
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 677–687,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Graph-Based Lexicon Expansion with Sparsity-Inducing Penalties

Dipanjan Das and Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{dipanjan,nasmith}@cs.cmu.edu

Abstract

We present novel methods to construct com-
pact natural language lexicons within a graph-
based semi-supervised learning framework,
an attractive platform suited for propagating
soft labels onto new natural language types
from seed data. To achieve compactness,
we induce sparse measures at graph vertices
by incorporating sparsity-inducing penalties
in Gaussian and entropic pairwise Markov
networks constructed from labeled and unla-
beled data. Sparse measures are desirable for
high-dimensional multi-class learning prob-
lems such as the induction of labels on natu-
ral language types, which typically associate
with only a few labels. Compared to standard
graph-based learning methods, for two lexicon
expansion problems, our approach produces
significantly smaller lexicons and obtains bet-
ter predictive performance.

1 Introduction

Semi-supervised learning (SSL) is attractive for the
learning of complex phenomena, for example, lin-
guistic structure, where data annotation is expen-
sive. Natural language processing applications have
benefited from various SSL techniques, such as dis-
tributional word representations (Huang and Yates,
2009; Turian et al., 2010; Dhillon et al., 2011),
self-training (McClosky et al., 2006), and entropy
regularization (Jiao et al., 2006; Smith and Eisner,
2007). In this paper, we focus on semi-supervised
learning that uses a graph constructed from labeled
and unlabeled data. This framework, graph-based
SSL—see Bengio et al. (2006) and Zhu (2008) for
introductory material on this topic—has been widely
used and has been shown to perform better than sev-
eral other semi-supervised algorithms on benchmark

datasets (Chapelle et al., 2006, ch. 21). The method
constructs a graph where a small portion of ver-
tices correspond to labeled instances, and the rest
are unlabeled. Pairs of vertices are connected by
weighted edges denoting the similarity between the
pair. Traditionally, Markov random walks (Szum-
mer and Jaakkola, 2001; Baluja et al., 2008) or op-
timization of a loss function based on smoothness
properties of the graph (Corduneanu and Jaakkola,
2003; Zhu et al., 2003; Subramanya and Bilmes,
2008, inter alia) are performed to propagate labels
from the labeled vertices to the unlabeled ones.

In this work, we are interested in multi-class gen-
eralizations of graph-propagation algorithms suit-
able for NLP applications, where each graph ver-
tex can assume one or more out of many possible
labels (Talukdar and Crammer, 2009; Subramanya
and Bilmes, 2008, 2009). For us, graph vertices cor-
respond to natural language types (not tokens) and
undirected edges between them are weighted using a
similarity metric. Recently, this setup has been used
to learn soft labels on natural language types (say,
word n-grams or syntactically disambiguated pred-
icates) from seed data, resulting in large but noisy
lexicons, which are used to constrain structured pre-
diction models. Applications have ranged from
domain adaptation of part-of-speech (POS) taggers
(Subramanya et al., 2010), unsupervised learning of
POS taggers by using bilingual graph-based projec-
tions (Das and Petrov, 2011), and shallow seman-
tic parsing for unknown predicates (Das and Smith,
2011). However, none of the above captured the em-
pirical fact that only a few categories typically asso-
ciate with a given type (vertex). Take the case of
POS tagging: Subramanya et al. (2010) construct a
graph over trigram types as vertices, with 45 pos-
sible tags for the middle word of a trigram as the

677

label set for each vertex. It is empirically observed
that contextualized word types can assume very few
(most often, one) POS tags. However, along with
graph smoothness terms, they apply a penalty that
encourages distributions to be close to uniform, the
premise being that it would maximize the entropy
of the distribution for a vertex that is far away or
disconnected from a labeled vertex. To prefer maxi-
mum entropy solutions in low confidence regions of
graphs, a similar entropic penalty is applied by Sub-
ramanya and Bilmes (2008, 2009).

In this paper, we make two major algorithmic con-
tributions. First, we relax the assumption made by
most previous work (Zhu and Ghahramani, 2002;
Baluja et al., 2008; Subramanya and Bilmes, 2008;
Subramanya and Bilmes, 2009; Subramanya et al.,
2010; Das and Petrov, 2011; Das and Smith, 2011)
that the `1 norm of the masses assigned to the la-
bels for a given vertex must be 1. In other words,
in our framework, the label distribution at each ver-
tex is unnormalized—the only constraint we put on
the vertices’ vectors is that they must be nonnega-
tive.1 This relaxation simplifies optimization: since
only a nonnegativity constraint for each label’s mass
at each vertex needs to be imposed, we can apply a
generic quasi-Newton method (Zhu et al., 1997).

Second, we replace the penalties that prefer max-
imum entropy, used in prior work, with penalties
that aim to identify sparse unnormalized measures
at each graph vertex. We achieve this by penalizing
the graph propagation objective with the `1 norm or
the mixed `1,2 norm (Kowalski and Torrésani, 2009)
of the measures at each vertex, aiming for global and
vertex-level sparsity, respectively. Importantly, the
proposed graph objective functions are convex, so
we avoid degenerate solutions and local minima.

