
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 142–151,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Structured Perceptron with Inexact Search

Liang Huang
Information Sciences Institute

University of Southern California
liang.huang.sh@gmail.com

Suphan Fayong
Dept. of Computer Science

University of Southern California
suphan.ying@gmail.com

Yang Guo
Bloomberg L.P.
New York, NY

yangg86@gmail.com

Abstract

Most existing theory of structured prediction
assumes exact inference, which is often in-
tractable in many practical problems. This
leads to the routine use of approximate infer-
ence such as beam search but there is not much
theory behind it. Based on the structured
perceptron, we propose a general framework
of “violation-fixing” perceptrons for inexact
search with a theoretical guarantee for conver-
gence under new separability conditions. This
framework subsumes and justifies the pop-
ular heuristic “early-update” for perceptron
with beam search (Collins and Roark, 2004).
We also propose several new update meth-
ods within this framework, among which the
“max-violation” method dramatically reduces
training time (by 3 fold as compared to early-
update) on state-of-the-art part-of-speech tag-
ging and incremental parsing systems.

1 Introduction

Discriminative structured prediction algorithms
such as conditional random fields (Lafferty et al.,
2001), structured perceptron (Collins, 2002), max-
margin markov networks (Taskar et al., 2003), and
structural SVMs (Tsochantaridis et al., 2005) lead
to state-of-the-art performance on many structured
prediction problems such as part-of-speech tagging,
sequence labeling, and parsing. But despite their
success, there remains a major problem: these learn-
ing algorithms all assume exact inference (over an
exponentially-large search space), which is needed
to ensure their theoretical properties such as conver-
gence. This exactness assumption, however, rarely
holds in practice since exact inference is often in-
tractable in many important problems such as ma-
chine translation (Liang et al., 2006), incremen-

tal parsing (Collins and Roark, 2004; Huang and
Sagae, 2010), and bottom-up parsing (McDonald
and Pereira, 2006; Huang, 2008). This leads to
routine use of approximate inference such as beam
search as evidenced in the above-cited papers, but
the inexactness unfortunately abandons existing the-
oretical guarantees of the learning algorithms, and
besides notable exceptions discussed below and in
Section 7, little is known fortheoretical properties
of structured prediction under inexact search.

Among these notable exceptions, many exam-
ine how and which approximations break theoretical
guarantees of existing learning algorithms (Kulesza
and Pereira, 2007; Finley and Joachims, 2008), but
we ask a deeper and practically more useful ques-
tion: can wemodifyexisting learning algorithms to
accommodatethe inexactness in inference, so that
the theoretical properties are still maintained?

For the structured perceptron, Collins and Roark
(2004) provides a partial answer: they suggest vari-
ant called “early update” for beam search, which up-
dates on partial hypotheses when the correct solution
falls out of the beam. This method works signif-
icantly better than standard perceptron, and is fol-
lowed by later incremental parsers, for instance in
(Zhang and Clark, 2008; Huang and Sagae, 2010).
However, two problems remain: first, up till now
there has been no theoretical justification for early
update; and secondly, it makes learning extremely
slow as witnessed by the above-cited papers because
it only learns on partial examples and often requires
15–40 iterations to converge while normal percep-
tron converges in 5–10 iterations (Collins, 2002).

We develop a theoretical framework of “violation-
fixing” perceptron that addresses these challenges.
In particular, we make the following contributions:

• We show that, somewhat surprisingly, exact

142

search isnot required by perceptron conver-
gence. All we need is that each update involves
a “violation”, i.e., the 1-best sequence has a
higher model score than the correct sequence.
Such an update is considered a “valid update”,
and any perceptron variant that maintains this
is bound to converge. We call these variants
“violation-fixing perceptrons” (Section 3.1).

• This theory explains why standard perceptron
update may fail to work with inexact search,
because violation is no longer guaranteed: the
correct structure might indeed be preferred by
the model, but was pruned during the search
process (Sec. 3.2). Such an update is thus con-
sidered invalid, and experiments show that in-
valid updates lead to bad learning (Sec. 6.2).

• We show that the early update is always valid
and is thus a special case in our framework; this
is the first theoretical justification for early up-
date (Section 4). We also show that (a variant
of) LaSO (Dauḿe and Marcu, 2005) is another
special case (Section 7).

• We then propose several other update meth-
ods within this framework (Section 5). Experi-
ments in Section 6 confirm that among them,
the max-violation method can learn equal or
better models with dramatically reduced learn-
ing times (by 3 fold as compared to early
update) on state-of-the-art part-of-speech tag-
ging (Collins, 2002)1 and incremental parsing
(Huang and Sagae, 2010) systems. We also
found strong correlation between search error
and invalid updates, suggesting that the ad-
vantage of valid update methods is more pro-
nounced with harder inference problems.

Our techniques are widely applicable to other str-
cutured prediction problems which require inexact
search like machine translation and protein folding.

