57.9 31.4 40.7
R-I 91.5 78.2 84.3
CONV 92.0 95.8 93.8
INF 91.6 95.1 93.3
Accuracy 91.3

Table 2: Results for baseline (BAS) system (standard
multiclass SVM)

component classifier with highest probability score
determines the overall prediction. The crucial dif-
ference in the DAC system is that the feature opti-
mization is performed for each component classifier
separately. Each component classifier is optimized
for F-measure. Table 3 shows results using this sys-
tem.

Prec. Recall F-meas. ER
R-A 66.7 40.0 50.0 15.6
R-I 91.5 78.2 84.3 0.0
CONV 93.9 94.1 94.0 2.6
INF 91.4 96.1 93.7 5.7
Accuracy 91.7 4.9

Table 3: Results for basic DAC system (per-class feature
optimization followed by maximum confidence based
choice); “ER” refers to error reduction in percent over
standard multiclass SVM (Table 2)

Minority Preference (DACMP) System This sys-
tem is exactly the same as the basic DAC system
except for one crucial difference: overall classifica-
tion is biased towards a specified minority class. If
the minority class binary classifier predicts true, this
system chooses the minority class as the predicted
class. In cases where the minority class classifier
predicts false, it backs off to the basic DAC system
after removing the minority class classifier from the
confidence tally. Table 4 shows our results using
REQUEST-ACTION as the minority class.

Cascading Minority Preference (DACCMP) System
This system is similar to the Minority Preference
System; however, instead of a single supplied mi-
nority class, the system accepts an ordered list of
classes. The classifier then works, in order, through
this list; whenever any classifier in the list predicts
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Prec. Recall F-meas. ER
R-A 66.7 45.7 54.2 22.8
R-I 91.5 78.2 84.3 0.0
CONV 93.9 94.1 94.0 2.6
INF 91.6 96.0 93.8 6.5
Accuracy 91.8 5.7

Table 4: Results for minority-preference DAC system —
DACMP (first consult REQUEST-ACTION tagger, then de-
fault to choice by maximum confidence); “ER” refers to
error reduction in percent over standard multiclass SVM
(Table 2)

true, for a given instance, it then assigns this class
as the predicted class. The subsequent classifiers in
the list are not run. If all classifiers predict false, we
back off to the basic DAC system, i.e., the compo-
nent classifier with highest probability score deter-
mines the overall prediction. We ordered the list of
classes in the ascending order of their frequencies in
the training data. This ordering is driven by the ob-
servation that the less frequent classes are also hard
to predict correctly. Table 5 shows our results using
the ordered list: (REQUEST-ACTION, REQUEST-
INFORMATION, CONVENTIONAL, INFORM).

Prec. Recall F-meas. ER
R-A 66.7 45.7 54.2 22.8
R-I 91.0 80.8 85.6 8.4
CONV 93.7 95.3 94.5 10.1
INF 92.4 95.8 94.0 10.0
Accuracy 92.2 10.6

Table 5: Results for cascading minority-preference DAC
system — DACCMP (consult classifiers in reverse order
of frequency of class); “ER” refers to error reduction in
percent over standard multiclass SVM (Table 2)

4.4 Discussion
As shown in Table 3, the basic DAC system obtained
a 15.6% F-measure error reduction for the minor-
ity class REQUEST-ACTION over the BAS system.
It also improves performance of two other classes
— CONVENTIONAL and INFORM, and obtaines a
4.9% error reduction on overall accuracy. Recall
here that the only difference between the DAC sys-
tem and the BAS system is the per-class feature op-
timization and therefore this must be the reason for

this boost in performance. When we turn to DACMP,
we see that the performance on the minority class
REQUEST-ACTION is further enhanced, with an F-
measure error reduction of 22.8%; the overall ac-
curacy improves slightly with an error reduction of
5.7%. Finally, DACCMP further improves the perfor-
mance. Since the method of choosing the minor-
ity class REQUEST-ACTION does not change over
DACMP, the F-measure error reduction remains the
same. However, now all three other classes also im-
prove their performance, and we obtain a 10.6% er-
ror reduction on overall accuracy over the baseline
system.

Following (Guyon et al., 2002), we performed a
post-hoc analysis by inspecting the feature weights
of the best performing models created for each in-
dividual classifier in the DAC system. Table 6 lists
some interesting features chosen during feature opti-
mization for the individual SVMs. We selected them
from the top 25 features in terms of absolute value
of feature weights.

