
Proceedings of NAACL-HLT 2013, pages 668–672,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Zipfian corruptions for robust POS tagging

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Abstract

Inspired by robust generalization and adver-
sarial learning we describe a novel approach
to learning structured perceptrons for part-of-
speech (POS) tagging that is less sensitive to
domain shifts. The objective of our method is
to minimize average loss under random distri-
bution shifts. We restrict the possible target
distributions to mixtures of the source distri-
bution and random Zipfian distributions. Our
algorithm is used for POS tagging and eval-
uated on the English Web Treebank and the
Danish Dependency Treebank with an average
4.4% error reduction in tagging accuracy.

1 Introduction

Supervised learning approaches have advanced the
state of the art on a variety of tasks in natural lan-
guage processing, often resulting in systems ap-
proaching the level of inter-annotator agreement on
in-domain data, e.g. in POS tagging, where Shen
et al. (2007) report a tagging accuracy of 97.3%.
However, performance of state-of-the-art supervised
systems is known to drop considerably on out-of-
domain data. State-of-the-art POS taggers trained
on the Penn Treebank (Marcus et al., 1993) mapped
to Google’s universal tag set (Petrov et al., 2011)
achieve tagging accuracies in the range of 89–91%
on Web 2.0 data (Petrov and McDonald, 2012) .

To bridge this gap we may consider using semi-
supervised or transfer learning methods to adjust to
new target domains (Blitzer et al., 2006; Daume III,
2007), pooling unlabeled data from those domains.
However, in many applications this is not possible.

If we want to provide an online service or design a
piece of software with many potential users covering
a wide range of use cases, we do not know the target
domain in advance. This is the usual problem of ro-
bust learning, but in this paper we describe a novel
learning algorithm that goes beyond robust learning
by making various assumptions about the difference
between the source domain and the (unknown) target
domain. Under these assumptions we can minimize
average loss under (all possible or a representative
sample of) domain shifts. We evaluate our approach
on two recently introduced cross-domain POS tag-
ging datasets.

Our approach is inspired by work in robust gen-
eralization (Ben-Tal and Nemirovski, 1998; Trafalis
and Gilbert, 2007) and adversarial learning (Glober-
son and Roweis, 2006; Dekel and Shamir, 2008;
Søgaard and Johannsen, 2012). Our approach also
bears similarities to feature bagging (Sutton et al.,
2006). Sutton et al. (2006) noted that in learning of
linear models useful features are often swamped by
correlating, but more indicative features. If the more
indicative features are absent in the target domain
due to out-of-vocabulary (OOV) effects, we are left
with the swamped features which were not updated
properly. This is, indirectly, the problem solved in
adversarial learning with corrupted data points. Ad-
versarial learning can also be seen as a way of av-
eraging exponentially many models (Hinton et al.,
2012).

Adversarial learning techniques have been devel-
oped for security-related learning tasks, e.g. where
systems need to be robust to failing sensors. We also
show how we can do better than straight-forward ap-
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plication of adversarial learning techniques by mak-
ing a second assumption about our data, namely that
domains are mixtures of Zipfian distributions over
our features. Similar assumptions have been made
before in computational linguistics, e.g. by Goldberg
and Elhadad (2008).

2 Approach overview

In this paper we consider the structured perceptron
(Collins, 2002) – with POS tagging as our practical
application. The structured perceptron is prone to
feature swamping (Sutton et al., 2006), and we want
to prevent that using a technique inspired by adver-
sarial learning (Globerson and Roweis, 2006; Dekel
and Shamir, 2008). The modification presented here
to the structured perceptron only affects a single line
of code in a publicly available implementation (see
below), but the consequences are significant.

Online adversarial learning (Søgaard and Jo-
hannsen, 2012), briefly, works by sampling random
corruptions of our data, or random feature deletions,
in the learning phase. A discriminative learner see-
ing corrupted data points with missing features will
not update part of the model and will thus try to
find a decision boundary classifying the training data
correctly relying on the remaining features. This de-
cision boundary may be very different from the deci-
sion boundary found otherwise by the discriminative
learner. If we sample enough corruptions, the model
learned from the corrupted data will converge on the
model minimizing average loss over all corruptions
(Dekel and Shamir, 2008).

Example Consider the plot in Figure 1. The solid
line with no stars (2d-fit) is the SVM fit in two
dimensions, while the dashed line is what that fit
amounts to if the feature x is missing in the tar-
get. The solid line with stars (1d-fit) is our fit if we
could predict the missing feature, training an SVM
only with the y feature. The 1d-fit decision bound-
ary only misclassifies a single data point compared
to the original fit which misclassifies more than 15
negatives with the x feature missing.