2 Structured Perceptron

We review the convergence properties of the stan-
dard structured perceptron (Collins, 2002) in our

1Incidentally, we achieve the best POS tagging accuracy to
date (97.35%) on English Treebank by early update (Sec. 6.1).

Algorithm 1 Structured Perceptron (Collins, 2002).

Input: dataD = {(x(t), y(t))}nt=1 and feature mapΦ
Output: weight vectorw

Let: EXACT(x,w)
∆
= argmaxs∈Y(x) w ·Φ(x, s)

Let: ∆Φ(x, y, z)
∆
= Φ(x, y)−Φ(x, z)

1: repeat
2: for eachexample(x, y) in D do
3: z ← EXACT(x,w)
4: if z 6= y then
5: w← w + ∆Φ(x, y, z)

6: until converged

own notations that will be reused in later sections
for non-exact search. We first define a new concept:

Definition 1. The standard confusion setCs(D)
for training dataD = {(x(t), y(t))}nt=1 is the set of
triples(x, y, z) wherez is a wrong label for inputx:

Cs(D)
∆
= {(x, y, z) | (x, y) ∈ D, z ∈ Y(x)− {y}}.

The rest of the theory, including separation and
violation, all builds upon this concept. We call such
a triple S = 〈D,Φ, C〉 a training scenario, and
in the remainder of this section, we assumeC =
Cs(D), though later we will define other confusion
sets to accommodate other update methods.

Definition 2. The training scenarioS = 〈D,Φ, C〉
is said to belinearly separable (i.e., datasetD is
linearly separable inC by representationΦ) with
margin δ > 0 if there exists anoracle vectoru
with ‖u‖ = 1 such that it can correctly classify
all examples inD (with a gap of at leastδ), i.e.,
∀(x, y, z) ∈ C,u · ∆Φ(x, y, z) ≥ δ. We define
the maximal marginδ(S) to be the maximal such
margin over all unit oracle vectors:

δ(S)
∆
= max

‖u‖=1
min

(x,y,z)∈C
u ·∆Φ(x, y, z).

Definition 3. A triple (x, y, z) is said to be avi-
olation in training scenarioS = 〈D,Φ, C〉 with
respect to weight vectorw if (x, y, z) ∈ C and
w ·∆Φ(x, y, z) ≤ 0.

Intuitively, this means modelw is possible to mis-
label examplex (though not necessarily toz) since
y is not its single highest scoring label underw.

Lemma 1. Each update triple(x, y, z) in Algo-
rithm 1 (line 5) is a violation inS = 〈D,Φ, Cs(D)〉.

143

Proof. z = EXACT(x,w), thus for allz′ ∈ Y(x),
w ·Φ(x, z) ≥ w ·Φ(x, z′), i.e.,w ·∆Φ(x, y, z) ≤ 0.
On the other hand,z ∈ Y(x) and z 6= y, so
(x, y, z) ∈ Cs(D).

This lemma basically says exact search guaran-
tees violation in each update, but as we will see in
the convergence proof, violation itself is more fun-
damental than search exactness.

Definition 4. Thediameter R(S) for scenarioS =
〈D,Φ, C〉 is max(x,y,z)∈C‖∆Φ(x, y, z)‖.
Theorem 1(convergence, Collins). For a separable
training scenarioS = 〈D,Φ, Cs(D)〉 with δ(S) >
0, the perceptron algorithm in Algorithm 1 will make
finite number of updates (before convergence):

err(S) ≤ R2(S)/δ2(S).

Proof. Let w(k) be the weight vectorbefore thekth
update;w(0) = 0. Suppose thekth update happens
on the triple(x, y, z). We will bound‖w(k+1)‖ from
two directions:

1. w(k+1) = w(k) + ∆Φ(x, y, z). Since scenario
S is separable with max marginδ(S), there ex-
ists a unit oracle vectoru that achieves this
margin. Dot product both sides withu, we have

u ·w(k+1) = u ·w(k) + u ·∆Φ(x, y, z)

≥ u ·w(k) + δ(S)

by Lemma 1 that(x, y, z) ∈ Cs(D) and by the
definition of margin. By induction, we have
u · w(k+1) ≥ kδ(S). Since for any two vec-
tors a andb we have‖a‖‖b‖ ≥ a · b, thus
‖u‖‖w(k+1)‖ ≥ u ·w(k+1) ≥ kδ(S). As u is
a unit vector, we have‖w(k+1)‖ ≥ kδ(S).

2. On the other hand, since‖a + b‖2 = ‖a‖2 +
‖b‖2 + 2 a ·b for any vectorsa andb,we have

‖w(k+1)‖2 = ‖w(k) + ∆Φ(x, y, z)‖2

= ‖w(k)‖2 + ‖∆Φ(x, y, z)‖2

+ 2 w(k) ·∆Φ(x, y, z)

≤ ‖w(k)‖2 + R2(S) + 0 .

