
Proceedings of NAACL-HLT 2013, pages 752–757,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

TruthTeller: Annotating Predicate Truth

Amnon Lotan
Department of Linguistics

Tel Aviv University
amnonlot@post.tau.ac.il

Asher Stern and Ido Dagan
Department of Computer Science

Bar Ilan University
astern7@gmail.com dagan@cs.biu.ac.il

Abstract

We propose a novel semantic anno-
tation type of assigning truth values
to predicate occurrences, and present
TruthTeller, a standalone publicly-
available tool that produces such annota-
tions. TruthTeller integrates a range
of semantic phenomena, such as nega-
tion, modality, presupposition, implicativ-
ity, and more, which were dealt only partly
in previous works. Empirical evaluations
against human annotations show satisfac-
tory results and suggest the usefulness of
this new type of tool for NLP.

1 Introduction

In a text, the action or relation denoted by ev-
ery predicate can be seen as being either pos-
itively or negatively inferred from its sentence,
or otherwise having an unknown truth status.
Only in (3) below can we infer that Gal sold
her shop, hence the positive truth value of the
predicate sell, while according to (2) and (4) Gal
did not sell it, hence the negative truth values,
and in (1) we do not know if she sold it or not
(the notations pt+, pt- and pt? denote truth
states, defined in Subsection 2.3). Identifying
these predicate truth values is an important sub-
task within many semantic processing scenarios,
including various applications such as Question
Answering (QA), Information Extraction (IE),
paraphrasing and summarization. The follow-
ing examples illustrate the phenomenon:

(1) Gal made an attempt pt+ to sell pt? her
shop.

(2) Gal did not try pt− to sell pt− her shop af-
ter hearing pt+ the offers.

(3) Maybe Gal wasn’t smart pt? to sell pt+ her
shop.

(4) Gal wasn’t smart pt− enough to sell pt− the
shop that she had bought pt+.

Previous works addressed specific aspects of
the truth detection problem: Nairn et al.
(2006), and later MacCartney & Manning (2007;
2009), were the first to build paraphrasing and
inference systems that combine negation (see try
in (2)), modality (smart in (3)) and “natural
logic”, a recursive truth value calculus (sell in
(1-3)); recently, Mausam et al. (2012) built an
open IE system that identifies granulated vari-
ants of modality and conditions on predicates
(smart in (3)); and Kiparsky & Kiparsky (1970)
and Karttunen (1971; 2012) laid the ground
work for factive and implicative entailment cal-
culus (sell in (1-4)), as well as many generic
constructions of presupposition (hearing in (2)
is presupposed because it heads an adverbial
clause and bought in (4) heads a finite relative
clause), which, to our knowledge, have not yet
been implemented computationally. Notice in
the examples that presuppositions persist under
negation, in questions and if-clauses, while en-
tailments do not. In addition, there is a growing
research line of negation and modality detection.
See, for example, Morante & Daelemans (2012).

752



We present TruthTeller1, a novel algo-
rithm and system that identifies the truth value
of each predicate in a given sentence. It anno-
tates nodes in the text’s dependency parse-tree
via a combination of pattern-based annotation
rules and a recursive algorithm based on natu-
ral logic. In the course of computing truth value,
it also computes the implicativity/factivity sig-
nature of predicates, and their negation and
modality to a basic degree, both of which are
made available in the system output. It ad-
dresses and combines the aforementioned phe-
nomena (see Section 2), many of which weren’t
dealt in previous systems.

TruthTeller is an open source and pub-
licly available annotation tool, offers a relatively
simple algebra for truth value computation, and
is accompanied by a publicly available lexicon
of over 1,700 implicative and factive predicates.
Also, we provide an intuitive GUI for viewing
and modifying the algorithm’s annotation rules.