We present experiments on two natural language
lexicon expansion problems in a semi-supervised
setting: (i) inducing distributions of POS tags over
n-gram types in the Wall Street Journal section of
the Penn Treebank corpus (Marcus et al., 1993)
and (ii) inducing distributions of semantic frames
(Fillmore, 1982) over predicates unseen in anno-

1Moreover, we also assume the edge weights in a given
graph are unconstrained, consistent with prior work on graph-
based SSL (Das and Petrov, 2011; Das and Smith, 2011; Subra-
manya and Bilmes, 2008; Subramanya and Bilmes, 2009; Sub-
ramanya et al., 2010; Zhu and Ghahramani, 2002).

tated data. Our methods produce sparse measures
at graph vertices resulting in compact lexicons, and
also result in better performance with respect to la-
bel propagation using Gaussian penalties (Zhu and
Ghahramani, 2002) and entropic measure propaga-
tion (Subramanya and Bilmes, 2009), two state-of-
the-art graph propagation algorithms.

2 Model

2.1 Graph-Based SSL as MAP Inference
Let Dl = {(xj , rj)}lj=1 denote l annotated data
types;2 xj’s empirical label distribution is rj . Let
the unlabeled data types be denoted by Du =
{xi}mi=l+1. Usually, l � m. Thus, the entire dataset
can be called D , Dl ∪ Du. Traditionally, the
graph-based SSL problem has been set up as fol-
lows. Let G = (V,E) correspond to an undirected
graph with vertices V and edges E. G is constructed
by transforming each data type xi ∈ D to a ver-
tex; thus V = {1, 2, . . . ,m}, and E ⊆ V × V .
Let Vl (Vu) denote the labeled (unlabeled) vertices.
Moreover, we assume a symmetric weight matrix W
that defines the similarity between a pair of vertices
i, k ∈ V . We first define a component of this ma-
trix as wij , [W]ik = sim(xi,xk). We also fix
wii = 0 and set wik = wki = 0 if k 6∈ N (i)
and i 6∈ N (k), where N (j) denotes the K-nearest
neighbors of vertex j, to reduce the density of the
graph. We next define an unnormalized measure qi
for every vertex i ∈ V . As mentioned before, we
have rj , a probability distribution estimated from
annotated data for a labeled vertex j ∈ Vl. qi and
rj are |Y |-dimensional measures, where Y is the
possible set of labels; while rj lies within the |Y |-
dimensional probability simplex,3 qi are unnormal-
ized with each component qi(y) ≥ 0. For most NLP
problems, rj are expected to be sparse, with very
few components active, the rest being zero.

Graph-based SSL aims at finding the best q =
{qi : 1 ≤ i ≤ m} given the empirical distribu-
tions rj , and the weight matrix W, which provides

2As explained in more detail in §4, these types are entities
like n-grams or individual predicates, not tokens in running text.

3Note that our framework does not necessitate that rj be a
normalized probability distribution; we could have unnormal-
ized rj to allow strongly evident types appearing in more data
to have larger influence than types that appear infrequently. We
leave this extension to future work.

678

the geometry of all the vertices. We visualize this
problem using a pairwise Markov network (MN).
For every vertex (including labeled ones) i ∈ V , we
create a variable Xi. Additionally, for labeled ver-
tices j ∈ Vl, we create variables X̂j . All variables in
the MN are defined to be vector-valued; specifically,
variables Xi, ∀i ∈ V , take value qi, and variables
X̂j corresponding to the labeled vertices in G are ob-
served with values rj . An example factor graph for
this MN, with only four vertices, is shown in Fig-
ure 1. In the figure, the variables indexed by 1 and 4
correspond to labeled vertices. Factor φj with scope
{Xj , X̂j} encourages qj to be close to rj . For every
edge i − k ∈ E, factor ϕi−k encourages similarity
between qi and qk, making use of the weight matrix
W (i.e., when wik is larger, the two measures are
more strongly encouraged to be close). These fac-
tors are white squares with solid boundaries in the
figure. Finally, we define unary factors on all vari-
ablesXi, i ∈ V , named ψi(Xi), that can incorporate
prior information. In Figure 1, these factors are rep-
resented by white squares with dashed boundaries.

According to the factor graph, the joint probabil-
ity for all the measures qi, ∀i ∈ V that we want to
induce, is defined as: P (X; Φ) =
1

Z

l∏
j=1

φj(Xj , X̂j) ·
∏

i−k∈E

ϕi−k(Xi, Xk) ·
m∏

i=1

ψi(Xi)

where Φ is the set of all factors in the factor graph,
and Z is a partition function that normalizes the fac-
tor products for a given configuration of q. Since the
graph-based SSL problem aims at finding the best q,
we optimize lnP (X; Φ); equivalently,

arg max
q s.t. q≥0

l∑
j=1

lnφj(Xj , X̂j) +
∑

i−k∈E

lnϕi−k(Xi, Xk)

+

m∑
i=1

lnψi(Xi) (1)

The above denotes an optimization problem with
only non-negativity constraints. It equates to max-
imum a posteriori (MAP) inference; hence, the par-
tition function Z can be ignored. We next discuss
the nature of the three different factors in Eq. 1.