By Lemma 1, the update triple is a violation so
thatw(k) ·∆Φ(x, y, z) ≤ 0, and that(x, y, z) ∈
Cs(D) thus‖∆Φ(x, y, z)‖2 ≤ R2(S) by the
definition of diameter. By induction, we have
‖w(k+1)‖2 ≤ kR2(S).

Algorithm 2 Local Violation-Fixing Perceptron.
Input: training scenarioS = 〈D,Φ, C〉

1: repeat
2: for eachexample(x, y) in D do
3: (x, y′, z) = FINDV IOLATION(x, y,w)
4: if z 6= y then ⊲ (x, y′, z) is a violation
5: w← w + ∆Φ(x, y′, z)

6: until converged

Combining the two bounds, we havek2δ2(S) ≤
‖w(k+1)‖2 ≤ kR2(S), thusk ≤ R2(S)/δ2(S).

3 Violation is All We Need

We now draw the central observation of this work
from part 2 of the above proof: note that exact search
(argmax) is not required in the proof, instead, it
just needs aviolation, which is a much weaker con-
dition.2 Exact search is simply used to ensure viola-
tion. In other words, if we can guarantee violation in
each update (which we call“valid update”), it does
not matter whether or how exact the search is.

3.1 Violation-Fixing Perceptron

This observation leads us to two generalized vari-
ants of perceptron which we call “violation-fixing
perceptrons”. The local version, Algorithm 2 still
works on one example at a time, and searches for
one violation (if any) in that example to update with.
The global version, Algorithm 3, can update on any
violation in the dataset at any time. We state the fol-
lowing generalized theorem:

Theorem 2. For a separable training scenarioS
the perceptrons in Algorithms 2 and 3 both con-
verge with the same update bounds ofR2(S)/δ2(S)
as long as theFINDV IOLATION and FINDV IO-
LATION INDATA functions always return violation
triples if there are any.

Proof. Same as the proof to Theorem 1, except for
replacing Lemma 1 in part 2 by the fact that the up-
date triples are guaranteed to be violations. (Note a
violation triple is by definition in the confusion set,
thus we can still use separation and diameter).

These generic violation-fixing perceptron algo-
rithms can been seen as “interfaces” (or APIs),

2Crammer and Singer (2003) further demonstrates that a
convex combination of violations can also be used for update.

144

Algorithm 3 Global Violation-Fixing Perceptron.
Input: training scenarioS = 〈D,Φ, C〉

1: repeat
2: (x, y, z)← FINDV IOLATION INDATA(C,w)
3: if x = ǫ then break ⊲ no more violation?
4: w← w + ∆Φ(x, y, z)
5: until converged

dataD = {(x, y)}:
x fruit flies fly .
y N N V .

search space:Y(x) = {N} × {N, V} × {N, V} × {.}.
feature map:Φ(x, y) = (#N→N(y), #V→.(y)).

iter labelz ∆Φ(x, y, z) w·∆Φ neww

0 (0, 0)
1 N N N . (−1, +1) 0

√
(−1, 1)

2 N V N . (+1, +1) 0
√

(0, 2)
3 N N N . (−1, +1) 2 × (−1, 3)
4 N V N . (+1, +1) 2 × (0, 4)

... infinite loop ...

Figure 1: Example that standard perceptron does not
converge with greedy search on aseparablescenario
(e.g.u = (1, 2) can separateD with exact search).

where later sections will supply different implemen-
tations of the FINDV IOLATION and FINDV IOLA -
TIONINDATA subroutines, thus establishing alterna-
tive update methods for inexact search as special
cases in this general framework.

3.2 Non-Convergence with Inexact Search

What if we can not guarantee valid updates? Well,
the convergence proof in Theorems 1 and 2 would
break in part 2. This is exactly why standard struc-
tured perceptron may not work well with inexact
search: with search errors it is no longer possible
to guarantee violation in each update. For example,
an inexact search method explores a (proper) subset
of the search spaceY ′w(x) (Y(x), and finds a label

z = argmax
s∈Y ′

w
(x)

w ·Φ(x, s).

It is possible that the correct labely is outside of
the explored subspace, and yet has a higher score:
∆Φ(x, y, z) > 0 but y /∈ Y ′w(x). In this case,
(x, y, z) is not a violation, which breaks the proof.
We show below that this situation actually exists.

Algorithm 4 Greedy Search.

Let: NEXT(x, z)
∆
= {z ◦ a | a ∈ Y|z|+1(x)} ⊲ set of

possible one-step extensions (successors)

BEST(x, z,w)
∆
= argmaxz′∈NEXT(x,z) w · Φ(x, z′)

⊲ best one-step extension based on history
1: function GREEDYSEARCH(x,w)
2: z ← ǫ ⊲ empty sequence
3: for i ∈ 1 . . . |x| do
4: z ← BEST(x, z,w)

5: return z

Theorem 3. For a separable training scenarioS =
〈D,Φ, Cs(D)〉, if theargmax in Algorithm 1 is not
exact, the perceptron might not converge.

