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Abstract

We present a new hierarchical Bayesian model
for unsupervised topic segmentation. This new
model integrates a point-wise boundary sam-
pling algorithm used in Bayesian segmenta-
tion into a structured topic model that can cap-
ture a simple hierarchical topic structure latent
in documents. We develop an MCMC infer-
ence algorithm to split/merge segment(s). Ex-
perimental results show that our model out-
performs previous unsupervised segmentation
methods using only lexical information on
Choi’s datasets and two meeting transcripts
and has performance comparable to those pre-
vious methods on two written datasets.

1 Introduction

Documents are usually comprised of topically co-
herent text segments, each of which contains some
number of text passages (e.g., sentences or para-
graphs) (Salton et al., 1996). Within each topically
coherent segment, one would expect that the word
usage demonstrates more consistent lexical distri-
butions (known as lexical cohesion (Eisenstein and
Barzilay, 2008)) than that across segments. A linear
partition of texts into topic segments may reveal in-
formation about, for example, themes of segments
and the overall thematic structure of the text, and
can subsequently be useful for text analysis tasks,
such as information retrieval (e.g., passage retrieval
(Salton et al., 1996)), document summarisation and
discourse analysis (Galley et al., 2003).

In this paper we consider how to automatically
find a topic segmentation. It involves identifying

the most prominent topic changes in a sequence
of text passages, and splits those passages into a
sequence of topically coherent segments (Hearst,
1997; Beeferman et al., 1999). This task can be cast
as an unsupervised machine learning problem: plac-
ing topic boundaries in unannotated text.

Although a variety of cues in text can be used for
topic segmentation, such as cue phases (Beeferman
et al., 1999; Reynar, 1999; Eisenstein and Barzi-
lay, 2008)) and discourse information (Galley et al.,
2003), in this paper, we focus on lexical cohesion
and use it as the primary cue in developing an un-
supervised segmentation model. The effectiveness
of lexical cohesion has been demonstrated by Text-
Tiling (Hearst, 1997), c99 (Choi, 2000), MinCut
(Malioutov and Barzilay, 2006), PLDA (Purver et
al., 2006), Bayesseg (Eisenstein and Barzilay, 2008),
TopicTiling (Riedl and Biemann, 2012), etc.

Our work uses recent progress in hierarchi-
cal topic modelling with non-parametric Bayesian
methods (Du et al., 2010; Chen et al., 2011; Du et
al., 2012a), and is based on Bayesian segmentation
methods (Goldwater et al., 2009; Purver et al., 2006;
Eisenstein and Barzilay, 2008) using topic mod-
els. This can also be viewed as a multi-topic exten-
sion of hierarchical Bayesian segmentation (Eisen-
stein, 2009), although our use of hierarchies is used
to improve the performance of linear segmentation,
rather than develop hierarchical segmentation.

Recently, topic models are increasingly used in
various text analysis tasks including topic segmen-
tation. Previous work (Purver et al., 2006; Misra
et al., 2008; Sun et al., 2008; Misra et al., 2009;
Riedl and Biemann, 2012) has shown that using
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topic assignments or topic distributions instead of
word frequency can significantly improve segmen-
tation performance. Here we consider more ad-
vanced topic models that model dependencies be-
tween (sub-)sections in a document, such as struc-
tured topic models (STMs) presented in (Du et al.,
2010; Du et al., 2012b). STMs treat each text as
a sequence of segments, each of which is a set of
text passages (e.g., a paragraph or sentence). Text
passages in a segment share the same prior distribu-
tion on their topics. The topic distributions of seg-
ments in a single document are then encouraged to
be similar via a hierarchical prior. This gives a sub-
stantial improvement in modelling accuracy. How-
ever, instead of explicitly learning the segmentation,
STMs just leverage the existing structure of docu-
ments from the given segmentation.

Given a sequence of text passages, how can we
automatically learn the segmentation? The word
boundary sampling algorithm introduced in (Gold-
water et al., 2009) uses point-wise sampling of word
boundaries after phonemes in an utterance. Simi-
larly, the segmentation method of PLDA (Purver
et al., 2006) samples segment boundaries, but also
jointly samples a topic model. This is different to
other topic modelling approaches that run LDA as
a precursor to a separate segmentation step (Misra
et al., 2009; Riedl and Biemann, 2012). While con-
ceptually similar to PLDA, our non-parametric ap-
proach built on STM required new methods to im-
plement, but the resulting improvement by the stan-
dard segmentation scores is substantial.

This paper presents a new hierarchical Bayesian
unsupervised topic segmentation model, integrating
a point-wise boundary sampling algorithm with a
structured topic model. This new model takes ad-
vantage of the high modelling accuracy of structured
topic models (Du et al., 2010) to produce a topic
segmentation based on the distribution of latent top-
ics. We show that this model provides high quality
segmentation performance on Choi’s dataset, as well
as two sets of meeting transcripts and written texts.

