
Proceedings of the NAACL-HLT 2012: Demonstration Session, pages 29–32,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

A Robust Shallow Temporal Reasoning System

Ran Zhao Quang Xuan Do Dan Roth
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{ranzhao1,quangdo2,danr}@illinois.edu

Abstract
This paper presents a demonstration of a tem-
poral reasoning system that addresses three
fundamental tasks related to temporal expres-
sions in text: extraction, normalization to time
intervals and comparison. Our system makes
use of an existing state-of-the-art temporal ex-
traction system, on top of which we add sev-
eral important novel contributions. In addi-
tion, we demonstrate that our system can per-
form temporal reasoning by comparing nor-
malized temporal expressions with respect
to several temporal relations. Experimental
study shows that the system achieves excellent
performance on all the tasks we address.

1 Introduction

Performing temporal reasoning with respect to tem-
poral expressions is important in many NLP tasks
such as text summarization, information extraction,
discourse understanding and information retrieval.
Recently, the Knowledge Base Population track (Ji
et al., 2011) introduced the temporal slot filling task
that requires identifying and extracting temporal in-
formation for a limited set of binary relations such as
(person, employee of), (person, spouse). In the work
of (Wang et al., 2010), the authors presented the
Timely Yago ontology, which extracted and incorpo-
rated temporal information as part of the description
of the events and relations in the ontology. Temporal
reasoning is also essential in supporting the emerg-
ing temporal information retrieval research direction
(Alonso et al., 2011).

In this paper, we present a system that addresses
three fundamental tasks in temporal reasoning:

• Extraction: Capturing the extent of time expres-
sions in a given text. This task is based on task A in
the TempEval-2 challenge (Verhagen et al., 2010).
Consider the following sentence:

Seventy-five million copies of the rifle have been
built since it entered production in February 1947.

In this sentence, February 1947 is a basic temporal
expression that should be extracted by the extraction
module. More importantly, we further extend the
task to support also the extraction of complex tem-
poral expressions that are not addressed by existing
systems. In the example above, it is important to rec-
ognize and capture the phrase since it entered pro-
duction in February 1947 as another temporal ex-
pression that expresses the time period of the manu-
facturing event (triggered by built.) For the best of
our knowledge, this extension is novel.
• Normalization: Normalizing temporal expres-
sions, which are extracted by the extraction module,
to a canonical form. Our system normalizes tem-
poral expressions (including complex ones) to time
intervals of the form [start point, end point]. The
endpoints follow a standard date and time format:
YYYY-MM-DD hh:mm:ss. Our system accounts for
an input reference date when performing the normal-
ization. For example, given March 20th, 1947 as a
reference date, our system normalizes the temporal
expressions extracted in the example above as fol-
lows: [1947-02-01 00:00:00, 1947-02-28 23:59:59]
and [1947-02-01 00:00:00, 1947-03-20 23:59:59],
respectively.
• Comparison: Comparing two time intervals
(i.e. normalized temporal expressions). This mod-
ule identifies the temporal relation that holds be-

29

tween intervals, including the before, before-and-
overlap, containing, equal, inside , after and after-
and-overlap relations. For example, when compar-
ing the two normalized time intervals above, we get
the following result: [1947-02-01 00:00:00, 1947-
02-28 23:59:59] is inside [1947-02-01 00:00:00,
1947-03-20 23:59:59].

There has been much work addressing the prob-
lems of temporal expression extraction and normal-
ization, i.e. the systems developed in TempEval-2
challenge (Verhagen et al., 2010). However, our sys-
tem is different from them in several aspects. First,
we extend the extraction task to capture complex
temporal expressions. Second, our system normal-
izes temporal expressions (including complex ones)
to time intervals instead of time points. Finally, our
system performs temporal comparison of time inter-
vals with respect to multiple relations. We believe
that with the rapid progress in NLP and IR, more
tasks will require temporal information and reason-
ing, and a system that addresses these three funda-
mental tasks well will be able to support and facili-
tate temporal reasoning systems efficiently.