Proof. See the example in Figure 1.

This situation happens very often in NLP: of-
ten the search spaceY(x) is too big either because
it does not factor locally, or because it is still too
big after factorization, which requires some approxi-
mate search. In either case, updating the modelw on
a non-violation (i.e., “invalid”) triple(x, y, z) does
not make sense: it isnot the model’s problem:w
does score the correct labely higher than the incor-
rect z; rather, it is a problem of the search, or its
interaction with the model that prunes away the cor-
rect (sub)sequence during the search.

What shall we do in this case? Collins and
Roark (2004) suggest that instead of the standard
full update, we should only update on the prefix
(x, y[1:i], z[1:i]) up to the pointi where the correct
sequence falls off the beam. This intuitively makes
a lot of sense, since up toi we can still guarantee
violation, but afteri we may not. The next section
formalizes this intuition.

4 Early Update is Violation-Fixing

We now proceed to show that early update is always
valid and it is thus a special case of the violation-
fixing perceptron framework. First, let us study the
simplest special case, greedy search (beam=1).

4.1 Greedy Search and Early Update

Greedy search is the simplest form of inexact search.
Shown in Algorithm 4, at each position, we com-
mit to the single best action (e.g., tag for the current
word) given the previous actions and continue to the

145

√ √ · · · √ ×
←− update −→ skip−→

Figure 2: Early update at the first error in greedy search.

Algorithm 5 Early update for greedy search adapted
from Collins and Roark (2004).

Input: training scenarioS = 〈D,Φ, Cg(D)〉
1: repeat
2: for eachexample(x, y) in D do
3: z ← ǫ ⊲ empty sequence
4: for i ∈ 1 . . . |x| do
5: z ← BEST(x, z,w)
6: if zi 6= yi then ⊲ first wrong action
7: w← w + ∆Φ(x, y[1:i], z) ⊲ early update
8: break ⊲ skip the rest of this example

9: until converged

next position. The notationYi(x) denotes the set of
possible actions at positioni for examplex (for in-
stance, the set of possible tags for a word).

The early update heuristic, originally proposed for
beam search (Collins and Roark, 2004), now simpli-
fies into “update at the first wrong action”, since this
is exactly the place where the correct sequence falls
off the singleton beam (see Algorithm 5 for pseu-
docode and Fig. 2). Informally, it is easy to show
(below) that this kind of update is always a valid vi-
olation, but we need to redefine confusion set.

Definition 5. Thegreedy confusion setCg(D) for
training dataD = {(x(t), y(t))}nt=1 is the set of
triples(x, y[1:i], z[1:i]) wherey[1:i] is ai-prefix of the
correct labely, andz[1:i] is an incorrecti-prefix that
agrees with the correct prefix on all decisions except
the last one:

Cg(D)
∆
= {(x, y[1:i], z[1:i]) | (x, y, z) ∈ Cs(D),

1 ≤ i ≤ |y|, z[1:i−1] = y[1:i−1], zi 6= yi}.

We can see intuitively that this new defintion
is specially tailored to the early updates in greedy
search. The concepts of separation/margin, viola-
tion, and diameter all change accordingly with this
new confusion set. In particular, we say that a
datasetD is greedily separable in representation
Φ if and only if 〈D,Φ, Cg(D)〉 is linearly separa-
ble, and we say(x, y′, z′) is a greedy violation if
(x, y′, z′) ∈ Cg(D) andw ·∆Φ(x, y′, z′) ≤ 0.

Algorithm 6 Alternative presentation of Alg. 5 as a
Local Violation-Fixing Perceptron (Alg. 2).
1: function FINDV IOLATION (x, y,w)
2: z ← ǫ ⊲ empty sequence
3: for i ∈ 1 . . . |x| do
4: z ← BEST(x, z,w)
5: if zi 6= yi then ⊲ first wrong action
6: return (x, y[1:i], z) ⊲ return for early update

7: return (x, y, y) ⊲ success(z = y), no violation

We now express early update for greedy search
(Algorithm 5) in terms of violation-fixing percep-
tron. Algorithm 6 implements the FINDV IOLATION

function for the generic Local Violation-Fixing Per-
ceptron in Algorithm 2. Thus Algorithm 5 is equiv-
alent to Algorithm 6 plugged into Algorithm 2.

Lemma 2. Each triple(x, y[1:i], z) returned at line 6
in Algorithm 6 is a greedy violation.

Proof. Let y′ = y[1:i]. Clearly at line 6,|y′| = i =
|z| andy′i 6= zi. Buty′j = zj for all j < i otherwise it
would have returned before positioni, so(x, y′, z) ∈
Cg(D). Also z = BEST(x, z,w), sow ·Φ(x, z) ≥
w ·Φ(x, y′), thusw ·∆Φ(x, y′, z) ≤ 0.

