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Abstract

In a large-scale study of how people find top-
ical shifts in written text, 27 annotators were
asked to mark topically continuous segments
in 20 chapters of a novel. We analyze the re-
sulting corpus for inter-annotator agreement
and examine disagreement patterns. The re-
sults suggest that, while the overall agree-
ment is relatively low, the annotators show
high agreement on a subset of topical breaks
– places where most prominent topic shifts
occur. We recommend taking into account
the prominence of topical shifts when evalu-
ating topical segmentation, effectively penal-
izing more severely the errors on more impor-
tant breaks. We propose to account for this in a
simple modification of the windowDiff metric.
We discuss the experimental results of evaluat-
ing several topical segmenters with and with-
out considering the importance of the individ-
ual breaks, and emphasize the more insightful
nature of the latter analysis.

1 Introduction

Topical segmentation is a useful intermediate step
in many high-level NLP applications such as in-
formation retrieval, automatic summarization and
question answering. It is often necessary to split a
long document into topically continuous segments.
Segmentation may be particularly beneficial when
working with documents without overt structure:
speech transcripts (Malioutov and Barzilay, 2006),
newswire (Misra et al., 2011) or novels (Kazantseva
and Szpakowicz, 2011). The customary approach

is to cast text segmentation as a binary problem: is
there a shift of topic between any two adjacent tex-
tual units (e.g., sentences or paragraphs)? While
necessary, this simplification is quite crude. Topic in
discourse usually changes continually; some shifts
are subtle, others – more prominent.

The evaluation of text segmentation remains an
open research problem. It is a tradition to compile a
gold-standard segmentation reference using one or
more annotations created by humans. If an auto-
matic segmenter agrees with the reference, it is re-
warded, otherwise it is penalized (see Section 4 for
details). The nature of the task, however, is such that
creating and applying a reference segmentation is far
from trivial. The identification of topical shifts re-
quires discretization of a continuous concept – how
much the topic changes between two adjacent units.
That is why annotators often operate at different lev-
els of granularity. Some people mark only the most
prominent topic fluctuations, while others also in-
clude finer changes. The task is also necessarily
under-defined. In addition to topic changes per se,
annotators effectively must classify some rhetorical
and pragmatic phenomena – exactly how much it is
depends on the document genre. For simplicity we
do not directly address the latter problem here; we
concentrate on the former.

To study how people identify topical shifts in
written text, we asked 27 annotators to segment into
episodes 20 chapters of the novel The Moonstone
by Wilkie Collins. Each chapter was annotated by
4-6 people. An episode roughly corresponds to a
topically continuous segment – the term is defined
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in Section 3. The analysis of the resulting corpus
reveals that while the overall inter-annotator agree-
ment is quite low and is not uniform throughout each
chapter. Some topical shifts are marked by most or
all annotators, others – by one or by a minority. In
fact, only about 50% of all annotated topical shifts
are supported by at least 50% of annotators (includ-
ing near-hits), while the other half is only marked by
a minority. In this work we take the agreement about
a certain topical shift as a measure of its prominence,
and show how this measure can be simply utilized
for the purpose of evaluation.

The main claim of this paper is perhaps the fol-
lowing: when evaluating the performance of auto-
matic segmenters, it is important to consider not
only the overall similarity between human and ma-
chine segmentations, but also to examine the regions
of disagreement. When a program misses or mis-
places a prominent topic shift – a segment bound-
ary marked by all annotators – it should be penal-
ized more than if it was mistaken about a boundary
marked by one person. Similarly, a false positive
in the region where none of the annotators found a
change in topic is worse than a boundary inserted in
a place where at least one person perceived a topic
change. We suggest that it is important to use all
available reference segmentations instead of com-
piling them into a single gold standard. We show
how a small modification to the popular windowD-
iff (Pevzner and Hearst, 2002) metric can allow con-
sidering multiple annotations at once.

To demonstrate the increased interpretive power
of such evaluation we run and evaluate several state-
of-the art segmenters on the corpus described in this
work. We evaluate their performance first in a con-
ventional manner – by combining all available ref-
erences into one – and then by using the proposed
modification. Comparing the results suggests that
the information provided by this method differs from
what existing methods provide.