In the following sections we describe our topic
segmentation model and an MCMC inference al-
gorithm for the non-parametric split/merge pro-
cess. The rest of the paper is organised as follows. In
Section 2 we review recent related work in the topic
segmentation literature. Section 3 presents the new

topic segmentation model, followed by the deriva-
tion of a sampling algorithm in Section 4. We report
the experimental results by comparing several re-
lated topic segmentation methods in Section 5. Sec-
tion 6 concludes the paper.

2 Related Work

We are interested in unsupervised topic segmenta-
tion in either written or spoken language. There is a
large body of work on unsupervised topic segmen-
tation of text based on lexical cohesion. It can be
characterised by how lexical cohesion is modelled.

One branch of this work represents the lexical co-
hesion in a vector space by exploring the word co-
occurrence patterns, e.g., TF or TF-IDF. Work fol-
lowing this line includes TextTiling (Hearst, 1997),
which calculates the cosine similarity between two
adjacent blocks of words purely based on the word
frequency; C99 (Choi, 2000), an algorithm based
on divisive clustering with a matrix-ranking scheme;
LSeg (Galley et al., 2003), which uses a lexical
chain to identify and weight word repetitions; U00
(Utiyama and Isahara, 2001), a probalistic approach
using dynamic programming to find a segmenta-
tion with a minimum cost; MinCut (Malioutov and
Barzilay, 2006), which casts segmentation as a graph
cut problem, and APS (Kazantseva and Szpakowicz,
2011), which uses affinity propagation to learn clus-
tering for segmentation.

The other branch of this work characterises the
lexical cohesion using topic models, to which the
model introduced in Section 3 belongs. Lexical co-
hesion in this line of research is modelled by a
probabilistic generative process. PLDA presented by
Purver et al. (2006) is an unsupervised topic mod-
elling approach for segmentation. It chains a set of
LDAs (Blei et al., 2003) by assuming a Markov
structure on topic distributions. A binary topic shift
variable is attached to each text passage (i.e., an ut-
terance in (Purver et al., 2006)). It is sampled to in-
dicate whether the jth text passage shares the topic
distribution with the (j − 1)th passage.

Using a similar Markov structure, SITS (Nguyen
et al., 2012) chains a set of HDP-LDAs (Teh et al.,
2006). Unlike PLDA, SITS assumes each text pas-
sage is associated with a speaker identity that is at-
tached to the topic shift variable as supervising in-
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formation. SITS further assumes speakers have dif-
ferent topic change probabilities that work as pri-
ors on topic shift variables. Instead of assuming
documents in a dataset share the same set of top-
ics, Bayesseg (Eisenstein and Barzilay, 2008) treats
words in a segment generated from a segment spe-
cific multinomial language model, i.e., it assumes
each segment is generated from one topic, and a
later hierarchical extension (Eisenstein, 2009) as-
sumes each segment is generated from one topic or
its parents. Other methods using as input the output
of topic models include (Sun et al., 2008), (Misra et
al., 2009), and (Riedl and Biemann, 2012).

In this paper we take a generative approach ly-
ing between PLDA and SITS. In contrast to PLDA,
which uses a flat topic model (i.e., LDA), we assume
each text has a latent topic structure that can reflect
the topic coherence pattern, and the model adapts its
parameters to the segments to further improve per-
formance. Unlike SITS that targets analysing multi-
party meeting transcripts, where speaker identities
are available, we are interested in more general texts
and assume each text has a specific topic change
probability, since (1) the identity information is not
always available for all kinds of texts (e.g., continu-
ous broadcast news transcripts (Allan et al., 1998)),
(2) even for the same author, topic change probabil-
ities for his/her different articles might be different.

3 Segmentation with Topic Models

In documents, topically coherent segments usually
encapsulate a set of consecutive passages that are
semantically related (Wang et al., 2011). However,
the topic boundaries between segments are often un-
available a priori. Thus we treat all passage bound-
aries (e.g., sentence boundaries, paragraph bound-
aries or pauses between utterances) as possible topic
boundaries. To recover the topic boundaries we de-
velop a structured topic segmentation model by inte-
grating ideas from the segmented topic model (Du et
al., 2010, STM) and Bayesian segmentation models.

The basic idea of our model is that each docu-
ment consists of a set of segments where text pas-
sages in the same segment are generated from the
same topic distribution, called segment level topic
distribution. The segment level topic distribution is
drawn from a topic distribution associated with the

whole document, called document level topic distri-
bution. The relationships between the levels is man-
aged using Bayesian non-parametric methods and a
significant change in segment level topic distribution
indicates a segment change.