Some features help distinguish different DA cat-
egories. For example, the feature QuestionMark
is the feature with the highest negative weight for
INFORM, but has the highest positive weight for
REQUEST-INFORMATION. Features like fyi and pe-
riod (.) have high positive weights for INFORM

and high negative weights for CONVENTIONAL.
Some other features are important only for certain
classes. For e.g., please and VB NN are important
for REQUEST-ACTION, but not so for other classes.
Overall, the most discriminating features for both
INFORM and CONVENTIONAL are mostly word
ngrams, while those for REQUEST-ACTION and
REQUEST-INFORMATION are mostly POS ngrams.
This shows why our approach of per-class feature
optimization is important to boost the classification
performance.

Another interesting observation is that the least
frequent category, REQUEST-ACTION, has the least
strong indicators (as measured by feature weights).
Presumably this is because there is much less train-
ing data for this class. This explains why our cascad-
ing classifiers approach giving priority to the least
frequent categories worked better than a simple con-
fidence based approach, since the simple approach
drowns out the less confident classifiers.
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REQUEST-ACTION REQUEST-INFORMATION CONVENTIONAL INFORM

please (0.9) QuestionMark (6.6) StartPOS NNP (2.7) QuestionMark (-3.0)
VB NN (0.7) BOS PRP (-1.2) thanks (2.3) thanks (-2.2)
you VB (0.3) WRB (1.0) . (-2.0) . (2.2)
PRP (-0.3) PRP VBP (-0.9) fyi (-2.0) fyi (1.9)
MD PRP VB (0.3) BOS MD (0.8) , (0.9) you (-1.0)
will (-0.2) BOS DT (-0.7) QuestionMark (-0.8) can you (-0.9)

Table 6: Post-hoc analysis on the models built by the DAC system: some of the top features with corresponding
feature weights in parentheses, for each individual tagger. (POS tags are capitalized; BOS stands for Beginning Of
Sentence)

5 Extrinsic Evaluation

In this section, we perform an extrinsic evaluation
for the dialog act tagger presented in Section 4 by
applying it to the task of identifying Overt Displays
of Power (ODP) in emails, proposed by Prabhakaran
et al. (2012). The task is to identify utterances where
the linguistic form introduces additional constraints
on its responses, beyond those introduced by the
general dialog act. The dialog act features were
found to be useful and the best performing system
obtained an F-measure of 65.8 using gold dialog
act tags. For our extrinsic evaluation, we retrained
the ODP tagger using dialog act tags predicted by
our BAS and DACCMP systems instead of gold dia-
log acts. ODP tagger uses the same dataset as ours
for training. In the cross validation step, we made
sure that the test folds for ODP were excluded from
training the taggers to obtain DA tags. At each ODP
cross validation step, we trained a BAS or DACCMP

tagger using ODP’s training folds for that step and
used tags produced by that tagger for both training
and testing the ODP tagger for that step. Table 7 lists
the results obtained.

Prec. Rec. F-meas.
No-DA 55.7 45.4 50.0
Gold-DA 75.8 58.1 65.8
BAS-DA 60.6 46.5 52.6
DACCMP-DA 67.2 45.4 54.2

Table 7: Results for ODP system using various sources
of DA tags

Using BAS tagged DA, the F-measure of ODP
system reduced by 13.2 points to 52.6 from using
gold dialog acts (F=65.8). Using DACCMP, the F-

measure improved over BAS by 1.6 points to 54.2.
This constitutes an error reduction of 12.1%, tak-
ing the system using gold DA tags as the reference.
This improvement is noteworthy, given the fact that
the overall error reduction obtained by DACCMP over
BAS in the DA tagging was around 10.6%. Also, the
DACCMP-based ODP system obtained an error reduc-
tion of about 26.6% over a system that does not use
the DA features at all (F=50.0).

6 Conclusion

We presented a method of improving the perfor-
mance of dialog act tagging in identifying minority
classes by using per-class feature optimization and
choosing the class based on a cascade of classifiers.
We showed that it gives a minority class F-measure
error reduction of 22.8% while also reducing the er-
ror on other classes and the overall error by around
10%. We also presented an extrinsic evaluation of
this technique on detecting Overt Displays of Power
in dialog, where we achieve an error reduction of
12.1% over using the standard multiclass SVM to
generate dialog act tags.
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