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Abstract

We describe and evaluate several methods for
estimating the confidence in the per-edge cor-
rectness of a predicted dependency parse. We
show empirically that the confidence is asso-
ciated with the probability that an edge is se-
lected correctly and that it can be used to de-
tect incorrect edges very efficiently. We eval-
uate our methods on parsing text in 14 lan-
guages.

1 Introduction

Dependency parsers construct directed edges be-
tween words of a given sentence to their arguments
according to syntactic or semantic rules. We use
MSTParser of McDonald et al. (2005) and focus
on non-projective dependency parse trees with non-
typed (unlabeled) edges. MSTParser produces a
parse tree for a sentence by constructing a full, di-
rected and weighted graph over the words of the
sentence, and then outputting the maximal spanning
tree (MST) of the graph. A linear model is em-
ployed for computing the weights of the edges using
features depending on the two words the edge con-
nects. Example features are the distance between the
two words, words identity and words part-of-speech.
MSTParser is training a model using online learning
and specifically the MIRA algorithm (Crammer et
al., 2006). The output of MSTParser is the highest
scoring parse tree, it is not accompanied by any ad-
ditional information about its quality.

In this work we evaluate few methods for estimat-
ing the confidence in the correctness of the predic-
tion of a parser. This information can be used in

several ways. For example, when using parse trees
as input to another system such as machine transla-
tion, the confidence information can be used to cor-
rect inputs with low confidence. Another example
is to guide manual validation to outputs which are
more likely to be erroneous, saving human labor.
We adapt methods proposed by Mejer and Cram-
mer (2010) in order to produce per-edge confidence
estimations in the prediction. Specifically, one ap-
proach is based on sampling, and another on a gen-
eralization of the concept of margin. Additionally,
we propose a new method based on combining both
approaches, and show that is outperforms both.

2 Confidence Estimation In Prediction

MSTParser produces the highest scoring parse trees
using the trained linear model with no additional
information about the confidence in the predicted
tree. In this work we compute per-edge confidence
scores, that is, a numeric confidence value, for
all edges predicted by the parser. Larger score
values indicate higher confidence. We use three
confidence estimation methods that were proposed
for sequence labeling (Mejer and Crammer, 2010),
adapted here for dependency parsing. A fourth
method, described in Sec. 3, is a combination of the
two best performing methods.

The first method, named Delta, is a margin-based
method. For computing the confidence of each edge
the method generates an additional parse-tree, which
is the best parse tree that is forced not to contain the
specific edge in question. The confidence score of
the edge is defined as the difference in the scores be-
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tween the two parse trees. The score of a tree is the
sum of scores of the edges it contains. These con-
fidence scores are always positive, yet not limited
to [0, 1]. Delta method does not require parameter
tuning.

The second method, named Weighted K-Best
(WKB), is a deterministic method building on prop-
erties of the inference algorithm. Specifically,
we use k-best Maximum Spanning Tree algorithm
(Hall, 2007) to produce the K parse trees with the
highest score. This collection of K-trees is used to
compute the confidence in a predicted edge. The
confidence score is defined to be the weighted-
fraction of parse trees that contain the edge. The
contribution of different trees to compute this frac-
tion is proportional to their absolute score, where the
tree with the highest score has the largest contribu-
tion. Only trees with positive scores are included.
The computed score is in the range [0, 1]. The value
of K was tuned using a development set (optimiz-
ing the average-precision score of detecting incor-
rect edges, see below) and for most datasets K was
set to a value between 10− 20.

The third method, K Draws by Fixed Standard
Deviation (KD-Fix) is a probabilistic method. Here
we sample K weight vectors using a Gaussian dis-
tribution, for which the mean parameters are the
learned model and isotropic covariance matrix with
fixed variance s2. The value s is tuned on a develop-
ment set (optimizing the average-precision score of
detecting incorrect edges). The confidence of each
edge is the probability of this edge induced from the
distribution over parameters. We approximate this
quantity by sampling K parse trees, each obtained by
finding the MST when scores are computed by one
of K sampled models. Finally, the confidence score
of each edge predicted by the model is defined to
be the fraction of parse trees among the K trees that
contain this edge. Formally, the confidence score is
ν = j/K where j is the number of parse trees that
contain this edge (j ∈ {0. . .K}) so the score is in
the range [0, 1]. We set K = 50.

Finally, we describe below a fourth method,
we call KD-Fix+Delta, which is a weighted-linear
combination of KD-Fix and Delta.