Our unsupervised topic segmentation model is
based on the premise that using a hierarchical topic
model like the STM with a point-wise segment
sampling algorithm should allow better detection
of topic boundaries. We believe that (1) segment
change should be associated with significant change
in the topic distribution, (2) topic cohesion can be
reflected in document topic structure, (3) the log-
likelihood of a topically coherent segment is typi-
cally higher than an incoherent segment (Misra et
al., 2008).

Assume we have a corpus of D documents, each
document d consists of a sequence of Ud text pas-
sages, and each passage u contains a set of Nd,u

words denoted by wd,u that are from a vocabulary
W . Our model consists of:

Modelling topic boundary: We assume each
document has its own topic shift probability
πd, a Beta distributed random variable, i.e.,
πd∼Beta(λ0, λ1). Then, we associate a bound-
ary indicator variable ρd,u with u, like the
topic shift variable in PLDA and SITS. ρd,u
is Bernoulli distributed with parameter πd, i.e.,
ρd,u∼Bernoulli(πd). It indicates whether there is a
topic boundary after text passage u or not. To sample
ρd,u, we use a point-wise sampling algorithm. Con-
sequently, a sequence of ρ’s defines a set of seg-
ments, i.e., a topic segmentation of d. For example,
let a ρ vector ρ = (0, 0, 1, 0, 1, 0, 0, 1)1, it gives
us three segments, which are {1, 2, 3}, {4, 5} and
{6, 7, 8}.

Modelling topic structure: Following the idea of
the STM, we assume each document d is associated
with a document level topic distribution µd, which
is drawn from a Dirichlet distribution with param-
eter α; and text passages in topic segment s in d
are generated from νd,s, a segment level topic dis-
tribution. The number of segments Sd can be com-
puted as Sd=1 +

∑Ud−1
u=1 ρd,u. Then, a Pitman-Yor

1The last 1 in ρ is the document boundary that is know a
priori. This means one does not need to sample it.
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Figure 1: The topic segmentation model

process with a discount parameter a and a concen-
tration parameter b is used to link µd and νd,s by
νd,s∼PYP(a, b, µd), which forms a simple topic
hierarchy. The idea here is that topics discussed in
segments can be variants of topics of the whole
document. Du et al. (2010) have shown that this
topic structure can significantly improve the mod-
elling accuracy, which should contribute to more ac-
curate segmentation. This generative process is dif-
ferent from PLDA. PLDA does not assume the docu-
ment level topic distribution and each time generates
the segment level topic distribution directly from a
Dirichlet distribution.

The complete probabilistic generative process,
shown as a graph in Figure 1 is as follows:

1. For each topic k ∈ {1, . . . , K}, draw a word distribution
φk ∼ DirichletW (γ).

2. For each document d ∈ {1, . . . , D},

(a) Draw topic shift probability πd ∼ Beta(λ0, λ1).
(b) Draw µd ∼ DirichletK (α).
(c) For each text passage (except last) u ∈
{1, . . . , Ud − 1}, draw ρd,u ∼ Bernoulli(πd).

(d) Compute Sd the number of segments as 1 +∑Ud−1
u=1 ρd,u.

(e) For each segment s ∈ {1, . . . , Sd}, draw νd,s ∼
PYP(a, b, µd).

(f) For each text passage u ∈ {1, . . . , Ud},
i. Set segment sd,u = 1 +

∑u−1
v=1 ρd,v .

ii. For each word index n ∈ {1, . . . , Nd,u},
A. Draw topic zd,u,n ∼ DiscreteK

(
νd,sd,u

)
.

B. Draw word wd,u,n ∼ DiscreteK(φzd,u,n
).

where sd,u indicates which segment text passage u
belongs to. We assume the dimensionality of the
Dirichlet distribution (i.e., the number of topics) is
known and fixed, and word probabilities are param-
eterized with a K × Wmatrix Φ = (φ1, . . . , φK).
In future work we plan to investigate replace the

Table 1: List of statistics
Mk,w total number of words with topic k.
Mk a vector of Mk,w.
nd,s,k total number of words with topic k in segment

s in document d.
Nd,s total number of words in segment s.
td,s,k table count of topic k in the CRP for segment

s in document d.
td,s a vector of td,s,k for segment s in d.
Td,s total table count in segment s.
cd,1 total number of topic boundaries in d.
cd,0 total number of non-topic boundaries in d.

Dirichlet prior α on µ with a Pitman-Yor prior (Pit-
man and Yor, 1997) to make the model fully non-
parametric, like SITS.

4 Posterior Inference

In this section we develop a collapsed Gibbs sam-
pling algorithm to do an approximate inference
by integrating out some latent variables (i.e., µ’s,
ν’s and πd’s). The hierarchy in our model can be
well explained with the Chinese restaurant franchise
metaphor introduced in (Teh et al., 2006). For easier
understanding, terminologies of the Chinese Restau-
rant Process (CRP) will be used throughout this sec-
tion, i.e., customers, dishes and restaurants, corre-
spond to words, topics, and segments respectively.
Statistics used are listed in Table 1.