2.2 Log-Factors as Penalties
The nature of the three types of factors in Eq. 1
governs the behavior of a graph-based SSL algo-
rithm. Hence, the equation specifies a family of

X1

X4 X3

X2

Figure 1: An example factor graph for the graph-based
SSL problem. See text for the significance of the shaded
and dotted factors, and the shaded variables.

graph-based methods that generalize prior research.
We desire the following properties to be satisfied in
the factors: (i) convexity of Eq. 1, (ii) amenability
to scalable optimization algorithms, and (iii) sparse
solutions as expected in natural language lexicons.
Pairwise factors: In our work, for the pairwise
factors φj(Xj , X̂j) and ϕi−k(Xi, Xk), we examine
two functions that penalize inconsistencies between
neighboring vertices: the squared `2 norm and the
Jensen-Shannon (JS) divergence (Burbea and Rao,
1982; Lin, 1991), which is a symmetrized gener-
alization of the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951; Cover and Thomas,
1991). These two divergences are symmetric. Both
are inspired by previous work; however, the use of
the JS divergence is a novel extension to Subra-
manya and Bilmes (2008). Specifically, the factors
are:

lnφj(Xj , X̂j) = −δ(qj , rj) (2)

lnϕi−k(Xi, Xk) = −2 · µ · wik · δ(qi, qk) (3)

where µ is a hyperparameter whose choice we dis-
cuss in §4. The function δ(u, v) for two vectors u
and v is defined in two ways:

δ(u, v)
Gaussian

= ‖u− v‖22 (4)

δ(u, v)
Entropic

= 1
2

∑
y∈Y

(
u(y) · ln 2 · u(y)

u(y) + v(y)

+ v(y) · ln 2 · v(y)

u(y) + v(y)

)
(5)

We call the version of δ(u, v) that uses the squared
`2 distance (Eq. 4) Gaussian, as it represents the idea
of label propagation via Gaussian fields proposed by
Zhu et al. (2003). A minor difference lies in the
fact that we include variables Xj , j ∈ Vl for labeled

679

vertices too, and allow them to change, but penal-
ize them if they go too far away from the observed
labeled distributions rj . The other δ(u, v) shown in
Eq. 5 uses the generalized JS-divergence defined in
terms of the generalized KL-divergence for unnor-
malized measures (O’Sullivan, 1998).4

Eq. 5 improves prior work by replacing the asym-
metric KL-divergence used to bring the distributions
at labeled vertices close to the corresponding ob-
served distributions, as well as replacing the KL-
based graph smoothness term with the symmetric
JS-divergence (Subramanya and Bilmes, 2008, see
first two terms in Eq. 1). Empirical evidence shows
that entropic divergences help in multiclass prob-
lems where a vertex can assume multiple labels, and
may perform better than objectives with quadratic
penalties (Subramanya and Bilmes, 2008, 2009).

A major departure from prior work is the use of
unnormalized measures in Eq. 4-5, which simplifies
optimization even with the complex JS-divergence
in the objective function (see §3), and, we will see,
produces comparable and often better results than
baselines using normalized distributions (see §4).
Unary factors: The unary factors in our factor
graph ψi(Xi) can incorporate prior information spe-
cific to a particular vertex xi embodied by the vari-
able Xi. Herein, we examine three straightforward
penalties, which can be thought of as penalties that
encourage either uniformity or sparsity:

Uniform squared `2: lnψi(Xi) = −λ ·
∥∥∥qi − 1

|Y |

∥∥∥2

2
(6)

Sparse `1: lnψi(Xi) = −λ · ‖qi‖1 (7)

Sparse `1,2: lnψi(Xi) = −λ · ‖qi‖21 (8)

where λ is a hyperparameter whose choice we dis-
cuss in §4. The penalty expressed in Eq. 6 penal-
izes qi if it is far away from the uniform distribu-
tion. This penalty has been used previously (Das and
Petrov, 2011; Das and Smith, 2011; Subramanya et
al., 2010), and is similar to the maximum entropy
penalty of Subramanya and Bilmes (2008, 2009).
The intuition behind its use is that for low confi-
dence or disconnected regions, one would prefer to
have a uniform measure on a graph vertex. The
penalties in equations 7–8, on the other hand, en-
courage sparsity in the measure qi; these are related

4The generalized KL divergence is defined asDKL(u‖v) =∑
y

(
u(y) ln u(y)

v(y)
− u(y) + v(y)

)
.

to regularizers for generalized linear models: the
lasso (Tibshirani, 1996) and the elitist lasso (Kowal-
ski and Torrésani, 2009). The former encourages
global sparsity, the latter sparsity per vertex.5 For
each vertex, the `1,2 penalty takes the form:

‖qi‖21 =

∑
y∈Y

|qi(y)|

2

(9)

The `1 norm encourages its argument to be sparse,
while the usual observed effect of an `2 norm is a
dense vector without many extreme values. The `1,2

penalty is the squared `2 norm of the `1 norms of
every qi, hence it promotes sparsity within each ver-
tex, but we observe density over the vertices that are
selected.

Talukdar (2010) enforced label sparsity for infor-
mation extraction by discarding poorly scored la-
bels during graph propagation updates, but did not
use a principled mechanism to arrive at sparse mea-
sures at graph vertices. Unlike the uniform penalty
(Eq. 6), sparsity corresponds to the idea of entropy
minimization (Grandvalet and Bengio, 2004). Since
we use unnormalized measures at each variable Xi,
for low confidence graph regions or disconnected
vertices, sparse penalties will result in all zero com-
ponents in qi, which conveys that the graph prop-
agation algorithm is not confident on any potential
label, a condition that is perfectly acceptable.
Model variants: We compare six objective func-
tions: we combine factor representations from each
of Eqs. 4–5 with those from each of Eqs. 6–8, replac-
ing them in the generic graph objective function of
Eq. 1. The nature of these six models is succinctly
summarized in Table 1. For each model, we find
the best set of measures q that maximize the corre-
sponding graph objective functions, such that q ≥ 0.
Note that in each of the graph objectives, we have
two hyperparameters µ and λ that control the influ-
ence of the second and the third terms of Eq. 1 re-

5One could additionally consider a non-sparse penalty based
on the squared `2 norm with zero mean: lnψi(Xi) = −λ ·
‖qi‖22. We experimented with this unary penalty (along with the
pairwise Gaussian penalty for binary factors) for the semantic
frame lexicon expansion problem, and found that it performs
exactly on par with the squared `2 penalty with uniform mean.
To limit the number of non-sparse graph objectives, we omit
detailed discussion of experiments with this unary penalty.