Section 2 gives a brief background on text seg-
mentation. Section 3 describes the corpus and how
it was collected. Section 4 contain quantitative and
qualitative analysis of the corpus and its interpreta-
tions. Section 5 proposes a modified version of win-
dowDiff and motivates it. Section 6 compares eval-
uation of three segmenters in several different ways.

Section 7 contains the conclusions and outlines di-
rections for future work.

2 Background and Related Work

The goal of topical text segmentation is to identify
segments within which the topic under discussion
remains relatively constant. A flip-side of this def-
inition is identifying topic shifts – places where the
topic shifts significantly or abruptly. In the context
of this paper we allow ourselves to use these two def-
initions interchangeably, sometimes talking about
identifying topic shifts, at other times – about identi-
fying topically continuous segments. While the the-
oretical correctness of such usage remains question-
able, it is sufficient for the purpose of our discussion,
and it is in line with the literature on the topic.

There is a number of corpora annotated for the
presence of topical shifts by one or more annotators.
Passonneau and Litman (1997) describe an experi-
ment where seven untrained annotators were asked
to find discourse segments in a corpus of transcribed
narratives about a movie. While the authors show
that the agreement is significant, they also note that
people include segment boundaries at different rates.

Gruenstein, Niekrasz, and Purver (2005) describe
the process of annotating parts of two corpora of
meeting transcripts: ICSI (Janin et al., 2003) and
ISL (Burger, MacLaren, and Yu, 2002). Two peo-
ple annotated the texts at two levels: major and mi-
nor, corresponding to the more and less important
topic shifts. Topical shifts were to be annotated so
as to allow an outsider to glance at the transcript
and get the gist of what she missed. Not unlike
our work, the authors report rather low overall inter-
annotator agreement. Galley et al. (2003) also com-
piled a layer of annotation for topical shifts for part
of the ICSI corpus, using a somewhat different pro-
cedure with three annotators. Malioutov and Barzi-
lay (2006) created a corpus of course lectures seg-
mented by four annotators, noting that the annota-
tors operated at different levels of granularity. In
these three projects, manual annotations were com-
piled into a single gold standard reference for use in
evaluating and fine-tuning automatic segmenters.

The work described in this paper is different in
several ways. To the best of our knowledge, this is
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the first attempt to annotate literary texts for topical
shifts. Because we collected relatively many anno-
tations for each chapter (four to six), we can make
some generalizations as to the nature of the process.
In addition to compiling and describing the corpus,
we analyze disagreement patterns between annota-
tors. We claim that even though the annotators may
not agree on granularity, they do agree at some level,
at least with respect to most prominent breaks. We
propose that instead of compiling a single reference
from multiple annotations it may be more useful to
evaluate automatic segmenters against several anno-
tations at once. We will show how to do that.

3 The Overview of the Corpus

Our current work on text segmentation is part of a
larger project on automatic summarization of fic-
tion, which is why we chose a XIX century novel,
The Moonstone by Wilkie Collins, as the text to
be annotated. We used two chapters for a pilot
study and then another 20 for the large-scale experi-
ment. The annotators worked with individual chap-
ters and were required to align segment boundaries
with paragraph breaks.

Objectives. The main question behind this study
was this: “How do people identify topical shifts in
literature?” This vague question can be mapped to
several more specific objectives. First, we sought
to verify that topical segmentation of literature was
a sensible task from the viewpoint of an untrained
annotator. Next, it was important to examine inter-
annotator agreement to make sure that the annota-
tors in fact worked on the same phenomena and that
the resulting corpus is a reasonable approximation of
how people segment literature in general. Third, in
addition to analyzing the overall agreement we also
took a close look at the type of common disagree-
ments, in search of patterns and insights to evaluate
automatic segmenters.

Subjects. The participants were undergraduate
students of an English department at the University
of Ottawa, recruited by email. They received $50
each for their participation. Everyone had to anno-
tate four chapters from The Moonstone, not neces-
sarily consecutive ones. The chapters were divided
so as to ensure an approximately equal workload.

We had planned six independent annotations for
each chapter of the novel.1 The annotators were di-
vided into five groups, each group asked to read and
annotate four distinct chapters. In the end we had
three groups with six people, one group with five
and one group with four.

Procedure. The experiment was conducted re-
motely. The students received email packages with
detailed instructions and an example of a segmented
chapter from a different novel. They had two weeks
to annotate the first two chapters and then two more
weeks to annotate another two chapters.