To integrate out the νd,s’s generated from the
PYP, we use the technique presented in (Chen et
al., 2011), which computes the joint posterior for
the PYP by summing out all the possible seating
arrangements for a sequence of customers (Teh,
2006). In this technique an auxiliary binary variable,
called table indicator (δd,u,n), is introduced to fa-
cilitate computing table count td,s,k for topic k. This
method has two effects: (1) faster mixing of the sam-
pler, and (2) elimination of the need for dynamic
memory to store the populations/counts of each ta-
ble in the CRP. In the CRP each word wd,u,n in topic
k (i.e., where zd,u,n=k) contributes a count to nd,s,k
for u ∈ s; and, if wd,u,n, as a customer, also opens
a new table to the CRP, it leads to increasing td,s,k
by one. In this case, δd,u,n=1 indicates wd,u,n is the
first customer on the table, called table head. Thus,

td,s,k =
∑
u∈s

Nd,u∑
n=1

δd,u,n1zd,u,n=k . (1)

Note the two constraints on these two counts, i.e.,

nd,s,k≥td,s,k≥0 and td,s,k=0 iff nd,s,k=0 (2)
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can be replaced be a simpler constraint in the table
indicator representation.

The sampler we develop is an MCMC sampler
on the space θ = {z, δ,ρ} where z defines the
topic assignments of words, δ maintains the needed
CRP configuration (from which t is derived) and ρ
defines the segmentation. Moreover, it is not a tra-
ditional Gibbs sampler changing one variable at a
time, but is a block Gibbs sampler where two dif-
ferent kinds of blocks are used. The first block is
(zd,u,n, δd,u,n) (for each word wd,u,n), which can
be sampled with a table indicator variant of a hier-
archical topic sampler (Du et al., 2010), described
in Section 4.1. This corresponds to Equation (6) in
(Purver et al., 2006). The second kind of block is
a boundary indicator ρd,u together with a particular
constrained set of table counts designed to handle
splitting and merging, which corresponds to Equa-
tion (7) in (Purver et al., 2006). Sampling this sec-
ond kind of block is harder in our non-parametric
model requiring a potentially exponential summa-
tion, a problem we overcome using symmetric poly-
nomials, shown in Section 4.2.

4.1 Sampling Topics
One step in our model is to sample the assignments
of topics to words conditioned on all ρ’s. As dis-
cussed in Section 3, given the sequence of ρd,u’s,
ρd, one can figure out which segment s text passage
u belongs to. Thus, conditioned on a set of segments
s given by ρ, the joint posterior distribution ofw, z
and δ is computed as p(z,w, δ |ρ, Φ, a, b, γ)

=
∏
d

BetaK
(
α+

∑
s td,s

)
BetaK (α)

∏
k

BetaW (γ +Mk)

BetaW (γ)∏
d

∏
s∈s

(b|a)Td,s

(b)Nd,s

∏
k

Snd,s,k

td,s,k,a

(
nd,s,k
td,s,k

)−1

, (3)

where BetaK(·) is a K-dimension Beta function,
(x|y)n the Pochhammer symbol2, and Snt,a the gen-
eralised Stirling number of the second kind (Hsu
and Shiue, 1998)3 precomputed in a table so cost-

2The Pochhammer symbol (x|y)n denotes the rising facto-
rial with a specified increment, i.e., y. It is defined as (x|y)n =
x(x+ y)...(x+ (n− 1)y).

3A Stirling number of the second kind is used to study
the number of ways of partitioning a set of n objects into
k nonempty subsets. The generalised version given by Hsu
and Shiue (1998) has a linear recursion which in our case is
Sn+1

m,a = Sn
m−1,a + (n−ma)Sn

m,a.

ing O(1) to use (Buntine and Hutter, 2012).Eq (3)
is an indicator variant of Eq (1) in (Du et al., 2010)
with applying Theorem 1 in (Chen et al., 2011).

Given the current segmentation and topic assign-
ments for all other words, using Bayes rule, we can
derive the following two conditionals from Eq (3):

1. The joint probability of assigning topic k to word
wd,u,n and wd,u,n being a table head, p(zd,u,n =
k, δd,u,n = 1 |θ′)

=
γwi,j,n +Mk,wi,j,n∑

w(γw +Mk,w)

αk +
∑
s td,s,k∑

k αk +
∑
s,k td,s,k

b+ aTd,s
b+Nd,s

S
nd,s,k+1
td,s,k+1,a

S
nd,s,k

td,s,k,a

td,s,k + 1

nd,s,k + 1
(4)

2. The joint probability of assigning k to wd,u,n
and wd,u,n not being a table head, p(zd,u,n =
k, δd,u,n = 0 |θ′)

=
γwi,j,l

+Mk,wi,j,l∑
w γw +Mk,w

1

b+Nd,s

S
nd,s,k+1
td,s,k,a

S
nd,s,k

td,s,k,a

nd,s,k + 1− td,s,k
nd,s,k + 1

(5)

where θ′ = {z−zd,u,n ,w, δ−δd,u,n ,ρ,α, a, b,γ}.
From the two conditionals, we develop a blocked
Gibbs sampling algorithm for (zd,u,n, δd,u,n).