2 Annotation Types and Algorithm

This section summarizes the annotation algo-
rithm (a detailed report is available with the sys-
tem release). We perform the annotations over
dependency parse trees, generated according to
the Stanford Dependencies standard (de Marn-
effe and Manning, 2008). For all verbs, nouns
and adjectives in a sentence’s parse tree, we pro-
duce the following 4 annotation types, given in
the order they are calculated, as described in the
following subsections:

1. Predicate Implication Signature (sig) - de-
scribes the pattern by which the predi-
cate entails or presupposes its complements,
e.g., the verb refuse entails the negative of
its complements: Ed refused to pay entails
that Ed didn’t pay.

2. Negation and Uncertainty (NU) - indicates
whether the predicate is modified by an un-
certainty modifier like might, probably, etc.,
or whether it’s negated by no, never etc.

3. Clause-Truth (CT) - indicates whether the
1http://cs.biu.ac.il/~nlp/downloads/TruthTeller

entire clause headed by the predicate is en-
tailed by the complete sentence

4. Predicate Truth (PT) - indicates whether
the predicate itself is entailed by the sen-
tence, as defined below

Before presenting the detailed definitions and
descriptions below, we give a high-level descrip-
tion of TruthTeller’s algorithm, where each
step relies on the results of its predecessor: a)
every predicate in the parse tree is annotated
with a predicate implication signature, identi-
fied by lexicon lookup; b) NU annotations are
added, according to the presence of uncertainty
modifiers (maybe, might, etc.) and negation
modifies (not, never, etc.); c) predicates in cer-
tain presupposition constructions (e.g., adver-
bial clauses, WH arguments) are annotated with
positive CT values; d) the parse tree is depth-
first scanned, in order to compute both CT and
PT annotations by the recursive effects of fac-
tives and implicatives; e) in conjunction with
the previous step, relative clause constructions
are identified and annotated with CT and PT.
Except for steps a) and d), all of the pro-

cedure is implemented as an ordered sequence
of annotation rule applications. An annotation
rule is a dependency parse tree template, pos-
sibly including variables, which assigns certain
annotations to any parse tree node that matches
against it. Step a) is implemented with signa-
ture lexicon lookups, and step d) is an algorithm
implemented in code.
To illustrate this entire process, Figure 1

presents the annotation process of a sim-
ple sentence, step by step, resulting in
TruthTeller’s complete output, fully speci-
fied below. Most other examples in this paper
show only partial annotations for brevity.

2.1 Predicate Implication Signature
Our system marks the signature of each predi-
cate, as defined in Table 1. There, each signa-
ture has a left sign and a right sign. The left sign
determines the clause truth value of the pred-
icate’s complements, when the predicate is in
positive contexts (e.g., not negated), while the
right sign applies in negative contexts (clause

753



# Sig Positive context example Negative context example
1 +/- Ed managed to escape ⇒ Ed escaped Ed didn’t manage to escape ⇒ Ed didn’t escape
2 +/? Ed was forced to sell ⇒ Ed sold Ed wasn’t forced to sell ⇒ no entailments
3 ?/- Ed was allowed to go ⇒ no entailments Ed wasn’t allowed to go ⇒ Ed didn’t go
4 -/+ Ed forgot to pay ⇒ Ed didn’t pay Ed didn’t forget to pay ⇒ Ed paid
5 -/? Ed refused to fight ⇒ Ed didn’t fight Ed didn’t refuse to fight ⇒ no entailments
6 ?/+ Ed hesitated to ask ⇒ no entailments Ed didn’t hesitate to ask ⇒ Ed asked
7 +/+ Ed was glad to come ⇒ Ed came Ed wasn’t glad to come ⇒ Ed came
8 -/- Ed pretended to pay ⇒ Ed didn’t pay Ed didn’t pretend to pay ⇒ Ed didn’t pay
9 ?/? Ed wanted to fly ⇒ no entailments Ed didn’t want to fly ⇒ no entailments

Table 1: Implication signatures, based on MacCartney & Manning (2009) and Karttunen (2012). The first
six signatures are named implicatives, and the last three factive, counter factive and regular, respectively.