The annotators were instructed to read each chap-
ter and split it into episodes – topically continuous
spans of text demarcated by the most perceptible
shifts of topic in the chapter. We asked the anno-
tators to provide a brief one-sentence description of
each episode, effectively creating a chapter outline.
The students were also asked to record places they
found challenging and to note the time it takes to
complete the task.

Because even short chapters of most traditional
novels are rather lengthy, we chose to use paragraphs
as the basic unit of annotation (sentences are more
common in text segmentation literature).

4 Corpus Analysis

Time. On average, an annotator required 137.9 min-
utes to complete both tasks. The standard devia-
tion was σ = 98.32 minutes appropriately reflecting
the fact that some students are very fast readers and
besides have already read the novel in one of their
classes, while others are quite slow.

The average chapter has 53.85 paragraphs (σ =
29.31), the average segment length across all anno-
tators is 9.25 paragraphs (σ = 9.77). On average the
annotators identified 5.80 episodes (σ = 2.45) per
chapter. Figure 1 shows the distribution of the num-
ber of segments identified in each chapter. An indi-
vidual box plot is compiled using all available anno-
tations for that chapter – six for most, four or five
for several. The data are plotted for individual chap-
ters, so the only source of variance is the disagree-
ment between annotators as to what is the appropri-
ate level of detail for the task. Figure 1 confirms

1We hired 30 students. Three did not complete the task.
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Figure 1: Distribution of segment counts across chapters.

other researchers’ findings: people find topical shifts
at different levels of granularity (Malioutov and
Barzilay, 2006; Gruenstein, Niekrasz, and Purver,
2005). We take this investigation further and explore
whether there are patterns to this disagreement and
how they can be interpreted and leveraged.

4.1 Inter-annotator Agreement

In order to make sure that our guidelines are suffi-
ciently clear and the annotators in fact annotate the
same phenomenon, it is important to measure inter-
annotator agreement (Artstein and Poesio, 2008).
This is particularly important given the fact that the
resulting corpus is intended as a benchmark dataset
for evaluation of automatic segmenters.

When looking at inter-annotator agreement inde-
pendently of the domain, the most commonly used
metrics are coefficients of agreement – α (Krippen-
dorff, 2004), κ (Cohen, 1960; Shrout and Fleiss,
1979), π (Scott, 1955) and several others. In this
work we use a multi-annotator version of π, also
known in the CL community as Fleiss’s κ (Shrout
and Fleiss, 1979; Siegel and Castellan, 1988) .

Fleiss’s κ is computed as follows:

κ =
Agreementobserved − Agreementexpected

1− Agreementexpected

(1)

Agreementobserved =
1

ic(c− 1)

X
i∈I

X
k∈K

nik(nik − 1) (2)

Agreementexpected =
1

(ic)2
X
k∈K

n2
k (3)

where i is the number of items to be classified in set
I, k is the number of available categories in set K, c is
the number of annotators, nik is the number of anno-
tators who assign item i to category k, nk is the total
number of items assigned to category k by all anno-
tators (Artstein and Poesio, 2008, pp. 562-563). Ef-
fectively κmeasures how much the annotators agree
above what can be expected by chance. The value
of κ is 0 where there is no agreement above chance
and 1 where the annotators agree completely.

While we report κ values for our dataset, it is
important to note that κ is ill-suited to measuring
agreement in segmentation. The main problem is its
insensitivity to near-hits. When asked to segment
a document, the annotators often disagree about the
exact placement of the boundary but agree that there
is a boundary somewhere in the region (e.g., con-
sider paragraphs 9-11 in segmentations in Figure 2).
It is desirable to give partial credit to such near-hits
instead of dismissing them as utter disagreement.
This cannot be achieved with κ. The second prob-
lem is the independence assumption: the label for
each item must be independent from the labels of all
other items. In our case, this would amount to claim-
ing, highly unrealistically, that the probability of a
topical shift between two sentences is independent
of the topical landscape of the rest of the document.