4.2 Sampling Segmentation Boundaries
In our model, each segment corresponds to a
Chinese restaurant in the CRP. Sampling topic
boundaries corresponds to splitting/merging restau-
rant(s). This is different from the split-merge process
proposed by Jian and Neal (2004), where one actu-
ally splits/merges table(s). To our knowledge, there
has been no method developed to split/merge restau-
rant(s). We tried different approximations, such
as the minimum-path-assumption (Wallach, 2008),
which in our case assumes one table for each topic
k, and all words in k are placed in the same ta-
ble. Although this simplifies the split-merge pro-
cess, it yielded poor results. We instead developed a
novel approximate block Gibbs sampling algorithm
using symmetric polynomials. Its segmentation per-
formance worked well in our development dataset.

For simplicity, we consider a passage u in doc-
ument d, and assume: (1) If ρd,u=1, there are two
segments, sl and sr; sl ends at text passage u, and sr
starts at text passage u+1. (2) If ρd,u=0, there is one
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segment, sm, where u is is somewhere in the middle
of sm. The split-merge choice we sample is one to
many, for a given split pair (sl, sr) we consider a set
of merged states sm (represented by different possi-
ble table counts). Then, to compute the Gibbs prob-
ability for splitting/merging restaurant(s), we con-
sider the probability of the single split, the probabil-
ity of the corresponding set of merges, and then if a
merge is selected, we have to sample from the set of
merges. These are as follows:

Splitting: split sm into sr and sl by placing a
boundary after u. Since passages have a fixed order
in each document, all the words are put into sr and
sl based on which passages they belong to. Then,
given all the topic assignments, we first sample all
table indicators δd,u′,n, for n ∈ {1, ..., Nd,u′} and
u′ ∈ sm using Bernoulli sampling without replace-
ment. It runs as follows: 1) sample δd,u′,n according
to probability td,sm,k/nd,sm,k; 2) decrease td,sm,k if
δd,u′,n = 1, otherwise, just decrease nd,sm,k. Us-
ing the sampled δd,u′,n’s we compute the inferred ta-
ble counts td,s,k (from Eq (1)) and customer counts
nd,s,k respectively for segments s=sl and sr and
topics k. The computation may result in the follow-
ing cases: for a given topic k,

(I) Both sl and sr have nd,s,k>0 and td,s,k≥1, which
means both segments have words assigned to k and
words being labelled with table head. According
to constraints (2), after splitting, restaurants corre-
sponding to sl and sr are valid. We do not make any
change on table counts.

(II) Either sl or sr has nd,s,k=0 and td,s,k=0. In this
case, for example, all the words assigned to k in sm
are in sl after splitting, and all those labelled with
table head should also be in sl. sr has no words as-
signed to k. Thus, there is no need to change table
counts.

(III) Either sl or sr has nd,s,k>0 and td,s,k=0. Both seg-
ments have words assigned to k, but those labelled
with table head only exist in one segment. For in-
stance, if they only exist in sl then sr has no table
head, which means the restaurant of sr has customers
eating a dish, but no tables serving that dish. Thus,
we set td,sr,k=1 to make the constraints (2) satisfied.

The Gibbs probability for splitting a segment is

p(ρd,u = 1 |θ′′) ∝ λ1 + cd,1
λ0 + λ1 + cd,0 + cd,1

(6)

BetaK
(
α+

Sd∑
s=1

td,s
) ∏
s∈{sl,sr}

(b|a)Td,s

(b)Nd,s

∏
k

Snd,s,k

td,s,k,a
,

where θ′′ = {z,w, δ,ρ−ρd,u ,α, a, b, λ0, λ1}.

Merging: remove the boundary after u, and merge
sr and sl to one segment sm. For this case, both
sr and sl satisfy constraints (2) for all k’s, and set
nd,sm,k=nd,sr,k + nd,sl,k. The following cases are
considered: for a topic k

(I) Both sl and sr have nd,s,k>0 and td,s,k>1. We
compute td,sm,k using Eq (7). Thus table counts
before and after merging are equal.

(II) Either sl or sr has nd,s,k=0 and td,s,k=0. Similar
to the above case, we use Eq (7).