680

abbrev. factors
pairwise unary

UGF-`2 Gaussian Uniform squared `2
UGF-`1 Gaussian Sparse `1
UGF-`1,2 Gaussian Sparse `1,2

UJSF-`2 Entropic Uniform squared `2
UJSF-`1 Entropic Sparse `1
UJSF-`1,2 Entropic Sparse `1,2

Table 1: Six variants of graph objective functions novel
to this work. These variants combine the pairwise factor
representations from Eqs. 4–5 with unary factor repre-
sentations from each of Eqs. 6–8 (which either encour-
age uniform or sparse measures), to be used in the graph
objective function expressed in Eq. 1.

spectively. We discuss how these hyperparameters
are chosen in §4.
Baseline Models: We compare the performance
of the six graph objectives of Table 1 with two
strong baselines that have been used in previous
work. These two models use the following two ob-
jective functions, and find q s.t. q ≥ 0 and ∀i ∈
V,
∑

y∈Y qi(y) = 1. The first is a normalized Gaus-
sian field with a squared uniform `2 penalty as the
unary factor (NGF-`2):

arg min
q, s.t. q≥0,
∀i∈V,‖qi‖1=1

l∑
j=1

‖qj − rj‖22 +

m∑
i=1

µ ∑
k∈N (i)

wik ‖qi − qk‖22 + λ
∥∥∥qi − 1

|Y |

∥∥∥2

2

(10)

The second is a normalized KL field with an entropy
penalty as the unary factor (NKLF-ME):

arg min
q, s.t. q≥0,
∀i∈V,‖qi‖1=1

l∑
j=1

DKL(rj ‖ qj)+

m∑
i=1

µ ∑
k∈N (i)

wikDKL(qi ‖ qk)− λ ·H(qi)

(11)

whereH(qi) denotes the Shannon entropy of the dis-
tribution qi. Both these objectives are constrained
by the fact that every qi must be within the |Y |-
dimensional probability simplex. The objective
function in 10 has been used previously (Das and
Smith, 2011; Subramanya et al., 2010) and serves as
a generalization of Zhu et al. (2003). The entropic
objective function in 11, originally called measure

propagation, performed better at multiclass prob-
lems when compared to graph objectives using the
quadratic criterion (Subramanya and Bilmes, 2008).

3 Optimization

The six variants of Eq. 1 in Table 1 are convex
in q. This is because the `1, squared `2 and the
`1,2 penalties are convex. Moreover, the general-
ized JS-divergence term, which is a sum of two KL-
divergence terms, is convex (Cover and Thomas,
1991). Since we choose µ, λ and wik to be non-
negative, these terms’ sums are also convex. The
graph objectives of the two baselines noted in ex-
pressions 10–11 are also convex because negative
entropy in expression 11 is convex, and rest of the
penalties are the same as our six objectives. In our
work, to optimize the objectives of Table 1, we use a
generic quasi-Newton gradient-based optimizer that
can handle bound-inequality constraints, called L-
BFGS-B (Zhu et al., 1997). Partial derivatives of
the graph objectives are computed with respect to
each parameter ∀i, y, qi(y) of q and passed on to
the optimizer which updates them such that the ob-
jective function of Eq. 1 is maximized. Note that
since the `1 and `1,2 penalties are non-differentiable
at 0, special techniques are usually used to compute
updates for unconstrained parameters (Andrew and
Gao, 2007). However, since q ≥ 0, their absolute
value can be assumed to be right-continuous, mak-
ing the function differentiable. Thus,

∂

∂qi(y)
‖qi‖1 = 1

∂

∂qi(y)
‖qi‖21 = 2 · ‖qi‖1

(We omit the form of the derivatives of the other
penalties for space.) There are several advantages to
taking this route towards optimization. The `2 and
the JS-divergence penalties for the pairwise terms
can be replaced with more interesting convex di-
vergences if required, and still optimization will be
straightforward. Moreover, the nonnegative con-
straints make optimization with sparsity inducing
penalties easy. Finally, computing the objective
function and the partial derivatives is easily paral-
lelizable on MPI (Gropp et al., 1994) or MapReduce
(Dean and Ghemawat, 2008) architectures, by divid-
ing up the computation across graph vertices.

In comparison, constrained problems such as the
one in Eq. 11 require a specialized alternating mini-

681

mization technique (Subramanya and Bilmes, 2008,
2009), that performs two passes through the graph
vertices during one iteration of updates, introduces
an auxiliary set of probability distributions (thus, in-
creasing memory requirements) and another hyper-
parameter α that is used to transform the weight
matrix W to be suitable for the alternating mini-
mization procedure. To optimize the baseline ob-
jectives, we borrow the gradient-free iterative up-
dates described by Subramanya and Bilmes (2009)
and Subramanya et al. (2010).

4 Experiments

In this section, we compare the six graph objective
functions in Table 1 with the two baseline objectives
on two lexicon expansion tasks.