Two other commonly used agreement metrics are
Pk (Beeferman, Berger, and Lafferty, 1999) and win-
dowDiff (Pevzner and Hearst, 2002), both designed
to compare a hypothetical segmentation to a refer-
ence, not to measure agreement per se. A com-
mon feature of both metrics is that they award partial
credit to near-hits by sliding a fixed-length window
through the sequence and comparing the reference
segmentation and hypothetical segmentation at each
window position. The window size is generally set
at half the average segment length.

Pk (Equation 4) measures the probability that two
units randomly drawn from a document are correctly
classified as belonging to the same topical segment.
Pk has been criticized for penalizing false negatives
less than false positives and for being altogether in-
sensitive to certain types of error; see (Pevzner and

214



Hearst, 2002, pp. 22-26) for details. Despite its
shortcomings, Pk is widely used. We report it for
comparison with other corpora.

Pk(ref, hyp) =
X

1≤i≤j≤n

D(i, j)(δref (i, j) XNOR δhyp(i, j))

(4)

Functions δhyp and δref indicate whether the two
segment endpoints i and j belong to the same seg-
ment in the hypothetical segmentation and reference
segmentation respectively.

windowDiff was designed to remedy some of Pk’s
shortcomings. It counts erroneous windows in the
hypothetical sequence normalized by the total num-
ber of windows. A window is judged erroneous if
the boundary counts in the reference segmentation
and hypothetical segmentation differ; that is (|ref -
hyp| 6= 0) in Equation 5).

winDiff =
1

N − k

N−kX
i=1

(|ref − hyp| 6= 0) (5)

Both Pk and windowDiff produce penalty scores be-
tween 0 and 1, with 1 corresponding to all windows
being in error, and 0 – to a perfect segmentation.

Table 1 reports Pk, windowDiff and κ values for
our corpus. Pk and windowDiff are computed pair-
wise for all annotators within one group and then
averaged. We set the window size to half the aver-
age segment length as measured across all annota-
tors who worked on a given chapter. The values are
computed for each group separately; Table 1 shows
the averages across five groups.

Even by most relaxed standards, e.g., (Landis and
Koch, 1977), the κ value of 0.38 corresponds to low
agreement. This is not surprising, since it only in-
cludes the cases when the annotators agree exactly
where the boundary should be. For the purpose of
our task, such a definition is too strict.

The values of windowDiff and Pk are more rea-
sonable; windowDiff = 0.34 means that on aver-
age a pair of annotators disagrees on 34% of win-
dows. windowDiff was originally designed to com-
pare only two segmentations. Our strategy of com-
puting its values pairwise is perhaps not optimal but
in the absence of another metric allowing to account
for near-hits we are practically forced to use it as a
primary means of inter-annotator agreement.

Table 1: Overview of inter-annotator agreement.
Mean Std. dev.

κ 0.29 0.15
Pk 0.33 0.17
windowDiff 0.38 0.09

Figure 2: Example segmentation for Chapter 1.

4.2 Patterns of Disagreement

Figure 2 shows the segmentation of the shortest
chapter in the dataset. The overall agreement is
quite low (windowDiff =0.38, κ = 0.28). This is not
surprising, since annotators 1 and 3 found two seg-
ments, annotator 3 – five segments, and annotator 4
– four. Yet all annotators agree on certain things: ev-
eryone found that there was a significant change of
topic between paragraphs 9 and 11 (though they dis-
agree on its exact placement). It is therefore likely
that the topical shift between paragraphs 9 and 11 is
quite prominent. Annotators 2 and 4 chose to place
a segment boundary after paragraph 2, while anno-
tators 1 and 3 did not place one there. It is likely that
the topical shift occurring there is less prominent, al-
though perceptible. According to these annotations,
the least perceptible topic shifts in the chapter oc-
cur after paragraph 4 (marked only by annotator 2)
and possibly after paragraph 11 (marked only by an-
notator 1). Overall, glancing at these segmentations
suggests that there is a prominent topical shift be-
tween paragraphs 9-11, three significant ones (after
2, 10 and 12) and several minor fluctuations (after 3
and possibly after 10 and 11).

Looking at the segmentations in Figure 2 it seems
likely that the disagreements between annotators 2
and 4 are due to granularity, while the annotators
1 and three disagree more fundamentally on where
the topic changes. When measuring agreement, we
would like to be able to distinguish between dis-
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Figure 3: Quality of segment boundaries.

agreements due to granularity and disagreements
due to true lack of agreement (annotator 1 and 3).
We would also like to leverage this information for
the evaluation of automatic segmenters.