(III) Both sl and sr have nd,s,k>0, and either of them
has td,s,k=1 or both. We have to choose between
Eq (7) and Eq (8), i.e., to decide whether a table
should be removed or not.

td,sm,k = td,sl,k + td,sr,k (7)
td,sm,k = td,sl,k + td,sr,k − 1 (8)

Note that choosing Eq (8) means we need to de-
crease the table count td,sm,k by one. The idea here
is that we sample to decide whether the remove table
was added due to splitting case (III) or not. Clearly,
we have a one-to-many split-merge choice. To com-
pute the probability of a set of possible merges,
we use elementary symmetric polynomials as fol-
lows: letKS be a set of topic-segment combinations
that satisfy the condition in merging case (III), for
(k, s) ∈ KS , we sample either Eq (7) or Eq (8).
Let T = {td,s,k : (k, s) ∈ KS} be the set of table
counts affected by the changes of Eq (7) or Eq (8).
The Gibbs probability for merging two segments is

p(ρd,u = 0 |θ′′′) =
∑
T
p(ρd,u = 0, T |θ′′′) (9)

∝
∑
T

(
λ0 + cd,0

λ0 + λ1 + cd,0 + cd,1
BetaK

(
α+

Sd∑
s=1

td,s
)

(b|a)Td,sm

(b)Nd,sm

∏
k

Snd,sm,k

td,sm,k,a

)
,

where θ′′′ = {z,w, t − T ,ρ−ρd,u ,α, a, b, λ0, λ1}.
This is converted to a sum on |T | booleans with
independent terms and evaluated recursively in
O(|T |2) by symmetric polynomials. If a merge is
chosen, one then samples according to the terms in
the sum using a similar recursion.

5 Experiments

To demonstrate the effectiveness of our model (de-
noted by TSM) in topic segmentation tasks, we
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evaluate it on three different kinds of corpora4: a
set of synthetic documents, two meeting transcripts
and two sets of text books (see Tables 2 and 3);
and compare TSM with the following methods: two
baselines (the Random algorithm that places topic
boundaries uniformly at random, and the Even al-
gorithm that places a boundary after every mth text
passage, where m is the average gold-standard seg-
ment length (Beeferman et al., 1999)), C99, MinCut,
Bayesseg, APS (Kazantseva and Szpakowicz, 2011),
and PLDA.

Metrics: We evaluated the segmentation perfor-
mance with PK (Beeferman et al., 1999) and Win-
dowDiff (WDr) (Pevzner and Hearst, 2002), which
are two common metrics used in topic segmenta-
tion. Both move a sliding window of fixed size k
over the document, and compare the inferred seg-
mentation with the gold-standard segmentation for
each window. The window size is usually set to
the half of the average gold-standard segment size
(Pevzner and Hearst, 2002). In addition, we also
used an extended WindowDiff proposed by Lam-
prier et al. (2007), denoted by WDe. One problem
of WDr is that errors near the two ends of a text are
penalised less than those in the middle. To solve the
problem WDe adds k fictive text passages at the be-
ginning and the end of the text when computing the
score. We evaluated all the methods with the same
Java code for the three metrics.

Parameter Settings: In order to make all the
methods comparable, we chose for each method
the parameter settings that give the gold-standard
number of segments5. Specifically, we used a
11 × 11 rank mask for C99, as suggested by
Choi (2000), the configurations included in the code
(http://groups.csail.mit.edu/rbg/code)
for Bayesseg and manually tuned parameters for
MinCut. For APS, a greedy approach was used to
search parameter settings that can approximately
give the gold-standard number of segments. For
PLDA, two randomly initialised Gibbs chains were
used. Each chain ran for 75,000 burn-in iterations,
then 1000 samples were drawn at a lag of 25 from
each chain. For TSM, 10 randomly initialised

4For preprocessing, we only removed stop words.
5The segments learnt by those methods will differ, but just

the segment count will be the same as the gold-standard count.

Table 2: The Choi’s dataset
Range of n 3-11 3-5 6-8 9-11

#docs 400 100 100 100

DocLen mean 69.7 39.3 69.6 98.6
std 8.2 2.6 2.9 3.5

SegLen mean 7 4 7 10
std 2.57 0.84 0.87 1.03

Table 3: Real dataset statistics
ICSI Election Fiction Clinical

# doc 25 4 84 227

DocLen mean 994.5 144.3 325.0 139.5
std 354.5 16.4 230.1 110.4

SegLen mean 188 7 22 35
std 219.1 8.9 23.8 41.7

Gibbs chains were used. Each chain ran for 30,000
iterations with 25,000 for burn-in, then 200 samples
were drawn. The concentration parameter b in TSM
was sampled using the Adaptive-Reject sampling
scheme introduced in (Du et al., 2012b), the dis-
count parameter a = 0.2, and λ0 = λ1 = 0.1. To
derive the final segmentation for PLDA and TSM,
we first estimated the marginal probabilities of
placing boundaries after text passages from the total
of 2000 samples. These probabilities were then
thresholded to give the gold-standard number of
segments. Precisely, we apply a small amount of
Gaussian smoothing to the marginal probabilities
(except for Choi’s dataset), like Puerver et al. (2006)
does. Finally, we used a symmetric Dirichlet prior
in PLDA and STM, the one on topic distributions is
α = 0.1, the other on word distributions γ = 0.01.