Theorem 4 (convergence of greedy search with
early update). For a separable training scenario
S = 〈D,Φ, Cg(D)〉, the early update perceptron
by plugging Algorithm 6 into Algorithm 2 will make
finite number of updates (before convergence):

err(S) < R2(S)/δ2(S).

Proof. By Lemma 2 and Theorem 2.

4.2 Beam Search and Early Update

To formalize beam search, we need some notations:

Definition 6 (k-best). We denoteargtopk
z∈Z f(z)

to return (a sorted list of) the topk unique z in terms
of f(z), i.e., it returns a listB = [z(1), z(2), . . . , z(k)]
wherez(i) ∈ Z and f(z(1)) ≥ f(z(2)) ≥ . . . ≥
f(z(k)) ≥ f(z′) for all z′ ∈ Z − B.

By unique we mean that no two elements are
equivalent with respect to some equivalence relation,
i.e., z(i) ≡ z(j) ⇒ i = j. This equivalence rela-
tion is useful for dynamic programming (when used
with beam search). For example, in trigram tagging,
two tag sequences are equivalent if they are of the

146

Algorithm 7 Beam-Search.

BESTk(x,B,w)
∆
= argtopk

z′∈∪z∈BNEXT(z) w ·Φ(x, z′)
⊲ topk (unique) extensions from the beam

1: function BEAMSEARCH(x,w, k) ⊲ k is beam width
2: B0 ← [ǫ] ⊲ initial beam
3: for i ∈ 1 . . . |x| do
4: Bi ← BESTk(x,Bi−1,w)

5: return B|x|[0] ⊲ best sequence in the final beam

Algorithm 8 Early update for beam search (Collins
and Roark 04) as Local Violation-Fixing Perceptron.
1: function FINDV IOLATION (x, y,w)
2: B0 ← [ǫ]
3: for i ∈ 1 . . . |x| do
4: Bi ← BESTk(x,Bi−1,w)
5: if y[1:i] /∈ Bi then ⊲ correct seq. falls off beam
6: return (x, y[1:i],Bi[0]) ⊲ update on prefix

7: return (x, y,B|x|[0]) ⊲ full update if wrong final

same length and if they agree on the last two tags,
i.e.z ≡ z′ iff. |z| = |z′| andz|z|−1:|z| = z′|z|−1:|z|. In
incremental parsing this equivalence relation could
be relevant bits of information on the last few trees
on the stack (depending on feature templates), as
suggested in (Huang and Sagae, 2010).3

Algorithm 7 shows the pseudocode for beam
search. It is trivial to verify that greedy search is
a special case of beam search withk = 1. However,
the definition of confusion set changes considerably:

Definition 7. The beam confusion setCb(D) for
training dataD = {(x(t), y(t))}nt=1 is the set of
triples(x, y[1:i], z[1:i]) wherey[1:i] is ai-prefix of the
correct labely, andz[1:i] is an incorrecti-prefix that
differs from the correct prefix (in at least one place):

Cb(D)
∆
= {(x, y[1:i], z[1:i]) | (x, y, z) ∈ Cs(D),

1 ≤ i ≤ |y|, z[1:i] 6= y[1:i]}.

Similarly, we say that a datasetD is beam
separable in representationΦ if and only if

3Note that when checking whether the correct sequence
falls off the beam (line 5), we could either store the whole
(sub)sequence for each candidate in the beam (which is what
we do for non-DP anyway), or check if the equivalence class of
the correct sequence is in the beam, i.e.Jy[1:i]K≡ ∈ Bi, and if
its backpointer points toJy[1:i−1]K≡. For example, in trigram
tagging, we just check if〈yi−1, yi〉 ∈ Bi and if its backpointer
points to〈yi−2, yi−1〉.

e
a
rl
y

m
a
x
-

v
io

la
ti
o
n

la
te

s
t

fu
ll

(s
ta
n
d
a
rd
)

best in the beam

worst in the beam

falls off
the beam biggest

violation

last valid
update

correct sequence

invalid
update!

Figure 3: Illustration of various update methods: early,
max-violation, latest, and standard (full) update, in the
case when standard update is invalid (shown in red). The
rectangle denotes the beam and the blue line segments
denote the trajectory of the correct sequence.

〈D,Φ, Cb(D)〉 is linearly separable, and we say
(x, y′, z′) is abeam violation if (x, y′, z′) ∈ Cb(D)
andw ·∆Φ(x, y′, z′) ≤ 0.

It is easy to verify that beam confusion set is su-
perset of both greedy and standard confusion sets:
for all datasetD, Cg(D) (Cb(D), andCs(D) (

Cb(D). This means that beam separability is the
strongest condition among the three separabilities:

Theorem 5. If a datasetD is beam separable, then
it is also greedily and (standard) linear separable.

We now present early update for beam search as
a Local Violation Fixing Perceptron in Algorithm 8.
See Figure 3 for an illustration.