4.1 POS Lexicon Expansion

We expand a POS lexicon for word types with a con-
text word on each side, using distributional similar-
ity in an unlabeled corpus and few labeled trigrams.
Data and task: We constructed a graph over word
trigram types as vertices, using co-occurrence statis-
tics. Following Das and Petrov (2011) and Sub-
ramanya et al. (2010), a similarity score between
two trigram types was computed by measuring the
cosine similarity between their empirical senten-
tial context statistics. This similarity score resulted
in the symmetric weight matrix W, defining edge
weights between pairs of graph vertices. Details
of the similarity computation are given in those pa-
pers. W is thresholded so that only the K near-
est neighbors for each vertex have similarity greater
than zero, giving a sparse graph. We set K = 8 as it
resulted in the sparsest graph which was fully con-
nected.6 For this task, Y is the set of 45 POS tags
defined in the Penn Treebank (Marcus et al., 1993),
and the measure qi for vertex i (for trigram type xi)
corresponds to the set of tags that can be associated
with the middle word of xi. The trigram represen-
tation, as in earlier work, helps reduce the ambi-
guity of POS tags for the middle word, and helps
in graph construction. The 690,705-vertex graph
was constructed over all trigram types appearing in

6Our proposed methods can deal with graphs containing dis-
connected components perfectly well. Runtime is asymptoti-
cally linear in K for all objectives considered here.

Sections 00–21 (union of the training and develop-
ment sets used for POS tagging experiments in prior
work) of the WSJ section of the Penn Treebank, but
co-occurrence statistics for graph construction were
gathered from a million sentences drawn from the
English Gigaword corpus (Graff, 2003).

Given the graph G with m vertices, we assume
that the tag distributions r for l labeled vertices are
also provided. Our goal is to find the best set of
measures q over the 45 tags for all vertices in the
graph. Prior work used a similar lexicon for POS
domain adaptation and POS induction for resource-
poor languages (Das and Petrov, 2011; Subramanya
et al., 2010); such applications of a POS lexicon are
out of scope here; we consider only the lexicon ex-
pansion problem and do an intrinsic evaluation at a
type-level to compare the different graph objectives.
Experimental details: To evaluate, we randomly
chose 6,000 out of the 690,705 types for devel-
opment. From the remaining types, we randomly
chose 588,705 vertices for testing. This left us with
96,000 types from which we created sets of differ-
ent sizes containing 3,000, 6,000, 12,000, 24,000,
48,000 and 96,000 labeled types, creating 6 increas-
ingly easy transduction settings. The development
and the test types were kept constant for direct per-
formance comparison across the six settings and our
eight models. After running inference, the mea-
sure qi at vertex i was normalized to 1. Next, for
all thresholds ranging from 0 to 1, with steps of
0.001, we measured the average POS tag precision
and recall on the development data – this gave us
the area under the precision-recall curve (prAUC),
which is often used to measure performance on re-
trieval tasks. Given a transduction setting and the
final q for an objective, hyperparameters µ and λ
were tuned on the development set by performing a
grid search, targeting prAUC.7 We ran 100 rounds

7For the objectives using the uniform `2 and the maxi-
mum entropy penalties, namely UGF-`2, UJSF-`2, NGF-`2
and NKLF-ME, we chose λ from {0, 10−6, 10−4, 0.1}. For the
rest of the models using sparsity inducing penalties, we chose
λ from {10−6, 10−4, 0.1}. This suggests that for the former
type of objectives, we allowed a zero unary penalty if that set-
ting resulted in the best development performance, while for the
latter type of models, we enforced a positive unary penalty. In
fact, λ = 0 was chosen in several cases for the objectives with
uniform penalties indicating that uniformity hurts performance.
We chose µ from {0.1, 0.5, 1.0}.

682

|Dl|: 3K 6K 12K 24K 48K 96K
NGF-`2 0.208 0.219 0.272 0.335 0.430 0.544
NKLF-ME 0.223 0.227 0.276 0.338 0.411 0.506

UGF-`2 0.223 0.257 0.314 0.406 0.483 0.564
UGF-`1 0.223 0.257 0.309 0.406 0.483 0.556
UGF-`1,2 0.223 0.256 0.313 0.403 0.478 0.557
UJSF-`2 0.271 0.250 0.310 0.364 0.409 0.481
UJSF-`1 0.227 0.257 0.317 0.369 0.410 0.481
UJSF-`1,2 0.227 0.258 0.309 0.369 0.409 0.479

Table 2: Area under the precision recall curve for the two
baseline objectives and our methods for POS tag lexicon
induction. This is a measure of how well the type lexicon
(for some types unlabeled during training) is recovered
by each method. The test set contains 588,705 types.

of iterative updates for all 8 graph objectives.
Type-level evaluation: To measure the quality of
the lexicons, we perform type level evaluation us-
ing area under the precision-recall curve (prAUC).
The same measure (on development data) was used
to tune the two hyperparameters. Table 2 shows the
results measured on 588,705 test vertices (the same
test set was used for all the transduction settings).
The general pattern we observe is that our unnor-
malized approaches almost always perform better
than the normalized baselines. (The exception is
the 3,000 labeled example case, where most unnor-
malized models are on par with the better baseline.)
In scenarios with fewer labeled types, pairwise en-
tropic penalties perform better than Gaussian ones,
and the pattern reverses as more labeled types come
available. This trend is the same when we compare
only the two baselines. In four out of the six trans-
duction settings, one of the sparsity-inducing graph
objectives achieves the best performance in terms of
prAUC, which is encouraging given that they gener-
ally produce smaller models than the baselines.