5.1 Evaluation on Choi’s Dataset

Choi’s dataset (Choi, 2000) is commonly used in
evaluating topic segmentation methods. It consists
of 700 documents, each being a concatenation of 10
segments. Each segment is the first n sentences of
a randomly selected document from the Brown cor-
pus, s.t. 3 ≤ n ≤ 11. Those documents are divided
into 4 subsets with different range of n, as shown in
Table 2. We ran PLDA and STM with 50 topics. Re-
sults in Table 4 show that our model significantly
outperforms all the other methods on the four sub-
sets over all the metrics. Furthermore, comparing to
other published results, this also outperforms (Misra
et al., 2009) (see their table 2), and (Riedl and Bie-
mann, 2012) (they report an average of 1.04 and 1.06
in Tables 1 and 2, whereas TSM averages 0.93). This
gives TSM the best reported results to date.
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Table 4: Comparison on Choi’s datasets with WD and PK (%)
3-11 3-5 6-8 9-11

WDr WDe PK WDr WDe PK WDr WDe PK WDr WDe PK
Random 51.7 49.1 48.7 51.4 50.0 48.4 52.5 49.9 49.2 52.4 48.9 49.2
Even 49.1 46.7 49.0 46.3 45.8 46.3 38.8 37.3 38.8 30.0 28.6 30.0
MinCut 30.4 29.8 26.7 41.6 41.5 37.3 28.2 27.4 25.5 23.6 22.7 21.6
APS 40.7 38.8 38.4 32.0 30.6 31.8 34.4 32.6 32.7 34.5 32.2 33.2
C99 13.5 12.3 12.3 11.3 10.2 10.8 10.2 9.3 9.8 8.9 8.1 8.6
Bayesseg 11.6 10.9 10.9 11.8 11.5 11.1 7.7 7.2 7.3 6.1 5.7 5.7
PLDA 2.4 2.2 1.8 4.0 3.9 3.3 3.6 3.5 2.7 3.0 2.8 2.0
TSM 0.8 0.8 0.6 1.3 1.3 1.0 1.4 1.4 0.9 1.9 1.8 1.2

Table 5: Comparison on the meeting transcripts and written texts with WD and PK (%)
ICSI Election Fiction Clinical

WDr WDe PK WDr WDe PK WDr WDe PK WDr WDe PK
Random 46.3 41.7 44.1 51.0 49.7 45.1 51.0 48.7 47.5 45.9 38.5 44.1
Even 48.3 43.0 46.4 56.0 55.1 51.2 48.1 45.9 46.3 49.2 42.0 48.8
C99 42.9 37.4 39.9 43.1 41.5 37.0 48.1 45.1 42.1 39.7 31.9 38.7
MinCut 40.6 36.9 36.9 43.6 43.3 39.0 40.5 39.7 37.1 38.2 36.2 36.8
APS 58.2 49.7 54.6 47.7 36.8 40.6 48.0 45.8 45.1 39.9 32.8 39.6
Bayesseg 32.4 29.7 26.7 41.1 41.3 34.1 33.7 32.8 27.8 35.0 28.8 34.0
PLDA 32.6 28.8 29.4 40.6 41.1 32.0 43.0 41.3 36.1 37.3 32.1 32.4
TSM 30.2 26.8 25.8 38.1 38.9 31.3 40.8 38.7 32.5 34.5 29.1 30.6

Note the lexical transitions in these concatenated
documents are very sharp (Malioutov and Barzi-
lay, 2006). The sharp transitions lead to significant
change in segment level topic distributions, which
further implies the variance of these distributions is
large. In TSM, a large variance causes a small con-
centration parameter b. We observed that the sam-
pled b’s (about 0.1) are indeed small for the four sub-
sets, which shows there is no topic sharing among
segments. Therefore, TSM is able to recognise the
segments are unrelated text.