2 The System

2.1 Temporal Expression Extraction

We built the temporal expression extraction module
on top of the Heideltime system (Strötgen and Gertz,
2010) to take advantage of a state-of-the-art tempo-
ral extraction system in capturing basic expressions.
We use the Illinois POS tagger1 (Roth and Zelenko,
1998) to provide part-of-speech tags for the input
text before passing it to HeidelTime. Below is an
example of the HeidelTime output of the example in
the previous section:

Seventy-five million copies of the rifle have been
built since it entered production in <TIMEX3
tid=”t2” type=”DATE” value=”1947-02”>February
1947</TIMEX3>

In this example, HeidelTime captures a basic tem-
poral expression: February 1947. However, Heidel-
Time cannot capture the complex temporal expres-
sion since it entered production in February 1947,
which expresses a period of time from February
1947 until the document creation time. This is ac-
tually the time period of the manufacturing event

1http://cogcomp.cs.illinois.edu/page/software view/POS

NP PP

VP

 SBAR

Seventy-five million copies of the rifle have been built since it entered production in Feburary 1947

VP

NP

S

Figure 1: The SBAR constituent in the parse tree de-
termines an extended temporal expression given that in
February 1947 is already captured by HeidelTime.

(triggered by built). To capture complex phrases, we
make use of a syntactic parse tree2 as illustrated in
Figure 1. A complex temporal expression is recog-
nized if it satisfies the following conditions:
• It is covered by a PP or SBAR constituent
in the parse tree.
• The constituent starts with a temporal con-
nective. In this work, we focus on an impor-
tant subset of temporal connectives, consist-
ing of since, between, from, before and after.
• It contains at least one basic temporal ex-
pression extracted by HeidelTime.

In addition, our extraction module also handles
holidays in several countries. For example, in
the sentence “The gas price increased rapidly after
Christmas.”, we are able to extract two temporal ex-
pressions Christmas and after Christmas, which re-
fer to different time intervals.

2.2 Normalization to Time Intervals

Our system normalizes a temporal expression to a
time interval of the form [start point, end point],
where start point≤ end point. Each time endpoint of
an interval follows a standard date and time format:
YYYY-MM-DD hh:mm:ss. It is worth noting that this
format augments the date format in TimeML, used
by HeidelTime and other existing systems. Our date
and time format of each time endpoint refer to an
absolute time point on a universal timeline, making
our time intervals absolute as well. Furthermore, we
take advantage of the predicted temporal value of
each temporal expression from the HeidelTime out-
put. For instance, in the HeidelTime output example
above, we extract 1947-02 as the normalized date
of February 1947 and then convert it to the inter-
val [1947-02-01 00:00:00, 1947-02-28 23:59:59]. If
HeidelTime cannot identify an exact date, month or
year, we then resort to our own temporal normalizer,

2We use nlparser (Charniak and Johnson, 2005)

30

which consists of a set of conversion rules, regard-
ing to the document creation time of the input text.
An interval endpoint can get infinity value if its tem-
poral boundary cannot be specified.

2.3 Comparison

To compare two time intervals (i.e. normalized
temporal expressions), we define six temporal rela-
tions: before, before-and-overlap, contains, equals,
inside, after and after-and-overlap. The temporal
relation between two normalized intervals is deter-
mined by a set of comparison rules that take the four
interval endpoints into consideration. For example,
A = [sA, eA] contains B = [sB, eB] if and only if
(sA < sB)∧ (eA > eB), where s and e are intervals
start and end points, respectively.

3 Experimental Study

In this section, we present an evaluation of our ex-
tended temporal extractor, the normalizer and the
comparator. We do not evaluate the HeidelTime
temporal extractor again because its performance
was reported in the TempEval-2 challenge (Verha-
gen et al., 2010), where it achieved 0.86 F1 score on
the TimeBank data sets (Pustejovsky et al., 2003).

3.1 Data Preparation

We focus on scaling up temporal systems to deal
with complex expressions. Therefore, we prepared
an evaluation data set that consists of a list of sen-
tences containing at least one of the five temporal
connectives since, betwen, from, before and after.
To do this, we extract all sentences that satisfy the
condition from 183 articles in the TimeBank 1.2
corpus3. This results in a total of 486 sentences.
Each sentence in the data set comes with the doc-
ument creation time (DCT) of its corresponding ar-
ticle. The second and the third columns of Table
1 summarize the number of sentences and appear-
ances of each temporal connective.

We use this data set to evaluate the extended tem-
poral extractor, the normalizer and also the com-
parator of our system. We note that although this
data set is driven by our focused temporal connec-
tives, it does not lose the generality of evaluating

3http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?
catalogId=LDC2006T08

Connective # sent. # appear. Prec Rec F1

since 31 31 1.0 1.0 1.0
between 32 33 1.0 1.0 1.0

from 340 366 0.8 1.0 0.89
before 33 33 0.8 1.0 0.89
after 78 81 0.72 1.0 0.84
Avg. 0.86 1.0 0.92

Table 1: The performance of our extended temporal ex-
tractor on complex expressions which contain at least one
of the connectives shown in the first column. These ex-
pressions cannot be identified by existing systems.