Lemma 3. Each update (lines 6 or 7 in Algorithm 8)
involves a beam violation.

Proof. Case 1: early update (line 6): Letz′ = Bi[0]
andy′ = y[1:i]. Case 2: full update (line 8): Letz′ =
B|x|[0] andy′ = y. In both cases we havez′ 6= y′

and |z′| = |y′|, thus(x, y′, z′) ∈ Cb(D). Also we
havew · Φ(x, z′) ≥ w · Φ(x, y′) by defintion of
argtop, sow ·∆Φ(x, y′, z′) ≤ 0.

Theorem 6(convergence of beam search with early
update). For a separable training scenarioS =
〈D,Φ, Cb(D)〉, the early update perceptron by
plugging Algorithm 8 into Algorithm 2 will make fi-
nite number of updates (before convergence):

err(S) < R2(S)/δ2(S).

Proof. By Lemma 3 and Theorem 2.

147

5 New Update Methods for Inexact Search

We now propose three novel update methods for
inexact search within the framework of violation-
fixing perceptron. These methods are inspired by
early update but addresses its very limitation of slow
learning. See Figure 3 for an illustration.

1. “hybrid” update. When the standard update
is valid (i.e., a violation), we perform it, other-
wise we perform the early update.

2. “max-violation” update . While there are
more than one possible violations on one exam-
plex, we choose the triple that is most violated:

(x, y∗, z∗) = argmin
(x,y′,z′)∈C,z′∈∪i{Bi[0]}

w ·∆Φ(x, y′, z′).

3. “latest” update . Contrary to early update, we
can also choose the latest point where the up-
date is still a violation:

(x, y∗, z∗) = argmax
(x,y′,z′)∈C,z′∈∪i{Bi[0]},w·∆Φ(x,y′,z′)>0

|z′|.

All these three methods go beyond early update
but can be represented in the Local Violation Fixing
Perceptron (Algorithm 2), and are thus all guaran-
teed to converge. As we will see in the experiments,
these new methods are motivated to address the ma-
jor limitation of early update, that is, it learns too
slowly since it only updates on prefixes and neglect
the rest of the examples. Hybrid update is trying
to do as much standard (“full”) updates as possible,
and latest update further addresses the case when
standard update is invalid: instead of backing-off to
early update, it uses the longest possible update.

6 Experiments

We conduct experiments on two typical structured
learning tasks: part-of-speech tagging with a trigram
model where exact search is possible, and incremen-
tal dependency parsing with arbitrary non-local fea-
tures where exact search is intractable. We run both
experiments on state-of-the-art implementations.

6.1 Part-of-Speech Tagging

Following the standard split for part-of-speech tag-
ging introduced by Collins (2002), we use sec-
tions 00–18 of the Penn Treebank (Marcus et al.,

 96.4

 96.6

 96.8

 97

 97.2

 1 2 3 4 5 6 7 8 9 10

be
st

 ta
gg

in
g

ac
cu

ra
cy

 o
n

he
ld

-o
ut

beam size

max-violation
early

standard

Figure 4: POS tagging using beam search with various
update methods (hybrid/latest similar to early; omitted).

b = 1 b = 2 b = 7
method it dev it dev it dev
standard 12 96.27 6 97.07 4 97.17

early 13 96.97 6 97.15 7 97.19
max-viol. 7 96.97 3 97.20 4 97.20

Table 1: Convergence rate of part-of-speech tagging. In
general, max-violation converges faster and better than
early and standard updates, esp. in smallest beams.

1993) for training, sections 19–21 as a held-out
development set, and sections 22–24 for testing.
Our baseline system is a faithful implementation of
the perceptron tagger in Collins (2002), i.e., a tri-
gram model with spelling features from Ratnaparkhi
(1996), except that we replace one-count words as
<unk>. With standard perceptron and exact search,
our baseline system performs slightly better than
Collins (2002) with a beam of 20 (M. Collins, p.c.).

We then implemented beam search on top of dy-
namic programming and experimented with stan-
dard, early, hybrid, and max-violation update meth-
ods with various beam settings (b = 1, 2, 4, 7, 10).
Figure 4(a) summarizes these experiments. We ob-
serve that, first of all, the standard update performs
poorly with the smallest beams, esp. atb = 1
(greedy search), when search error is the most se-
vere causing lots of invalid updates (see Figure 5).
Secondly,max-violation is almost consistently the
best-performing method (except forb = 4). Table 1
shows convergence rates, where max-violation up-
date also converges faster than early and standard
methods. In particular, atb = 1, it achieves a 19%
error reduction over standard update, while converg-

148

 0

 25

 50

 75

 100

 2 4 6 8 10 12 14 16

%
 o

f i
nv

al
id

 u
pd

at
es

beam size

parsing
tagging

Figure 5: Percentages of invalid updates for standard up-
date. In tagging it quickly drops to0% while in parsing it
converges to∼ 50%. This means search-wise, parsing is
much harder than tagging, which explains why standard
update does OK in tagging but terribly in parsing. The
harder the search is, the more needed valid updates are.