Overall, though, using sparsity-inducing unary
factors seems to have a weak negative effect on per-
formance. Their practical advantage, however is ap-
parent when we consider the size of the model. Af-
ter the induction of the set of measures q for all
transduction settings and all graph objectives, we
noticed that our numerical optimizer (LBFGS-B) of-
ten assigns extremely small positive values rather
than zero. This problem can be attributed to sev-
eral artifacts, including our limit of 100 iterations of
optimization. Hence, we use a global threshold of
10−6, and treat any real value below this threshold

0M

5M

11M

16M

21M

27M

32M

3k 6k 12k 24k 48k 96k

UGF-�1 UGF-�1,2 UJSF-�2

UJSF-�1 UJSF-�1,2

Figure 2: The number of non-zero components in q for
five graph objective functions proposed in this work, plot-
ted against various numbers of labeled datapoints. Note
that NGF-`2, NKLF-ME and UGF-`2 produce non-zero
components for virtually all q, and are therefore not
shown (the dotted line marks the maximally non-sparse
solution, with 31,081,725 components). All of these five
objectives result in sparsity. On average, the objectives
employing entropic pairwise penalties with sparse unary
penalties UJSF-`1 and UJSF-`1,2 produce very sparse
lexicons. Although UGF-`2 produces no sparsity at all,
its entropic counterpart UJSF-`2 produces considerable
sparsity, which we attribute to JS-divergence as a pair-
wise penalty.

to be zero. Figure 2 shows the number of non-zero
components in q (or, the lexicon size) for the graph
objectives that achieve sparsity (baselines NGF-`2
and NKLF-ME, plus our UGF-`2 are not expected
to, and do not, achieve sparsity; surprisingly UJSF-
`2 does and is shown). Even though the hyperpa-
rameters µ and λ in the graph objective functions
were not tuned towards sparsity, we see that sparsity-
inducing factors are able to achieve far more com-
pact lexicons. Sparsity is desirable in settings where
labeled development data for tuning thresholds that
select the most probable labels for a given type is
unavailable (e.g., Das and Petrov, 2011).

4.2 Expansion of a Semantic Frame Lexicon

In a second set of experiments, we follow Das and
Smith (2011, D&S11 henceforth) in expanding a
lexicon that associates lexical predicates (targets)
with semantic frames (abstract events or scenarios
that a predicate evokes when used in a sentential
context) as labels. More concretely, each vertex in
the graph corresponds to a lemmatized word type
with its coarse part of speech, and the labels are
frames from the FrameNet lexicon (Fillmore et al.,
2003). Graph construction leverages distributional

683

UNKNOWN ALL
PREDICATES PREDICATES lexicon

exact partial exact partial size
Supervised 23.08 46.62 82.97 90.51 -
∗NGF-`2 39.86 62.35 83.51 91.02 128,960
NKLF-ME 36.36 60.07 83.40 90.95 128,960

UGF-`2 37.76 60.81 83.44 90.97 128,960
UGF-`1 39.86 62.85 83.51 91.04 122,799
UGF-`1,2 39.86 62.85 83.51 91.04 128,732
UJSF-`2 40.56 62.81 83.53 91.04 128,232
UJSF-`1 39.16 62.43 83.49 91.02 128,771
UJSF-`1,2 42.67 65.29 83.60 91.12 45,544

Table 3: Exact and partial frame identification accuracy
with lexicon size (non-zero frame components). The “un-
known predicates” section of the test data contains 144
targets, while the entire test set contains 4,458 targets.
Bold indicates best results. The UJSF-`1,2 model pro-
duces statistically significant results (p < 0.001) for all
metrics with respect to the supervised baseline used in
D&S11. For both the unknown targets as well as the
whole test set. However, it is weakly significant (p < 0.1)
compared to the NGF-`2 model for the unseen portion of
the test set, when partial frame matching is used. For rest
of the settings, the two are statistically indistinguishable.
∗ indicates the best results in D&S11.

similarity as well as linguistic annotations.
Data: We borrow the graph-based SSL process of
D&S11 in its entirety. The constructed graph con-
tains 64,480 vertices, each corresponding to a tar-
get, out of which 9,263 were drawn from the labeled
data. The possible set of labels Y is the set of 877
frames defined in FrameNet; the measure qi corre-
sponds to the set of frames that a target can evoke.
The targets drawn from FrameNet annotated data
(l = 9,263) have frame distributions ri with which
the graph objectives are seeded.8

Evaluation: The evaluation metric used for this
task is frame disambiguation accuracy on a blind test
set containing marked targets in free text. A section
of this test set contained 144 targets, previously un-
seen in annotated FrameNet data; this section is of
interest to us and we present separate accuracy re-
sults on it. Given the measure qi over frames in-
duced using graph-based SSL for target i, we trun-
cate it to keep at most the top M frames that get
the highest mass under qi, only retaining those with
non-zero values. If all components of qi are zero,
we remove target i from the lexicon, which is of-
ten the case in the sparsity-inducing graph objec-
tives. If a target is unseen in annotated data, a sep-
arate probabilistic model (which serves as a super-
vised baseline like in D&S11, row 1 in Table 3) dis-
ambiguates among the M filtered frames observing
the sentential context of the target instance. This
can be thought of as combining type- and token-
level information for inference. If the target was
previously seen, it is disambiguated using the su-

8We refer the reader to D&S11 for the details of the graph
construction method, the FrameNet dataset used, example se-
mantic frames, and an excerpt of the graph over targets.