5.2 Evaluation on Meeting Transcripts

We applied our model to segmenting the two meet-
ing transcripts, which are the ICSI meeting tran-
scripts (Janin et al., 2003) and the 2008 presidential
election debates (Boydstun et al., 2011). The ICSI
meeting has 75 transcripts, we used the 25 annotated
transcripts provided by Galley et al. (2003) for eval-
uation. For the election debates, we used the four
annotated debates used in (Nguyen et al., 2012). The
statistics are shown in Table 3. PLDA and TSM were
trained with 10 topics on the ICSI and 50 on the
Election. In this set of experiments, we show that
our model is robust to meeting transcripts.
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Figure 2: Probability of a topic boundary, compared with
gold-standard segmentation (shown in red and at the top
of each diagram) on one ICSI transcript.

As shown in Table 5, topic modelling based meth-
ods (i.e., Bayesseg, PLDA and TSM) outperform
those using either TF or TF-IDF, which is consistent
with previously reported results (Misra et al., 2009;
Riedl and Biemann, 2012). Among the topic model
based methods, TSM achieves the best results on all
the three metrics. On the ICSI transcripts, TSM per-
forms 6.8%, 9.7% and 3.4% better than Bayesseg
on the WDr, WDe and PK metrics respectively. Fig-
ure 2 shows an example of how the inferred topic
boundary probabilities at utterances compare with
the gold-standard boundaries on one ICSI meeting
transcript. The gold-standard segmentation is {77,
95, 189, 365, 508, 609, 860}, TSM and PLDA in-
fer {85, 96, 188, 363, 499, 508, 860} and {96, 136,
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Table 6: Sampled concentration parameters

Choi ICSI Election Fiction Clinical
b 0.1 5.2 5.4 18.4 4.8

203, 226, 361, 508, 860} respectively. Both models
miss the boundary after the 609th utterance, but put a
boundary after the 508th utterance. Note the bound-
aries placed by TSM are always within 10 utterances
with respect to the gold standard.

Although TSM still performs the best on the de-
bates, all the methods have relatively worse perfor-
mance than on the ICSI meeting transcripts. Nguyen
et al. (2012) pointed out that the ICSI meetings are
characterised by pragmatic topic changes, in con-
trast, the debates are characterised by strategic topic
changes with strong rewards for setting the agenda,
dodging a question, etc. Thus, considering the prop-
erties of debates might further improve the segmen-
tation performance.

5.3 Evaluation on Written Texts

We further tested TSM on two written text datasets,
Clinical (Eisenstein and Barzilay, 2008) and Fiction
(Kazantseva and Szpakowicz, 2011). The statistics
are shown in Table 3. Each document in the Clinical
dataset is a chapter of a medical textbook. Section
breaks are selected to be the true topic boundaries.
For the Fiction dataset, each document is a fiction
downloaded from Project Gutenberg, the true topic
boundaries are chapter breaks. We trained PLDA
and TSM with 25 topics on the Fiction and 50 on the
Clinical. Results are shown in Table 5. TSM com-
pares favourably with Bayesseg and outperforms the
other methods on the Clinical dataset, but it does not
perform as well as Bayesseg on the Fiction dataset.

In fiction books, the topic boundaries between
sections are usually blurred by the authors for rea-
sons of continuity (Reynar, 1999). We observed that
the sampled concentration (or inverse variance) pa-
rameter b in TSM is about 18.4 on Fiction, but 4.8 on
Clinical, as shown in Table 6. This means the vari-
ance of segment level topic distributions ν learnt by
TSM is not large for the fiction, so chapter breaks
may not necessarily indicate topic changes. For ex-
ample, there is a document in the Fiction dataset
where gold-standard topic boundaries are placed af-
ter each block of text. In contrast, Bayesseg assumes

each segment has its own distribution over words,
i.e., one topic per segment, which means topics are
not shared among segments. We hypothesize that
for certain kinds of documents where the change in
topic distribution is subtle, such as fiction, assuming
one topic per segment can capture subtle changes in
word usage. This is an area for future investigation.

6 Conclusion

In this paper, we have presented a hierarchical
Bayesian model for unsupervised topic segmen-
tation. This new model takes advances of both
Bayesian segmentation and structured topic mod-
elling. It uses a point-wise boundary sampling al-
gorithm to sample a topic segmentation, while con-
currently building a structured topic model. We
have developed a novel approximation to com-
pute the Gibbs probabilities of spliting/merging seg-
ment(s). Our model shows prominent segmentation
performance on both written or spoken texts.

In future work, we would like to make the model
fully nonparametric and investigate the effects of
adding different cues in texts, such as cue phrases,
pronoun usage, prosody, etc. Currently, our model
uses marginal boundary probabilities to generate
the final segmentation. Instead, we could develop a
Metropolis-Hasting sampling algorithm to move one
boundary at a time, given the gold-standard number
of segments. To further study the effectiveness of
our model, we would like to compare it with other
methods, like SITS (Nguyen et al., 2012) and to run
on more datasets, like email (Joty et al., 2010). For
example, in order to compare with SITS, one can
make an assumption that each document just has one
speaker.
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