a) Annotate signatures via lexicons lookup
Gal wasn’t allowed?/− to come?/?

b) Annotate NU
Gal wasn’t allowed?/−,nu− to come?/?,nu+

c) Annotate CT to presupposition constructions
Gal wasn’t allowed?/−,nu−,ct+ to come?/?,nu+,ct+

d) Recursive CT and PT annotation
Gal wasn’t allowed?/−,nu−,ct+,pt− to

come?/?,nu+,ct−,pt−

e) Annotate CT and PT of relative clauses
(has no effect on this example)

Gal wasn’t allowed?/−,nu−,ct+,pt− to
come?/?,nu+,ct−,pt−

Figure 1: An illustration of the annotation process

truth is defined in Subsection 2.3). See exam-
ples for both context types in the table. Each
sign can be either + (positive), - (negative) or
? (unknown). The unknown sign signifies that
the predicate does not entail its complements in
any way.
Signatures are identified via lookup, using two

lexicons, one for single-word predicates and the
other for verb+noun phrasal verbs, e.g., take the
time to X. Our single-word lexicon is similar to
those used in (Nairn et al., 2006) and (Bar-Haim
et al., 2007), but is far greater, holding over
1,700 entries, while each of the previous two has,
to the best of our knowledge, less than 300 en-
tries. It was built semi automatically, out of
a kernel of 320 manually inspected predicates,

which was then expanded with WordNet syn-
onyms (Fellbaum, 1998). The second lexicon
is the implicative phrasal verb lexicon of Kart-
tunen (2012), adapted into our framework. The
+/? implicative serves as the default signature
for all unlisted predicates.
Signature is also sensitive to the type of the

complement. Consider:

(6) Ed forgot−/+ to call pt− Joe

(7) Ed forgot+/+ that he called pt+ Joe

Therefore, signatures are specified separately for
finite and non finite complements of each pred-
icate.
After the initial signature lookup, two anno-

tation rules correct the signatures of +/+ fac-
tives modified by enough and too, into +/- and
-/+, correspondingly, see Kiparsky & Kiparsky
(1970). Compare:

(8) Ed was mad+/+ to go ⇒ Ed went

(9) Ed was too mad−/+ to go ⇒ Ed didn’t go

In addition, we observed, like Karttunen (2012),
that most verbs that have passive voice and the
into preposition become +/? implicatives, e.g.,

(10) Workers were pushed / maddened /
managed+/? into signing ⇒ They signed

(11) Workers weren’t pushed / maddened /
managed+/? into signing⇒ It is unknown
whether they signed

so we captured this construction in another rule.

754



2.2 Negation and Uncertainty (NU)
NU takes the values {nu+, nu-, nu?}, stand-
ing for non-negated certain actions, negated cer-
tain actions, and uncertain actions. The first
NU rules match against a closed set of negation
modifiers around the predicate, like not, never,
neither etc. (see (2)), while later rules detect
uncertainty modifiers, like maybe, probably, etc.
Therefore, nu? takes precedence over nu-.

Many constructions of subject-negation,
object-negation and “double negation” are
accounted for in our rules, as in:

(12) Nobody was seennu− at the site

(13) Almost nobody was seennu+ at the site

2.3 Clause Truth and Predicate Truth
Clause Truth (CT, denoted as ct(p)) corre-
sponds to polarity of Nairn et al. (2006). It
represents whether the clause headed by a pred-
icate p is entailed by the sentence, contradicted
or unknown, and thus takes three values {ct+,
ct-, ct?}.
Predicate Truth (PT) (denoted as pt(p)) rep-

resents whether we can infer from the sentence
that the action described by the predicate hap-
pened (or that its relation holds). It is defined
as the binary product of NU and CT:
Definition 1. PT = NU · CT

and takes analogous values: {pt+, pt-, pt?}.
Intuitively, the product of two identical posi-
tive/negative values yields pt+, a positive and a
negative yield pt-, and nu? or ct? always yield
pt?. To illustrate these definitions, consider:

(14) Meg may have sleptct+,pt? after
eatingct+,pt+ the meal Ed cookedct+,pt+,
while no one was therect+,pt−

After signatures and NU are annotated, CT
and PT are calculated. At first, we apply
a set of rules that annotate generic presup-
position constructions with ct+. These in-
clude adverbial clauses opening with {while, be-
fore, after, where, how come, because, since,
owing to, though, despite, yet, therefore...},
WH arguments (who, which, whom, what), and

ct(p) =



ct+ : p was already annotated
by a presupposition rule

ct(gov(p)) : p heads a relative
clause

compCT (p) : otherwise, and p is
a complement

ct? : otherwise (default)

Figure 2: Formula of ct(p), for any predicate p.
ct(gov(p)) is the CT of p’s governing predicate.

parataxis2. See for example the effects of after
and while in (14).

Then, we apply the following recursive se-
quential procedure. The tree root always gets
ct+ (see slept in (14)). The tree is then scanned
downwards, predicate by predicate. At each one,
we compute CT by the formula in Figure 2, as
follows. First, we check if one of the aforemen-
tioned presupposition rules already matched the
node. Second, if none matched, we apply to the
node’s entire subtree another set of rules that
annotate each relative clause with the CT of its
governing noun3, ct(gov(p)) (see failed in (15)).
Third, if no previous rule matched, and p is a
complement of another predicate gov(p), then
compCT(p) is calculated, by the following logic:
when pt(gov(p)) is pt+ or pt-, the correspond-
ing left or right sign of sig(gov(p)) is copied.
Otherwise, if pt(gov(p)) = pt?, ct? is returned,
except when the signature of gov(p) is +/+ (or
-/-) factive, which always yields ct+ (or ct-).

Third, if nothing applied to p, ct? is returned
by default. Finally, PT is set, according to Def-
inition 1.
To illustrate, consider these annotations:

(15) Gal managed+/−,ct+,pt+ a
building+/?,ct+,pt+, which Ginger
failed−/+,ct+,pt+ to sell+/?,ct−,pt−

First, managed gets ct+ as the tree root. Then,
we get compCT (building) = ct+, as the com-
plement of managed+/−,pt+. Next, a relative
clause rule copies ct+ from building to failed.

2The placing of clauses or phrases one after another,
without words to indicate coordination, as in “veni, vidi,
vici” in contrast to “veni, vidi and vici”.

3We also annotate nouns and adjectives as predicates
in copular constructions, and in instances where nouns
have complements.

755



Finally, compCT (sell) = ct- is calculated, as
the complement of failed−/+,pt+.

3 Evaluation

To evaluate TruthTeller’s accuracy, we sam-
pled 25 sentences from each of the RTE5 and
RTE6 Test datasets (Bentivogli et al., 2009;
Bentivogli et al., 2010), widely used for textual
inference benchmarks. In these 50 sentences, we
manually annotated each predicate, 153 in to-
tal, forming a gold standard. As baseline, we
report the most frequent value for each annota-
tion. The results, in Table 2, show high accuracy
for all types, reducing the baseline CT and PT
errors by half. Furthermore, most of the remain-
ing errors were due to parser errors, according
to a manual error analysis we conducted.
The baseline for NU annotations shows that

negations are scarce in these RTE datasets,
which was also the case for ct- and pt- an-
notations. Thus, Table 2 mostly indicates
TruthTeller’s performance in distinguishing pos-
itive CT and PT annotations from unknown
ones, the latter constituting v20% of the gold
standard. To further assess ct- and pt- annota-
tions we performed two targeted measurements.
Precision for ct- and pt- was measured by man-
ually judging the correctness of such annotations
by TruthTeller, on a sample from RTE6 Test
including 50 ct- and 124 pt- annotations. This
test yielded 78% and 83% precision, respectively.
pt- is more frequent as it is typically triggered
by ct-, as well as by other constructions involv-
ing negation. Recall was estimated by employ-
ing a human annotator to go through the dataset
and look for ct- and pt- gold standard anno-
tations. The annotator identified 40 “ct-”s and
50 “pt-”s, out of which TruthTeller found
47.5% of the “ct-”s and 74% of the “pt-”s. In
summary, TruthTeller’s performance on our
target PT annotations is quite satisfactory with
89% accuracy overall, having 83% precision and
74% recall estimates specifically for pt-.