3 Evaluation

We evaluated the algorithms using 13 languages
used in CoNLL 2006 shared task1, and the English
Penn Treebank. The number of training sentences is
between 1.5-72K, with an average of 20K sentences
and 50K-1M words. The test sets contain ∼ 400
sentences and ∼6K words for all datasets, except
English with 2.3K sentences and 55K words. Pa-
rameter tuning was performed on development sets
with 200 sentences per dataset. We trained a model
per dataset and used it to parse the test set. Pre-
dicted edge accuracy of the parser ranges from 77%
on Turkish to 93% on Japanese, with an average of
85%. We then assigned each predicted edge a confi-
dence score using the various confidence estimation
methods.

Absolute Confidence: We first evaluate the accu-
racy of the actual confidence values assigned by all
methods. Similar to (Mejer and Crammer, 2010) we
grouped edges according to the value of their con-
fidence. We used 20 bins dividing the confidence
range into intervals of size 0.05. Bin indexed j
contains edges with confidence value in the range
[ j−1

20 ,
j
20 ] , j = 1..20. Let bj be the center value of

bin j and let cj be the fraction of edges predicted
correctly from the edges assigned to bin j. For a
good confidence estimator we expect bj ≈ cj .

Results for 4 datasets are presented in Fig. 1. Plots
show the measured fraction of correctly predicted
edges cj vs. the value of the center of bin bj . Best
performance is obtained when a line corresponding
to a method is close to the line y = x. Results are
shown for KD-Fix and WKB; Delta is omitted as it
produces confidence scores out of [0, 1]. In two of
the shown plots (Chinese and Swedish) KD-Fix (cir-
cles) follows closely the expected accuracy line. In
another plot (Danish) KD-Fix is too pessimistic with
line above y = x and in yet another case (Turkish) it
is too optimistic. The distribution of this qualitative
behavior among the 14 datasets is: too optimistic
in 2 datasets, too pessimistic in 7 and close to the
line y = x in 5 datasets. The confidence scores
produced by the WKB are in general worse than
KD-Fix, too optimistic in some confidence range

1Arabic, Bulgarian, Chinese, Czech, Danish, Dutch, Ger-
man, Japanese, Portuguese, Slovene, Spanish, Swedish and
Turkish . See http://nextens.uvt.nl/˜conll/
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Figure 1: Evaluation of KD-Fix and WKB by comparing predicted accuracy vs. actual accuracy in each bin on 4 datasets. Best
performance is obtained for curves close to the line y=x (black line). Delta method is omitted as its output is not in the range [0, 1].

KD WKB Delta KD-Fix Random
Fix +Delta

Avg-Prec 0.535 0.304 0.518 0.547 0.147
Prec @10% 0.729 0.470 0.644 0.724 0.145
Prec @90% 0.270 0.157 0.351 0.348 0.147

RMSE 0.084 0.117 - - 0.458

Table 1: Row 1: Average precision in ranking all edges ac-
cording confidence values. Rows 2-3: Precision in detection of
incorrect edges when detected 10% and 90% of all the incorrect
edges. Row 4: Root mean square error. All results are averaged
over all datasets.

and too pessimistic in another range. We computed
the root mean square-error (RMSE) in predicting the
bin center value given by

√
(
∑

j nj(bj−cj)2)/(
∑

j nj) ,

where nj is the number of edges in the jth bin.
The results, summarized in the 4th row of Table 1,
support the observation that KD-Fix performs better
than WKB, with smaller RMSE.

Incorrect Edges Detection: The goal of this task
is to efficiently detect incorrect predicted-edges.
We ranked all predicted edges of the test-set (per
dataset) according to their confidence score, order-
ing from low to high. Ideally, erroneous edges by
the parser are ranked at the top. A summary of
the average precision, computed at all ranks of erro-
neous edges, (averaged over all datasets, due to lack
of space), for all confidence estimation methods is
summarized in the first row of Table 1. The aver-
age precision achieved by random ordering is about
equal to the error rate for each dataset. The Delta
method improves significantly over both the random
ordering and WKB. KD-Fix achieves the best per-
formance in 12 of 14 datasets and the best average-
performance. These results are consistent with the
results obtained for sequence labeling by Mejer and
Crammer (2010).