pervised baseline. The test set and the probabilis-
tic model are identical to the ones in D&S11. We
fixed K, the number of nearest neighbors for each
vertex, to be 10. For each graph objective, µ, λ and
M were chosen by five-fold cross-validation. The
cross-validation sets were the same as the ones de-
scribed in §6.3 of D&S11.9

Results and discussion: Table 3 shows frame iden-
tification accuracy, both using exact match as well
as partial match that assigns partial credit when a re-
lated frame is predicted (Baker et al., 2007). The
final column presents lexicon size in terms of the set
of truncated frame distributions (filtered according
to the top M frames in qi) for all the targets in a
graph. All the graph-based models are better than
the supervised baseline; for our objectives using
pairwise Gaussian fields with sparse unary penal-
ties, the accuracies are equal or better with respect
to NGF-`2; however, the lexicon sizes are reduced
by a few hundred to a few thousand entries. Massive
reduction in lexicon sizes (as in the POS problem in
§4.1) is not visible for these objectives because we
throw out most of the components of the entire set
of distributions q and keep only at most the top M
(which is automatically chosen to be 2 for all ob-
jectives) frames per target. Although a significant
number of components in the whole distribution q
in the sparse objectives get zero mass, the M com-
ponents for a target tend to be non-zero for a major-
ity of the targets. Better results are observed for the
objectives using entropic pairwise penalties; the ob-

9We chose µ from {0.01, 0.1, 0.3, 0.5, 1.0}; λ was chosen
from the same sets as the POS problem. The graph construction
hyperparameter α described by D&S11 was fixed to 0.2. As in
D&S11, M was chosen from {2, 3, 5, 10}.

684

(a)

t = discrepancy.N t = contribution.N t = print.V t = mislead.V
∗SIMILARITY ∗GIVING ∗TEXT CREATION EXPERIENCER OBJ

NATURAL FEATURES MONEY SENDING ∗PREVARICATION

PREVARICATION COMMITMENT DISPERSAL MANIPULATE INTO DOING

QUARRELING ASSISTANCE READING COMPLIANCE

DUPLICATION EARNINGS AND LOSSES STATEMENT EVIDENCE

t = abused.A t = maker.N t = inspire.V t = failed.A
OFFENSES COMMERCE SCENARIO CAUSE TO START SUCCESS OR FAILURE

KILLING ∗MANUFACTURING EXPERIENCER OBJ ∗SUCCESSFUL ACTION

COMPLIANCE BUSINESSES ∗SUBJECTIVE INFLUENCE UNATTRIBUTED INFORMATION

DIFFERENTIATION BEHIND THE SCENES EVOKING PIRACY

COMMITTING CRIME SUPPLY ATTEMPT SUASION WANT SUSPECT

(b)

t = discrepancy.N t = contribution.N t = print.V t = mislead.V
∗SIMILARITY ∗GIVING ∗TEXT CREATION ∗PREVARICATION

NON-COMMUTATIVE STATEMENT COMMERCE PAY STATE OF ENTITY EXPERIENCER OBJ

NATURAL FEATURES COMMITMENT DISPERSAL MANIPULATE INTO DOING

ASSISTANCE CONTACTING REASSURING

EARNINGS AND LOSSES READING EVIDENCE

t = abused.A t = maker.N t = inspire.V t = failed.A
∗MANUFACTURING CAUSE TO START ∗SUCCESSFUL ACTION

BUSINESSES ∗SUBJECTIVE INFLUENCE SUCCESSFULLY COMMUNICATE MESSAGE

COMMERCE SCENARIO OBJECTIVE INFLUENCE

SUPPLY EXPERIENCER OBJ

BEING ACTIVE SETTING FIRE

Table 4: Top 5 frames (if there are ≥ 5 frames with mass greater than zero) according to the graph posterior qt(f)
for (a) NGF-`2 and (b) UJSF-`1,2, given eight unseen predicates in annotated FrameNet data. ∗ marks the correct
frame, according to the predicate instances in test data (each of these predicates appear only once in test data). Note
that UJSF-`1,2 ranks the correct frame higher than NGF-`2 for several predicates, and produces sparsity quite often;
for the predicate abused.A, the correct frame is not listed by NGF-`2, while UJSF-`1,2 removes it altogether from the
expanded lexicon, resulting in compactness.

jective UJSF-`1,2 gives us the best absolute result by
outperforming the baselines by strong margins, and
also resulting in a tiny lexicon, less than half the size
of the baseline lexicons. The size can be attributed to
the removal of predicates for which all frame com-
ponents were zero (qi = 0). Table 4 contrasts the
induced frames for several unseen predicates for the
NGF-`2 and the UJSF-`2 objectives; the latter often
ranks the correct frame higher, and produces a small
set of frames per predicate.

5 Conclusion

We have presented a family of graph-based SSL ob-
jective functions that incorporate penalties encour-
aging sparse measures at each graph vertex. Our
methods relax the oft-used assumption that the mea-
sures at each vertex form a normalized probabil-
ity distribution, making optimization and the use of
complex penalties easier than prior work. Optimiza-

tion is also easy when there are additional terms in
a graph objective suited to a specific problem; our
generic optimizer would simply require the compu-
tation of new partial derivatives, unlike prior work
that required specialized techniques for a novel ob-
jective function. Finally, experiments on two natural
language lexicon learning problems show that our
methods produce better performance with respect to
state-of-the-art graph-based SSL methods, and also
result in much smaller lexicons.