method b it time dev test
standard* ∞ 6 162 m 97.17 97.28

early 4 6 37 m 97.22 97.35
hybrid 5 5 30 m 97.18 97.19
latest 7 5 45 m 97.17 97.13

max-viol. 2 3 26 m 97.20 97.33

standard 20 Collins (2002) 97.11
guided 3 Shen et al. (2007) 97.33

Table 2: Final test results on POS tagging. *:baseline.

ing twice as fast as early update.4 This agrees with
our intuition that by choosing the “most-violated”
triple for update, the perceptron should learn faster.

Table 2 presents the final tagging results on the
test set. For each of the five update methods, we
choose the beam size at which it achieves the high-
est accuracy on the held-out. For standard update, its
best held-out accuracy 97.17 is indeed achieved by
exact search (i.e.,b = +∞) since it does not work
well with beam search, but it costs 2.7 hours (162
minutes) to train. By contrast, the four valid up-
date methods handle beam search better. The max-
violation method achieves its highest held-out/test
accuracies of 97.20 / 97.33 with a beam size of
only 2, and only 26 minutes to train. Early up-
date achieves the highest held-out/test accuracies of
97.22 /97.35across all update methods at the beam
size of 4. This test accuracy is even better than Shen

4for tagging (but not parsing) the difference in per-iteration
speed between early update and max-violation update is small.

method b it time dev test
early*

8

38 15.4 h 92.24 92.09
standard 1 0.4 h 78.99 79.14
hybrid 11 5.6 h 92.26 91.95
latest 9 4.5 h 92.06 91.96

max-viol. 12 5.5 h 92.32 92.18

early 8 Huang & Sagae 2010 92.1

Table 3: Final results on incremental parsing. *: baseline.

 91

 91.25

 91.5

 91.75

 92

 92.25

 0 2 4 6 8 10 12 14 16 18

pa
rs

in
g

ac
cu

ra
cy

 o
n

he
ld

-o
ut

training time (hours)

max-violation
early

Figure 6: Training progress curves for incremental pars-
ing (b = 8). Max-violation learns faster and better: it
takes 4.6 hours (10 iterations) to reach 92.25 on held-out,
compared with early update’s 15.4 hours (38 iterations),
even though the latter is faster in each iteration due to
early stopping (esp. at the first few iterations).

et al. (2007), the best tagging accuracy reported on
the Penn Treebank to date.5,6 To conclude, with
valid update methods, we can learn a better tagging
model with 5 times faster training than exact search.

6.2 Incremental Parsing

While part-of-speech tagging is mainly a proof of
concept, incremental parsing is much harder since
non-local features rules out exact inference.

We use the standard split for parsing: secs 02–
21 for training, 22 as held-out, and 23 for testing.
Our baseline system is a faithful reimplementation
of the beam-search dynamic programming parser of
Huang and Sagae (2010). Like most incremental
parsers, it used early update as search error is severe.

5according to ACL Wiki: http://aclweb.org/aclwiki/.
6Note that Shen et al. (2007) employ contextual features

up to 5-gram which go beyond our local trigram window. We
suspect that addinggenuinelynon-local features would demon-
strate even better the advantages of valid update methods with
beam search, since exact inference will no longer be tractable.

149

We first confirm that, as reported by Huang and
Sagae, early update learns very slowly, reaching
92.24 on held-out with 38 iterations (15.4 hours).

We then experimented with the other update
methods: standard, hybrid, latest, and max-
violation, with beam sizeb = 1, 2, 4, 8. We found
that, first of all, the standard update performs horri-
bly on this task: atb = 1 it only achieves 60.04%
on held-out, while atb = 8 it improves to 78.99%
but is still vastly below all other methods. This is
because search error is much more severe in incre-
mental parsing (than in part-of-speech tagging), thus
standard update produces an enormous amount of
invalid updates even atb = 8 (see Figure 5). This
suggests that the advantage of valid update meth-
ods is more pronounced with tougher search prob-
lems. Secondly, max-violation learns much faster
(and better) than early update: it takes only 10 it-
erations (4.6 hours) to reach 92.25, compared with
early update’s 15.4 hours (see Fig. 6). At its peak,
max-violation achieves 92.18 on test which is bet-
ter than (Huang and Sagae, 2010). To conclude, we
can train a parser with only 1/3 of training time with
max-violation update, and the harder the search is,
the more needed the valid update methods are.

7 Related Work and Discussions

Besides the early update method of Collins and
Roark (2004) which inspired us, this work is also
related to theLaSO method of Dauḿe and Marcu
(2005). LaSO is similar to early update, except that
after each update, instead of skipping the rest of the
example, LaSOcontinueson the same example with
the correct hypothesis. For example, in the greedy
case LaSO is just replacing thebreak statement in
Algorithm 5 by

8’: zi = yi

and in beam search it is replacing it with

8’: Bi = [y[1:i]].