The plot thus shows that the best fit in m dimen-
sions is often not the best in < m dimensions. Con-
sequently, if we think there is a risk that features will
be missing in the target, finding the best fit in m di-
mensions is not necessarily the best we can do. Of
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Figure 1: The best fit in m dimensions is often not the
best in < m dimensions.

course we do not know what features will be miss-
ing in advance. The intuition in adversarial learning
is that we may obtain more robust decision bound-
aries by minimizing loss over a set of possible fea-
ture deletions. We extend this idea below, modeling
not only OOV effects, but a broader class of distri-
butional shifts.

3 Structured perceptron

The structured perceptron (Collins, 2002) models
sequences as Markov chains of unobserved variables
(POS), each emitting an observed variable (a word
form). The structured perceptron is similar to the av-
eraged perceptron (Freund and Schapire, 1999), ex-
cept data points are sequences of vectors rather than
just vectors. Consequently, the structured percep-
tron does not predict a class label but a sequence of
labels (using Viterbi decoding). In learning we up-
date the features at the positions where the predicted
labels are different from the true labels. We do this
by adding weight to features present in the correct
solution and subtracting weight from features only
present in the predicted solution. The generic aver-
aged perceptron learning algorithm is presented in
Figure 2. A publicly available and easy-to-modify
Python reimplementation of the structured percep-
tron can be found in the LXMLS toolkit.1 We use
the LXMLS toolkit as our baseline with the default
feature model, but use the PTB tagset rather than the
Google tagset (Petrov et al., 2011) used by default
in the LXMLS toolkit.

1https://github.com/gracaninja/lxmls-toolkit
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1: X = {〈yi,xi〉}Ni=1

2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: if sign(w · x) 6= yn then
6: wi+1 ← update(wi)
7: i← i+ 1
8: end if
9: v← v + wi

10: end for
11: end for
12: return w = v/(N ×K)

Figure 2: Generic averaged perceptron

4 Minimizing loss under OOV effects

We will think of domain shifts as data point corrup-
tions. Søgaard and Johannsen (2012) model domain
shifts using binary vectors of length m where m is
the size of of our feature representation. Each vector
then represents an expected OOV effect by encoding
what features are (predicted to be) missing in the tar-
get data, i.e. the ith feature will be missing if the ith
element of the binary vector is 0. However, since
we are minimizing average loss under OOV effects
it makes sense to restrict the class of vectors to en-
code OOV effects that we are likely to observe. This
could, for example, involve fixing an expected rate
of missing features or bounding it by some interval,
or it could involve distinguishing between features
that are likely to be missing in the target and fea-
tures that are not. Here is what we do in this paper:

Rather than thinking of domain shifts as some-
thing that deletes features, we propose to see do-
main shifts as something making certain features
less likely to occur in our data. We will in other
words simulate soft OOV effects, rather than hard
OOV effects. One way to think of this is as an im-
portance weighting of our features. This section pro-
vides some intuition for using inverse Zipfian distri-
butions as weight functions.

Say we are interested in making a model θD1

learned from a known distribution D1 robust against
the distributional differences betweenD1 and an un-
known distribution D2. These two distributions are
somehow related to a distributionD0 (the underlying
language distribution from which the domain distri-
butions are sampled).

It is common to assume that linguistic distribu-

1: X = {〈yi,xi〉}Ni=1

2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: ξ ← random.zipf(3,M)
6: if sign(w · x ◦ ξ) 6= yn then
7: wi+1 ← update(wi)
8: i← i+ 1
9: end if

10: v← v + wi

11: end for
12: end for
13: return w = v/(N ×K)

Figure 3: Z3SP

tions follow power laws (Zipf, 1935; Goldberg and
Elhadad, 2008). We will assume thatD1 = D0×Z1

whereZ1 is some Zipfian distribution. SayD0 ∼ Z0

is the master Zipfian distribution of language L0. If
we assume that (otherwise independent) domainsL1

and L2 follow products of Zipfians Z0 × Z1 and
Z0 ×Z2, we derive the following:

Say w = θZ0×Z1 is the model learned from the
source data. The ideal model is w′ = θZ0×Z2 , but
both Zipfians Z1 and Z2 are unknown. Since Z2

is unknown (and in many applications, we want to
model several Zi), the overall best model we can
hope for is w′ = θZ0 . Z0 is also unknown, but we
can observe a finite sample Z0 ×Z1. Since the den-
sity of Z1 is directly related to the weights in w, a
crude estimate of θZ0 would be w′ ∼ w 1

Z1
. Since

we cannot observe Z1, we instead try to minimize
average loss under all hypotheses about Z1.