Distinguishing between true disagreement and
different granularity while taking into account near-
hits is not trivial, especially since we are working
with multiple annotations simultaneously and there
is no one correct segmentation.

In order to estimate the quality of individual
boundaries and look inside the segmented sequence,
we approximate the quality of each suggested seg-
ment boundary by the percentage of annotators who
marked it. Since the annotators may disagree on the
exact placement of the boundaries, our measurement
must be relaxed to allow for near-hits.

Figure 3 shows the distribution of segment bound-
aries using three different standards of quality. We
consider all segment boundaries introduced by at
least one annotator. Then, for each suggested bound-
ary we compute how much support there is from
peer annotators: what percentage of annotators in-
cluded this boundary in their segmentation. The left-
most box plot in Figure 3 corresponds to the most
strict standard. When computing support we only
consider perfect matches: segment boundaries spec-
ified in exactly the same location (window size =
0). The middle box plot is more relaxed: we con-
sider boundaries found within half of a windowD-

iff window size of the boundary under inspection.
The rightmost box plot corresponds to the inclusion
of boundaries found within a full windowDiff win-
dow size of the boundary under inspection.

Looking at exact matches (the leftmost box plot),
we observe that at least a half of segment bound-
aries were specified by less than 25% of annotators
(which corresponds to one person). It explains why
κ values in Table 1 are so low: this is the only sort
of agreement κ captures. Also one can notice that
at most 25% of the boundaries have the support of
more than 50% of the annotators.

The picture changes if we consider all boundaries
within a tight window around the candidate bound-
ary (the middle box plot). This standard is twice
as strict as the regular windowDiff evaluation. Here
50% of all boundaries are marked by at least 35% at
and most 80% of annotators. Only 25% of bound-
aries are marked by less than 30% of the annotators.

The rightmost plot looks even better. If we con-
sider the support found within a window size of any
candidate boundary, then 50% of all boundaries are
supported by over 70% of annotators. However, we
find this way of measuring support too optimistic.
The reason is, again, the difference in the granu-
larity of segmentations. The window size used for
these measurements is based on the average segment
length across all annotations. For example, the aver-
age segment length for segmentation shown in Fig-
ure 2 is 4, making the window size 2. This size is
too relaxed for annotators 2 and 3, who were very
detailed. Due to the excessively large window there
will almost always be a boundary where fine-grained
annotations are concerned, but those boundaries will
not correspond to the same phenomena. That is why
we think that a stricter standard is generally more
appropriate. This is especially the case since we
work with paragraphs, not sentences. A distance of
2-3 sentences is quite tolerable, but a distance of 2-3
paragraphs is considerable, and it is far more likely
that a stricter notion of near-hits must be considered.

5 Proposed Modification to windowDiff

WindowDiff compares two segmentations by taking
into account near-hits – penalizing them proportion-
ally to how far a hypothetical segment boundary is
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from a reference boundary. Section 4.2 argued that
some boundaries are more prominent. We aim to
modify windowDiff so the prominence of the bound-
aries matters in evaluating automatic segmenters.

Recall that to compute windowDiff we slide a
window through the reference and the hypotheti-
cal segmentation and check whether the number of
boundaries is equal at each window position. The
number of erroneous windows is then normalized:

winDiff =
1

N − k

N−kX
i=1

(|refi − hypi| 6= 0) (6)

refi and hypoi are the counts of boundaries in a
given window in the reference and the hypothetical
sequence, N is the length of the complete sequence,
k is the window size (so there are N - k windows).

The prominence of a boundary can be approxi-
mated by how many annotators specified it in their
segmentations. One simple way to take prominence
into account is to slide a window through all avail-
able segmentations, not just one. A straighforward
modification to equation (6) achieves that:

winDiff ′ =
1

h(N −m)

hX
a=1

N−mX
i=1

(|refai − hypi| 6= 0) (7)

A is the set of all available annotations and h is
their total number. Effectively, for each position of
the window the hypothetical output is penalized as
many times as there are reference annotations with
which it disagrees. Note that the window size m is
different from that used for pair-wise comparisons.
Following the convention, we recommend setting it
to half of the size of an average segment length (av-
eraged over all available references). The size of
the window effectively specifies a tolerance thresh-
old for what is an acceptable near-hit (as opposed to
a plain miss), and can be modified accordingly.

windowDiff and Pk range from 0 to 1, with 0
corresponding to an ideal segmentation. The upper
and lower bounds for Equation 7 are different and
depend on how much the reference segmentations
agree between themselves.2

2We find that the upper bound corresponds to the worst-case,
and the lower bound to the best-case scenario. To avoid confu-
sion, we talk of the best-case bound and the worst-case bound.