This is beyond our Local Violation-Fixing Per-
ceptron since it makes more than one updates on one
example, but can be easily represented as a Global
Violation-Fixing Perceptron (Algorithm 3), since we
can prove any further updates on this example is a vi-
olation (under the new weights). We thus establish

LaSO as a special case within our framework.7

More interestingly, it is easy to verify that the
greedy case of LaSO update is equivalent to training
a local unstructured perceptron whichindepen-
dently classifies at each position based on history,
which is related to SEARN (Dauḿe et al., 2009).

Kulesza and Pereira (2007) study perceptron
learning with approximate inference thatovergen-
erates instead ofundergeneratesas in our work,
but the underlying idea is similar: by learning in a
harder setting (LP-relaxed version in their case and
prefix-augmented version in our case) we can learn
the simpler original setting. Our “beam separabil-
ity” can be viewed as an instance of their “algorith-
mic separability”. Finley and Joachims (2008) study
similar approximate inference for structural SVMs.

Our max-violation update is also related to other
training methods for large-margin structured predic-
tion, in particular the cutting-plane (Joachims et al.,
2009) and subgradient (Ratliff et al., 2007) methods,
but detailed exploration is left to future work.

8 Conclusions

We have presented a unifying framework of
“violation-fixing” perceptron which guarantees con-
vergence with inexact search. This theory satisfin-
gly explained why standard perceptron might not
work well with inexact search, and why the early
update works. We also proposed some new vari-
ants within this framework, among which the max-
violation method performs the best on state-of-the-
art tagging and parsing systems, leading to better
models with greatly reduced training times. Lastly,
the advantage of valid update methods is more pro-
nounced when search error is severe.

Acknowledgements

We are grateful to the four anonymous reviewers, es-
pecially the one who wrote the comprehensive re-
view. We also thank David Chiang, Kevin Knight,
Ben Taskar, Alex Kulesza, Joseph Keshet, David
McAllester, Mike Collins, Sasha Rush, and Fei Sha
for discussions. This work is supported in part by a
Google Faculty Research Award to the first author.

7It turns out the original theorem in the LaSO paper (Daumé
and Marcu, 2005) contains a bug; see (Xu et al., 2009) for cor-
rections. Thanks to a reviewer for pointing it out.

150

References

Collins, Michael. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. InProceedings of
EMNLP.

Collins, Michael and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceedings
of ACL.

Crammer, Koby and Yoram Singer. 2003. Ultra-
conservative online algorithms for multiclass prob-
lems.Journal of Machine Learning Research (JMLR),
3:951–991.

Dauḿe, Hal, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction.

Dauḿe, Hal and Daniel Marcu. 2005. Learning as search
optimization: Approximate large margin methods for
structured prediction. InProceedings of ICML.

Finley, Thomas and Thorsten Joachims. 2008. Training
structural SVMs when exact inference is intractable.
In Proceedings of ICML.

Huang, Liang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of the
ACL: HLT, Columbus, OH, June.

Huang, Liang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. InPro-
ceedings of ACL 2010.

Joachims, T., T. Finley, and Chun-Nam Yu. 2009.
Cutting-plane training of structural svms.Machine
Learning, 77(1):27–59.

Kulesza, Alex and Fernando Pereira. 2007. Structured
learning with approximate inference. InNIPS.

Lafferty, John, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of ICML.

Liang, Percy, Alexandre Bouchard-Côté, Dan Klein, and
Ben Taskar. 2006. An end-to-end discriminative
approach to machine translation. InProceedings of
COLING-ACL, Sydney, Australia, July.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank.Computational
Linguistics, 19:313–330.

McDonald, Ryan and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. InProceedings of EACL.

Ratliff, Nathan, J. Andrew Bagnell, and Martin Zinke-
vich. 2007. (online) subgradient methods for struc-
tured prediction. InProceedings of AIStats.

Ratnaparkhi, Adwait. 1996. A maximum entropy model
for part-of-speech tagging. InProceedings of EMNLP.

Shen, Libin, Giorgio Satta, and Aravind Joshi. 2007.
Guided learning for bidirectional sequence classifica-
tion. In Proceedings of ACL.

Taskar, Ben, Carlos Guestrin, and Daphne Koller. 2003.
Max-margin markov networks. InProceedings of
NIPS. MIT Press.

Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Al-
tun. 2005. Large margin methods for structured and
interdependent output variables.Journal of Machine
Learning Research, 6:1453–1484.

Xu, Yuehua, Alan Fern, and Sungwook Yoon. 2009.
Learning linear ranking functions for beam search with
application to planning.Journal of Machine Learning
Research (JMLR), 10:1349–1388.

Zhang, Yue and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. InProceedings of EMNLP.

151