4 Conclusions and Future Work

We have presented TruthTeller, a novel algo-
rithm and system that identifies truth values of

Annotation TruthTeller Baseline
Signature 89.5% 81% (+/?)

NU 98% 97.3% (nu+)
CT 90.8% 78.4% (ct+)
PT 89% 77% (pt+)

Table 2: The accuracy measures for
TruthTeller’s 4 annotations. The right col-
umn gives the accuracy for the corresponding
most-frequent baseline: {+/?, nu+, ct+, pt+}.

predicates, the first such system to a) address or
combine a wide variety of relevant grammatical
constructions; b) be an open source annotation
tool; c) address the truth value annotation task
as an independent tool, which makes it possible
for client systems to use its output, while pre-
vious works only embedded annotations in their
task-specific systems; and d) annotate unknown
truth values extensively and explicitly.

TruthTeller may be used for several pur-
poses, such as inferring parts of a sentence
from the whole and improving textual entail-
ment (and contradiction) detection. It includes
a novel, large and accurate, lexicon of predicate
implication signatures.
While in this paper we evaluated the correct-

ness of TruthTeller as an individual com-
ponent, in the future we propose integrating
it in a state-of-the-art RTE system and report
its impact. One challenge in this scenario is
having other system components interact with
TruthTeller’s decisions, possibly masking its
effects. In addition, we plan to incorporate
monotonicity calculations in the annotation pro-
cess, like in MacCartney and Manning (2009).

5 Acknowledgements

This work was partially supported by the Israel
Science Foundation grant 1112/08 and the Eu-
ropean Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agree-
ment no. 287923 (EXCITEMENT).
We thank Roni Katzir and Fred Landman for

useful discussions.

756



References
Roy Bar-Haim, Ido Dagan, Iddo Greental, and Eyal

Shnarch. 2007. Semantic inference at the lexical-
syntactic level. In Proceedings of AAAI, pages
871–876.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth pascal recognizing textual entailment
challenge. In Preproceedings of the Text Analysis
Conference (TAC).

Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa T.
Dang, and Danilo Giampiccolo. 2010. The sixth
PASCAL recognizing textual entailment chal-
lenge. In The Text Analysis Conference (TAC
2010).

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. The stanford typed dependencies
representation. In COLING Workshop on Cross-
framework and Cross-domain Parser Evaluation.

Christiane Fellbaum, editor. 1998. WordNet: An
Electronic Lexical Database (Language, Speech,
and Communication). MIT Press.

Lauri Karttunen. 1971. Implicative verbs. Lan-
guage, 47:340–358.

Lauri Karttunen. 2012. Simple and phrasal implica-
tives. In *SEM 2012, pages 124–131.

P. Kiparsky and C. Kiparsky. 1970. Fact.
In Progress in Linguistics, pages 143–173. The
Hague: Mouton de Gruyter.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of ACL workshop on textual entailment and para-
phrasing.

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceed-
ings of the Eighth International Conference on
Computational Semantics (IWCS-8).

Mausam, Michael Schmitz, Stephen Soderland,
Robert Bart, and Oren Etzioni. 2012. Open lan-
guage learning for information extraction. In Pro-
ceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
523–534.

Roser Morante and Walter Daelemans. 2012. An-
notating modality and negation for a machine
reading evaluation. In CLEF (Online Working
Notes/Labs/Workshop).

Rowan Nairn, Cleo Condoravdi, and Lauri Kart-
tunen. 2006. Computing relative polarity for tex-
tual inference. In In Proceedings of ICoS-5 (Infer-
ence in Computational Semantics).

757