Let us refer to the most popular opinion for a
given position of the window as the majority opin-
ion. Then, for each window, the smallest possible
penalty is assigned if the hypothetical segmentation
correctly “guesses” the majority opinion (the win-
dow then receives a penalty equal to the number of
annotators disagreeing with the majority opinion):

best case =
1

N −m

N−mX
i=1

(h−majority support) (8)

Here majority support is the number of annota-
tors who support the most frequent opinion.

Conversely, to merit the highest penalty, a hypo-
thetical segmentation must “guess” the least popu-
lar opinion (possibly an opinion not supported by
any annotators) at each window position. In Equa-
tion 9, unpopular support is the number of anno-
tators who agree with the least popular opinion.

worst case =
1

N −m

N−mX
i=1

(h− unpopular support) (9)

In order to have a multi-annotator version of win-
dowDiff interpretable within the familiar [0, 1] in-
terval, we normalize Equation 7:

multWinDiff =

(
Ph

a=1

PN−m
i=1 (|refa − hyp| 6= 0))− best case

h(N −m)(worst case− best case)
(10)

The best and the worst-case bounds serve as indi-
cators of how much agreement there can be between
reference segmentations and so as indicators of how
difficult to segment a given document is.

The multWinDiff metric in Equation 10 has the
same desirable properties as the original metric,
namely it takes into account near hits and penal-
izes according to how far the reference and hypo-
thetical boundaries are. Additionally, for each win-
dow position it takes into account how much a hy-
pothetical segmentation is similar to all available an-
notations, thus penalizing mistakes according to the
prominence of boundaries (or to the certainty that
there are no boundaries).3

3Java code to compute multWinDiff is available as a part of
the APS segmenter. The corpus and the software can be down-
loaded at 〈www.eecs.uottawa.ca/∼ankazant〉.
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6 Experiments

In order to illustrate why using a single gold-
standard reference segmentation can be problem-
atic, we evaluate three publicly available seg-
menters, MinCutSeg (Malioutov and Barzilay,
2006), BayesSeg (Eisenstein and Barzilay, 2008)
and APS (Kazantseva and Szpakowicz, 2011), us-
ing several different gold standards and then using
all available annotations. The corpus used for eval-
uation is The Moonstone corpus described in Sec-
tions 3-4. We withheld the first four chapters for de-
velopment and used the remaining 16 for testing. We
also compared the segmenters to a random baseline
which consisted of randomly selecting a number of
boundaries equal to the average number of segments
across all available annotations.

None of the segmenters requires training in the
conventional sense, but APS and MinCutSeg seg-
meters come with scripts allowing to fine-tune sev-
eral parameters. We selected the best parameters for
these two segmenters using the first four chapters of
the corpus. BayesSeg segmeter, a probabilistic seg-
menter, does not require setting any parameters.

Table 2 sums up the results. Each row corre-
sponds to one reference segmentation and metric –
regular windowDiff in the first six rows. We com-
piled several flavours of consensus reference seg-
mentations: 1) all boundaries marked by ≥ 50% of
the annotators (windowDiff ≥ 50%), 2) all boundaries
marked by ≥ 30% of the annotators (windowDiff ≥
30%), 3) all boundaries marked by at least one an-
notator (windowDiff union). To illustrate why com-
paring against a single annotation is unreliable, we
report comparisons against three single-person an-
notations (windowDiff annotator 1, 4, 2). multWinDiff
is the proposed multi-annotator version from Equa-
tion 10. The best-case bound for multWinDiff is 0.21
and the worst-case bound is 1.0.