Acknowledgments

We thank André Martins, Amar Subramanya, and Partha
Talukdar for helpful discussion during the progress of this
work and the three anonymous reviewers for their valu-
able feedback. This research was supported by Qatar Na-
tional Research Foundation grant NPRP 08-485-1-083,
Google’s support of the Worldly Knowledge Project, and
TeraGrid resources provided by the Pittsburgh Supercom-
puting Center under NSF grant number TG-DBS110003.

685

References
G. Andrew and J. Gao. 2007. Scalable training of L1-

regularized log-linear models. In Proc. of ICML.
C. Baker, M. Ellsworth, and K. Erk. 2007. Task 19:

frame semantic structure extraction. In Proc. of Se-
mEval.

S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. 2008. Video
suggestion and discovery for Youtube: taking random
walks through the view graph. In Proc. of WWW.

Y. Bengio, O. Delalleau, and N. Le Roux. 2006. La-
bel propagation and quadratic criterion. In Olivier
Chapelle, Bernhard Schölkopf, and Alexander Zien,
editors, Semi-Supervised Learning, pages 193–216.
MIT Press.

J. Burbea and C. R. Rao. 1982. On the convexity of
some divergence measures based on entropy functions.
IEEE Transactions on Information Theory, 28:489–
495.

O. Chapelle, B. Schölkopf, and A. Zien, editors. 2006.
Semi-Supervised Learning. MIT Press.

A. Corduneanu and T. Jaakkola. 2003. On information
regularization. In Proc. of UAI.

T. M. Cover and J. A. Thomas. 1991. Elements of infor-
mation theory. Wiley-Interscience.

D. Das and S. Petrov. 2011. Unsupervised part-of-
speech tagging with bilingual graph-based projections.
In Proc. of ACL.

D. Das and N. A. Smith. 2011. Semi-supervised frame-
semantic parsing for unknown predicates. In Proc. of
ACL.

J. Dean and S. Ghemawat. 2008. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51:107–113, January.

P. S. Dhillon, D. Foster, and L. Ungar. 2011. Multi-
view learning of word embeddings via cca. In Proc. of
NIPS.

C. J. Fillmore, C. R. Johnson, and M. R.L. Petruck. 2003.
Background to FrameNet. International Journal of
Lexicography, 16(3).

C. J. Fillmore. 1982. Frame semantics. In Linguistics in
the Morning Calm, pages 111–137. Hanshin Publish-
ing Co., Seoul, South Korea.

D. Graff. 2003. English Gigaword. Linguistic Data Con-
sortium.

Y. Grandvalet and Y. Bengio. 2004. Semi-supervised
learning by entropy minimization. In Proc. of NIPS.

W. Gropp, E. Lusk, and A. Skjellum. 1994. Using MPI:
Portable Parallel Programming with the Message-
Passing Interface. MIT Press.

F. Huang and A. Yates. 2009. Distributional representa-
tions for handling sparsity in supervised sequence la-
beling. In Proc. of ACL.

F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schu-
urmans. 2006. Semi-supervised conditional random
fields for improved sequence segmentation and label-
ing. In Proc. of ACL.

M. Kowalski and B. Torrésani. 2009. Sparsity and per-
sistence: mixed norms provide simple signal models
with dependent coefficients. Signal, Image and Video
Processing, 3:251–264.

S. Kullback and R. A. Leibler. 1951. On information and
sufficiency. Annals of Mathematical Statistics, 22.

J. Lin. 1991. Divergence measures based on the shan-
non entropy. IEEE Transactions on Information the-
ory, 37:145–151.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of English:
the Penn Treebank. Computational Linguistics, 19(2).

D. McClosky, E. Charniak, and M. Johnson. 2006. Ef-
fective self-training for parsing. In Proc. of HLT-
NAACL.

J. A. O’Sullivan. 1998. Alternating minimization
algorithms: from Blahut-Arimoto to Expectation-
Maximization. In A. Vardy, editor, Codes, Curves,
and Signals: Common Threads in Communications,
pages 173–192. Kluwer.

D. A. Smith and J. Eisner. 2007. Bootstrapping feature-
rich dependency parsers with entropic priors. In Proc.
of EMNLP.

A. Subramanya and J. Bilmes. 2008. Soft-supervised
learning for text classification. In Proc. of EMNLP.

A. Subramanya and J. Bilmes. 2009. Entropic graph reg-
ularization in non-parametric semi-supervised classifi-
cation. In Proc. of NIPS.

A. Subramanya, S. Petrov, and F. Pereira. 2010. Efficient
Graph-based Semi-Supervised Learning of Structured
Tagging Models. In Proc. of EMNLP.

M. Szummer and T. Jaakkola. 2001. Partially labeled
classification with Markov random walks. In Proc. of
NIPS. MIT Press.

P. P. Talukdar and K. Crammer. 2009. New regularized
algorithms for transductive learning. In Proc. of the
ECML-PKDD.

P. P. Talukdar. 2010. Graph-Based Weakly-Supervised
Methods for Information Extraction and Integration.
Ph.D. thesis, University of Pennsylvania.

R. Tibshirani. 1996. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
(Series B), 58:267–288.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proc. of ACL.

X. Zhu and Z. Ghahramani. 2002. Learning from labeled
and unlabeled data with Label Propagation. Technical
report, Carnegie Mellon University.

686

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. 1997. Algo-
rithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization. ACM Transac-
tions on Mathematical Software, 23:550–560.

X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semi-
supervised learning using gaussian fields and har-
monic functions. In Proc. of ICML.

X. Zhu. 2008. Semi-Supervised Learning Literature Sur-
vey. Online publication., July.

687