Module Correct Incorrect Acc
Normalizer 191 16 0.92
Comparator 191 0 1.0

Table 2: The performance of the normalization and com-
parison modules. We only compare the 191 correctly
identified time intervals with their corresponding docu-
ment creation time.

the normalization and comparison modules because
the sentences in this data set also contain many ba-
sic temporal expressions. Moreover, there are many
cases where the connectives in our data are not actu-
ally temporal connectives. Our system is supposed
to not capture them as temporal expressions. This is
also reflected in the experimental results.

3.2 Experimental Results

We report the performance of our extended tem-
poral extraction module using precision, recall and
F1 score as shown in the last three columns of Ta-
ble 1. We evaluate the normalization module on
the correctly extracted temporal expressions, includ-
ing basic expressions captured by HeidelTime and
the extended expressions identified by our extrac-
tor. A normalization is correct if and only if both
time interval endpoints are correctly identified. We
study the comparison module by evaluating it on
the comparisons of the correctly normalized expres-
sions against the corresponding DCT of the sen-
tences from which they are extracted. Because the
normalization and comparison outputs are judged as
correct or incorrect, we report the performance of
these modules in accuracy (Acc) as shown in Ta-
ble 2. Overall, the experimental study shows that
all modules in our system are robust and achieve ex-
cellent performance.

31

Figure 2: A screenshot of the input panel.

Figure 3: A screenshot of the output panel.

4 The Demonstration

4.1 Visualization
We have implemented our system in a web-based
demo4. Figure 2 shows a screenshot of the input
panel of the system. The input panel includes a main
text box that allows users to input the text, and some
other input fields that allow users to customize the
system’s outputs. Among the fields, the reference
date serves as the document creation time (DCT) of
the input text. All temporal expressions captured
from the text will be normalized based on the ref-
erence date and compared also to the reference date
as illustrated in Figure 3.

4.2 Script Outline
First, we will give an overview of existing temporal
reasoning systems. Then we will introduce the novel
contributions of our system. After that, we will go
over our web-based demonstration, including (i) the
input panel: reference date and the text to be ana-
lyzed, and (ii) the output panel: the extracted basic
and extended temporal expressions, the normalized
intervals, and the comparison results.

5 Conclusions

In this demonstration paper, we introduced a tempo-
ral reasoning system that addresses three fundamen-
tal problems related to temporal expressions in text,

4http://cogcomp.cs.illinois.edu/page/demo view/TempSys

including extraction, normalization and comparison.
Our system consists of a temporal expression ex-
tractor capable of dealing with complex temporal
phrases, a time interval normalizer and a time inter-
val comparator. The experimental study shows that
our system achieves a high level of performance,
which will allow it to support other systems that re-
quire complicated temporal reasoning.

Acknowledgement
This research is supported by the Army Research Laboratory
(ARL) under agreement W911NF-09-2-0053 and the Defense
Advanced Research Projects Agency (DARPA) Machine Read-
ing Program under Air Force Research Laboratory (AFRL)
prime contract no. FA8750-09-C-0181. The second author also
thanks the Vietnam Education Foundation (VEF) for its spon-
sorship. Any opinions, findings, and conclusion or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the view of the VEF, ARL, DARPA,
AFRL, or the US government.

References
Omar Alonso, Jannik Strötgen, Ricardo Baeza-Yates, and

Michael Gertz. 2011. Temporal information retrieval:
Challenges and opportunities. In TWAW.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In ACL.

Heng Ji, Ralph Grishman, and Hoa Trang Dang. 2011.
Overview of the tac2011 knowledge base population
track. In TAC.

James Pustejovsky, Jose Castano, Robert Ingria, Roser
Sauri, Robert Gaizauskas, Andrea Setzer, and Graham
Katz. 2003. Timeml: Robust specification of event
and temporal expressions in text. In IWCS-5.

D. Roth and D. Zelenko. 1998. Part of speech tagging us-
ing a network of linear separators. In COLING-ACL,
The 17th International Conference on Computational
Linguistics.

Jannik Strötgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normalization
of temporal expressions. In Proceedings of the 5th
International Workshop on Semantic Evaluation, Se-
mEval ’10.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation.

Yafang Wang, Mingjie Zhu, Lizhen Qu, Marc Spaniol,
and Gerhard Weikum. 2010. Timely yago: harvesting,
querying, and visualizing temporal knowledge from
wikipedia. In EDBT.

32