Average precision summarizes the detection of
all incorrect edges into a single number. More re-
fined analysis is encapsulated in Precision-Recall

(PR) plots, showing the precision as more incorrect
edges are detected. PR plots for three datasets are
shown in Fig. 2. From these plots (applied also to
other datasets, omitted due to lack of space) we ob-
serve that in most cases KD-Fix performs signifi-
cantly better than Delta in the early detection stage
(first 10-20% of the incorrect edges), while Delta
performs better in late detection stages (last 10-20%
of the incorrect edges). The second and third rows of
Table 1 summarize the precision after detecting only
10% incorrect edges and after detecting 90% of the
incorrect edges, averaged over all datasets. For ex-
ample, in Czech and Portuguese plots of Fig. 2, we
observe an advantage of KD-Fix for low recall and
an advantage of Delta in high recall. Yet for Ara-
bic, for example, KD-Fix outperforms Delta along
the entire range of recall values.

KD-Fix assigns at most K distinct confidence val-
ues to each edge - the number of models that agreed
on that particular edge. Thus, when edges are ranked
according to the confidence, all edges that are as-
signed the same value are ordered randomly. Fur-
thermore, large fraction of the edges, ∼ 70 − 80%,
are assigned one of the top-three scores (i.e. K-2,
K-1, K). As a results, the precision performance of
KD-Fix drops sharply for recall values of 80% and
above. On the other hand, we hypothesize that the
lower precision of Delta at low recall values (dia-
mond in Fig. 2) is because by definition Delta takes
into account only two parses, ignoring additional
possible parses with score close to the highest score.
This makes Delta method more sensitive to small
differences in score values compared to KD-Fix.

Based on this observation, we propose combin-
ing both KD-Fix and Delta. Our new method sets
the confidence score of an edge to be a weighted
mean of the score values of KD-Fix and Delta, with
weights a and 1-a, respectively. We use a value
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Figure 2: (Best shown in color.) Three left plots: Precision in detection of incorrect edges as recall increases. Right plot: Effect of
K value on KD-Fix method performance (for six languages, the remaining languages follow similar trend, omitted for clarity).

a ≈ 1, so if the confidence value of two edges ac-
cording to KD-Fix is different, the contribution of
the score from Delta is negligible, and the final score
is very close as score of only KD-Fix. On the other
hand, if the score of KD-Fix is the same, as hap-
pens for many edges at high recall values, then Delta
breaks arbitrary ties. In other words, the new method
first ranks edges according to the confidence score
of KD-Fix, then among edges with equal KD-Fix
confidence score a secondary order is employed us-
ing Delta. Not surpassingly, we name this method
KD-Fix+Delta. This new method enjoys the bene-
fits of the two methods. From the first row of Table 1
we see that it achieves the highest average-precision
averaged over the 14 datasets. It improves average-
precision over KD-Fix in 12 of 14 datasets and over
Delta in all 14 datasets. From the second and third
row of the table, we see that it has Precision very
close to KD-Fix for recall of 10% (0.729 vs. 0.724),
and very close to Delta for recall of 90% (0.351 vs.
0.348). Moving to Fig. 2, we observe that the curve
associated with the new method (red ticks) is in gen-
eral as high as the curves associated with KD-Fix
for low values of recall, and as high as the curves
associated with Delta for large values of recall.

To illustrate the effectiveness of the incorrect
edges detection process, Table 2 presents the num-
ber of incorrect edges detected vs. number of edges
inspected for the English dataset. The test set for this
task includes 55K words and the parser made mis-
take on 6, 209 edges, that is, accuracy of 88.8%. We
see that using the ranking induced by KD-Fix+Delta
method, inspection of 550, 2750 and 5500 edges
(1, 5, 10% of all edges), allows detection of 6.6 −
46% of all incorrect edges, over 4.5 times more ef-
fective than random validation.

Edges inspected Incorrect edges detected
(% of total edges) (% of incorrect edges)

550 (1%) 412 (6.6%)
2,750 (5%) 1,675 (27%)

5,500 (10%) 2,897 (46%)

Table 2: Number of incorrect edges detected, and the corre-
sponding percentage of all mistakes, after inspecting 1 − 10%
of all edges, using ranking induced by KD-Fix+Delta method.

Effect of K value on KD-Fix method perfor-
mance The right plot of Fig. 2 shows the average-
precision of detecting incorrect edges on the test set
using the KD-Fix method for K values ranging be-
tween 2 and 80. We see that even with K = 2,
only two samples per sentence, the average preci-
sion results are much better than random ranking in
all tasks. AsK is increased the results improve until
reaching maximal results at K ≈ 30. Theoretical
calculations, using concentration inequalities, show
that accurate estimates based on the sampling proce-
dure requires K ≈ 102 − 103. Yet, we see that for
practical uses, smaller K values by 1 − 2 order of
magnitude is suffice.
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