In practice, we implement the idea of reweight-
ing by random inverse Zipfian distributitons (instead
of binary vectors) in the following way: Passing
through the data in averaged perceptron learning
(Figure 2), we consider one data point at a time. In
order to minize loss in all possible domains, we need
to consider all possible inverse Zipfian reweightings.
This would be possible if we provided a convex
formulation of the minimization problem along the
lines of Dekel and Shamir (2008), but instead we
randomly sample from a Zipfian and factor its in-
verse into our dataset. The parameter of the Zipfians
is set (to 3) on development data (the EWT-email de-
velopment data). The modified learning algorithm,
Z3SP, is presented in Figure 3.
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5 POS tagging

POS tagging is the problem of assigning syntactic
categories or POS to tokenized word forms in run-
ning text. Most approaches to POS tagging use su-
pervised learning to learn sequence labeling models
from annotated ressources. The major ressource for
English is the Wall Street Journal (WSJ) sections of
the English Treebank (Marcus et al., 1993). POS
taggers are usually trained on Sect. 0–18 and eval-
uated on Sect. 22–24. In this paper we are not in-
terested in in-domain performance on WSJ data, but
rather in developing a robust POS tagger that is less
sensitive to domain shifts than current state-of-the-
art POS taggers and use the splits from a recent pars-
ing shared task rather than the standard POS tagging
ones.

6 Experiments

We train our tagger on Sections 2–21 of the WSJ
sections of the English Treebank, in the Ontotes
4.0 release. This was also the training data used
in the experiments in the Parsing the Web (PTW)
shared task at NAACL 2012.2 In the shared task
they used the coarse-grained Google tagset (Petrov
et al., 2011). We believe this tagset is too coarse-
grained for most purposes (Manning, 2011) and do
experiments with the original PTB tagset instead.

Our evaluation data comes from the English Web
Treebank (EWT),3 which was also used in the PTW
shared task. The EWT contains development and
evaluation data for five domains: answers (from Ya-
hoo!), emails (from the Enron corpus), BBC news-
groups, Amazon reviews, and weblogs. In order not
to optimize on in-domain data, we tune on the Email
development data and evaluate on the remaining do-
mains (the test sections).

The Web 2.0 data used for evaluation contains a
lot of non-canonical language use. An example is
the sentence you r retarded. from the Email section.
The POS tagger finds no support for r as a verb in the
training data, but needs to infer this from the context.

We also include experiments on the Danish De-
pendency Treebank (DDT) (Buch-Kromann, 2003),
which comes with meta-data enabling us to single
out four domains: newspaper, law, literature and

2https://sites.google.com/site/sancl2012/home/shared-task
3LDC Catalog No.: LDC2012T13.

SP BSP Z3SP
EWT-answers 85.22 85.45 85.59
EWT-newsgroups 86.82 86.94 87.42
EWT-reviews 84.92 85.14 85.67
EWT-weblogs 87.00 87.06 87.39
DDT-law 92.38 92.80 93.35
DDT-lit 93.61 93.80 93.85
DDT-mag 94.71 94.44 94.68

Table 1: Results. BSP samples binary vectors with prob-
abilities {0 : 0.1, 1 : 0.9}

magazines. We train our tagger on the newspaper
data and evaluate on the remaining three sections.

6.1 Results
The results are presented in Table 1. We first note
that improvements over the structured perceptron
are statistically significant with p < 0.01 across all
domains, except DDT-mag. We also note that us-
ing inverse Zipfian reweightings is better than using
binary vectors in almost all cases. We believe that
these are strong results given that we are assuming
no knowledge of the target domain, and our mod-
ification of the learning algorithm does not affect
computational efficiency at training or test time. The
average error reduction of Z3SP over the structured
perceptron (SP) is 8%. Since using inverse Zipfian
reweightings seems more motivated for node poten-
tials than for edge potentials, we also tried using
BSP for edge potentials and Z3SP for node poten-
tials. This mixed model acchieved 93.70, 93.91 and
94.35 on the DDT data, which on average is slightly
better than Z3SP.

7 Conclusions

Inspired by robust generalization and adversarial
learning we introduced a novel approach to learning
structured perceptrons for sequential labeling, which
is less sensitive to OOV effects. We evaluated our
approach on POS tagging data from the EWT and
the DDT with an average 4.4% error reduction over
the structured perceptron.
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