Each segmenter produced just one segmentation,
so the numbers in the Table 2 differ only depending
on the mode of evaluation. The cells are coloured.
The lightest shade correspond to the best perfor-
mance, darker shades – to poorer performance. The
actual values for the first six rows are rather low, but
what is more bothersome is the lack of consistency
in the ranking of segmenters. Only the random base-

APS Bayes MinCut Rand.
windowDiff
≥50%

0.60. 0.66 0.73 0.73

windowDiff
≥30%

0.61 0.52 0.69 0.61

windowDiff
union

0.6 0.53 0.63 0.65

windowDiff
annotator 1

0.66 0.57 0.74 0.76

windowDiff
annotator 4

0.62 0.7 0.69 0.74

windowDiff
annotator 2

0.61 0.6 0.66 0.69

multWinDiff 0.23 0.28 0.31 0.41

Table 2: The three segmenters and a random baseline
compared using different references for computing win-
dowDiff. windowDiff ≥50%: the gold standard consists
of all boundaries specified by at least 50% of the anno-
tators; windowDiff ≥30%: all boundaries specified by
at least 30% of the annotators; windowDiff union: all
boundaries specified by at least one person; windowD-
iff annotator a: comparisons against individual annota-
tors. multWinDiff is multi-annotator windowDiff from
equation (10).

line remains the worst in most cases. The APS and
BayesSeg segmenters tend to appear better than the
MinCutSeg but it is not always the case and the rank-
ings among the three are not consistent.

The last row reports multi-annotator windowD-
iff which takes into account all available references
and also the best-case and the worst-case bounds. In
principle, there is no way to prove that the metric is
better than using windowDiff and a single reference
annotation. It does, however, take into account all
available information and provides a different, if not
unambiguously more true, picture of the compara-
tive performance of automatic segmenters.

7 Conclusions and Future Work

We have described a new corpus which can be used
in research on topical segmentation. The corpus is
compiled for fiction, a genre for which no such cor-
pus exists. It contains a reasonable number of anno-
tations per chapter to allow an in-depth analysis of
topical segmentation as performed by humans.
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Our analysis of the corpus confirms the hypothe-
sis that when asked to find topical segments, people
operate at different levels of granularity. We show
that only a small percentage of segment boundaries
is agreed upon by all or almost all annotators. If,
however, near-hits are considered, suggested seg-
ment boundaries can be ranked by their prominence
using the information about how many people in-
clude each boundary in their annotation.

We propose a simple modification to windowD-
iff which allows for taking into account more than
one reference segmentation, and thus rewards or pe-
nalizes the output of automatic segmenters by con-
sidering the severity of their mistakes. The proposed
metric is not trouble-free. It is a window-based met-
ric so its value depends on the choice of the window
size. While it has become a convention to set the
window size to half of the average segment length in
the reference segmentation, it is not obvious that the
same logic applies in case of multi-annotator win-
dowDiff. The metric also hides whether false posi-
tives or false negatives are the main source of error.

All these shortcomings notwithstanding, the met-
ric offers an advantage of allowing the evaluation of
hypothetical segmentations with more subtlety than
those using a single gold standard reference. When
using regular windowDiff and a single reference seg-
mentation, one is restricted to an evaluation based
on binary comparisons: whether a given hypothet-
ical boundary is similar to the gold standard seg-
mentation (e.g., the majority opinion). Divergent
segmentations are penalized even if they are simi-
lar to minority opinions (and thus feasible, though
maybe less likely) or if they are completely different
from anything created by humans (and thus proba-
bly genuinely erroneous). Our version of windowD-
iff, however, takes into account multiple annotations
and gives partial reward to segmentations based on
how similar there are to any human segmentation,
not just the majority opinion (while giving prefer-
ence to high agreement with the majority opinion).

To evaluate the output of topical segmenters is
hard. There is disagreement between the annota-
tors about the appropriate level of granularity and
about the exact placement of segment boundaries.
The task itself is also a little vague. Just as it is
the case in automatic text summarization, generation

and other advanced NLP tasks, there is no single cor-
rect answer and the goal of a good evaluation met-
ric is to reward plausible hypotheses and to penalize
improbable ones. It is quite possible that a better
metric than the one proposed here can be devised;
see, for example, (Fournier and Inkpen, 2012)(Sca-
iano and Inkpen, 2012). We feel, however, that any
reliable metric for evaluating segmentations must –
in one manner or another – take into account more
than one annotation and the prominence of segment
breaks.
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